
Supporting Information


Rockwell et al. 10.1073/pnas.1107844108

Fig. S1. Bilin chromophores of phytochromes and cyanobacteriochromes (CBCRs). Phycocyanobilin (PCB) or phytochromobilin ($P\Phi$ B) precursors produce the covalent adduct shown in the *Upper Left* panel in the C5-*Z*,*syn* C10-*Z*,*syn* C15-*Z*,*anti* configuration of Cph1 in the *P*_r state (1). Phycoviolobilin (PVB) instead produces the adduct shown in the *Upper Right* panel. The second covalent linkage in dual-Cys photocycles takes place between the second Cys and the bilin C10 atom (*Lower*), and can occur with either PCB or PVB (2). Relevant conjugated systems are colored according to the color of light they absorb. Thus, unmodified PCB is colored red to match its red absorbance, and so forth.

1 Essen LO, Mailliet J, Hughes J (2008) The structure of a complete phytochrome sensory module in the Pr ground state. Proc Natl Acad Sci USA 105:14709–14714.

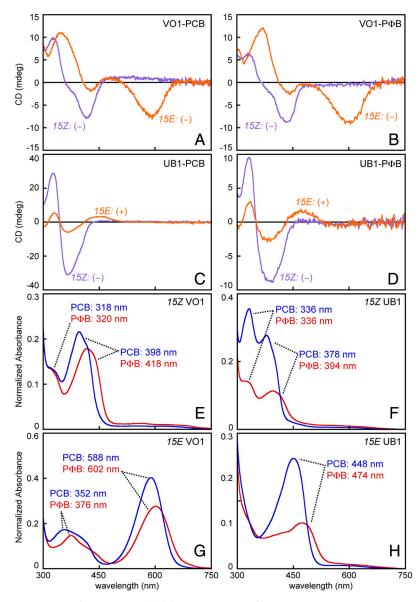

2 Ishizuka T, et al. (2011) The cyanobacteriochrome, TePixJ, isomerizes its own chromophore by converting phycocyanobilin to phycoviolobilin. Biochemistry 50:953–961.

Fig. S2. Spectroscopic characterization of dual-cysteine photosensors. (*A*) Photochemical difference spectra for denatured *15E* UB1 (blue), VO1 (orange), and dark-evolved TP1 (red), shown as (*15Z-15E*). (*B*) Difference spectra for native wild-type and $C_{546}A$ VO1 under the indicated conditions. (*C*) Absorbance spectra for NpF2164-GAF2 in the *15Z* state (violet) and *15E* state (orange). (*D*) CD spectra for NpF2164-GAF2. (*E*) Difference spectra for native UB1 at photoequilibrium with the indicated light sources. (*G*) Photochemical progress curves for UB1 using the conditions from (*F*). (*H*) Photochemical progress curves for VO1 with PCB (circles) or PΦB (triangles).

(beta2) NpF2164q3 C546 Asp-DRVMLYRFDENNHGDVIAEDKRDDMEPYLGLH----------YPESDIPOPARRLF Cph1 TePixJ AnPixJ-GAF2 Aazo_4225 AmaxDRAFT_4613 NIES39_J03990-GAF2 MC7420_3869 NSDWSGVIIKESVSPGWRKILTAN----KGEEVTTQNTVDEEMCIVKKLGS ... NADWSGVIIKESVSPGWQKILSEN----QGEEATTQNTVDEDMCIVKKLGS ... PNDPWSGTILBESVAPGWQALLENG----KKSSTFAQTTTVNPQCLANQLTD ... NPDWSGHFVAEAMSPQWRSLMNDAS--AQRELLKYSAVRDDRCIVKVFES ... ELIEDTYLOETOGG ELIEDTYLKETQGG GLVQDTYLQERQGG Sv7002A0689 Sy7002Ã0689 cce_1413 cce_4289 CY0110_23126 Ct8802_1740-GAF2 NPF2164-GAF2 S7335_348 Ct7822_2884-GAF2 Ct7822_2884-GAF2 Ct7822_2884-GAF2 Ct7822_107 Azzo 0203 GWVEDTYLOETOGG NPOWSGUVAESVSEGWRSLVQTQ-----PKDVDAKDIKDIKCIVATIES ... FNPDWSGQVVAESVSEGWRFILMLIT-----TPEELLTTTEEEKCTI----... FNPDWSGKVVAESVSEGWPSLNLIT----TDEQLLNTTEEEKCTI----... LGLSDTYLOETOAA LQESQGE NTIED NTIEDTHLOESOGE NPDWSGOFILESVTHPWNCLIEQQ----LSIPEIKQNISRCSVRELKN ... POITDTYLEETEGK NPDWSGEFIVDTVAHGMTSLMDLQ-----FSHLELCGNISECSVKNLVN NSDWSGEFIVDSVTSQWTSLMKTQ-----LIHTELCENISECSVKNLVN NPDWSGEFVVESVAEGWKPLVQGQ-----YQDPQLCQNISNCSIKSLAN PQLTD LKNTSGG PQLTI LQKTQGG PQIID YLQQTEGG Aazo_0203 NpR1597-GAF2 (UB1) Ava_1210 all4261-GAF2 NPDWSGDFVFESITSGWVTLMOEO-----LORPELRDNISNCNLKELV-EPPTD LODTGGG FNPDWSGEFVFESVAEGWISLIDEQ-----LQRPELSENVSECSAKDLAK FNPDWSGEFVFESFADGWISLIDEQ-----EKKPELRKNVSECSAKDLAS PPVAD YLQDTEGG FNPDWSGEFVFESLADGWISLIDEO-----EKOPELRKNVSECSAKDLAS TPVVDTYLOETRGG al14261-GAP2 L8106_25145 L8106_05116-GAF4 MC7420_7724-GAF2 NIES39_C00690 L8106_24225-GAF2 Osci3400013 ENPDWSGEVLAESVMSGWKTLISKT----EYOSSLKOTAVNOADCVVKLLDS ALTEDTYLEENOGG NPDWSGEVLASSVALGWATLTLEQ---QNNPDLKADALEEERCTLKSLDG ... NSLQD: LKDTQGG TYLKETRGG REDWSGEFMAESVAEGWVOLTAGP----LRDSKATRIAIEOEKCAFOEINY ... HVISD YLOONOGG RUBMOGINALSUSALAGAVQUIAGY----ANTPELTQVTVNKDDCAVARFS. ...CUDDTYLQNNQGG FNPDWSGNFVAESVASGWKVLLDSP----INQPQRTETTIEKENCATKTLSI ... EPIEDTYLQANQGG FNSDWTGQAVAEAVGSGWISLLVEQ----TNEEVLQSDRTNNERCILRKWYH ... LVEIDTFFQQTQGG Ct8802_4055-GAF3 Ct8802_4055-GAF4 Ct8802_4055-GAF2 NDF2164_CDF2_0000 NTDWTGSVVAESVGSGWVSLLVEQ----TNDRILSGDRVATERCILRKWSQ ... LLEPDTYFESTGGG NSWTGQPVAESVCSGWNSLFIEQ----TNDPILQSNRTNSGTLKKWQ ... IVCTDTYFQSTAGG 'HPDWSGEVIAESVGAGWSSLVEWQ----EQDGILKTGLISSERCNIKDYCS ... KADADTYLKETQGG NpF216<mark>4-GAF3 (VO1)</mark> CwDRAFT 2358 NADWIGEVLAESAGAEWWSVMEIQ---ETDPILESKEMNAHEQCILKNMQA … ALDQDIYFINIQGG NADWIGEVLAESVNPQWVSVMELQ---QMDQQLYRTIITNDERCILKKLSS … IFDIDIYLQETKGG Ct8802_4055-GAF5 NADWSGEVIAESVNPQWVSVMELQ---QMDQQLYRTITTNDERCTLKKLSS C259 (beta6) ... ESILRSAYHCHLTYLKNMGVGASLTISLIKDGHLWGLIACH Cph1 TePixJ AnPixJ-GAF2 ... DIFKAGLTECHLNQLRPLKVRANL ... DIYEAGHFSCHLEILEQFEIKAYI VPMVIDDQLFGLLIAH VPVFAAEKLWGLLAAY PIFNSGKLWGLLAVY Aazo 4225 ... IYYTAGFNDCYOOLLEKIOARA Aazo_4225 AmaxDRAFT_4613 NIES39_J03990-GAF2 MC7420_3869 ... I-YKADFSDCYLRFLEQFQIR PIFOGYOLWGLLCVY ... I-YNSGFSDCYLKFLEQFQ V-EQANFSECYLNLLKGMQ SPIFQGYQLWGLLCVY APIFCGQQLWGLLGVY Sy7002A0689 ... I-YKAGFPPCYIELLENFOA PIFLGDRLWGLLGIY cce_1413 cce_4289 I-YQAEFSHCYLQLLERYQA I-YEAGFTPCYINLLEQLQA AIYKNKSLWGLFAAY PIFCSNQLWGLILTY cce_4289 CY0110_23126 Ct8802_1740-GAF2 NpF2164-GAF2 S7335_348 Ct7822_2884-GAF2 Ct7822_2884-GAF2 Ct7822_5290-GAF2 MC7424_1855-GAF2 MC7420_107 I-YEADFTPCYINLLEQLQAR PIFCNNQLWGLILAY ... I-YEAGFSPCYIEILEEYEAR AIYHQDTLWGLLAAY ... I-YSAGFSDCYIKILEAYQA ... I-ENAGFSDCYVDVLKSYQA AIFQGEKLWGLLAAY ... I-YEQKFSQCYINILEHYQV ... I-YNAGFSECYIKILEICQA AIYEGEKLWGLLAAY I-YNAGFSECYIKILEICQA I-YHAGFSDCYINILELCQA ATYEGEKLWGLLATY AIYEGEKLWGLLAT I-YSAGFNECYIKILESYQAR ... I-YSAGFNECYIKILESYQAR ... I-YNSGFSDCYTKITETYO AIYKGKNLWGLLAAF Aazo_0203 NpR1597-GAF2 (UB1) Ava_1210 AILYNHKIWGLLAVY I-YNSGFSDCYIKILEIYQA I-YNAGFSDCYIKILETYQA AIYHGQKLWGLLAVY AIYHGQKLWGLLAIY ... all4261-GAF2 ... I-YNAGFSDCYIKVLETYQA AIYHGOKLWGLLAIY al14261-GAF2 L8106_25145 L8106_05116-GAF4 MC7420_7724g-GAF2 NIES39_C00690 L8106_24225-GAF2 Osci3400013 I-YTAGFDECYLNFLEQLQA I-YEANFSDCYVELLEQFQA I-YNAGFTDCYIELLEQFQA PIFCGTNLWGLLCAY PIFCGTQLWGLLAT PIFCGKKLWGLLATY I-YEMGFDACYLELLKOFOA PIFSGYOLWGLLAVY I-YQAGFDSCYLEFLEQLQA I-YQAGFDTCYIDLLEQFQA PIFCGKKLWGLLGVY PIFCSSKLWGLLATY ... Ct8802_4055-GAF3 Ct8802_4055-GAF4 Ct8802_4055-GAF4 ... I-YATDFPSCYIESLEKYQAR PIFKDEQLWGLLGCY ... V-YAMDFPECYIESLEKYQAKA ... V-YAANFPTCYIESLEKYQAKA ... I-SAAGFSSCYLESLEKFQAKA PIFOGRKLWGLMGCY PIFQNQKLWGLLGCY PVFRAGNLWGLLAAY NpF2164-GAF3 (VO1) CwDRAFT 2358 ... I-YNAGFSSCYLRSLEKYQAKAYMIVPIFQNNQLWGLFAVY ... I-YKAGFSPCYIEFLEKYQAKAYIIIPIFRNEDFWGLLAVY Ct8802_4055-GAF5

Fig. S3. Sequence alignment of insert-Cys CBCRs. Proteins in this study are highlighted. Both Cys residues and the Asp-motif are indicated, and β strand colors match Fig. 1A.

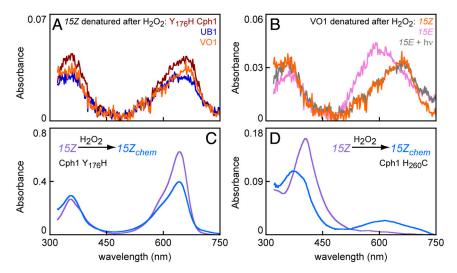


Fig. S4. Comparison of PCB and P Φ B adducts of VO1 and UB1. (*A*)–(*D*) Characterization of VO1 and UB1 by CD spectroscopy. PCB and P Φ B adducts are shown in the *15Z* (purple) and *15E* (orange) states. VO1 does not invert CD upon photoconversion, like the CBCR Tlr0924 (1) or BphPs. UB1 does invert CD, like Cph1 and plant phytochrome (2). (*E*)–(*H*) Absorption spectra are shown for PCB (blue) and P Φ B (red) adducts, with peak wavelengths for the two observed bilin transitions indicated. The second transitions of both proteins show no redshift with P Φ B in the *15Z* state, unlike the first transitions and unlike both transitions of *15E* VO1.

1 Rockwell NC, et al. (2008) A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome TIr0924 from *Thermosynechococcus* elongatus. Biochemistry 47:7304–7316.

2 Rockwell NC, Shang L, Martin SS, Lagarias JC (2009) Distinct classes of red/far-red photochemistry within the phytochrome superfamily. Proc Natl Acad Sci USA 106:6123–6127.

() <

Fig. S5. Controls for reaction of CBCRs with hydrogen peroxide. (*A*) 15Z H_2O_2 products were denatured with acidic guanidinium chloride and characterized by absorbance spectroscopy. (*B*) H_2O_2 products of VO1 in the indicated states were denatured with acidic guanidinium chloride. (*C*)–(*D*) The response of 15Z $Y_{176}H$ and $H_{260}C$ mutant Cph1 to H_2O_2 was assessed. The 15Z state (purple) was treated with H_2O_2 in darkness to yield chemical products (blue). Blue traces are scaled to reflect the 1:1 dilution of sample upon peroxide addition.

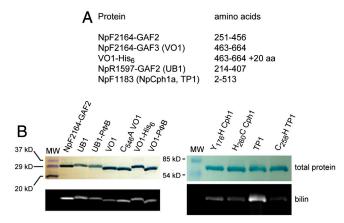


Fig. S6. Overview of novel 2-Cys photosensors. (A) Amino acids amplified for expression are indicated. (B) Characterization of purified proteins by SDS-PAGE and zinc blotting.

Protein	Native SAR	Denatured SAR	% conversion	% recovery
NpF2164-GAF2	0.18	0.24	50	81
NpF2164-GAF3 (VO1)	0.22	0.26	85	98
VO1-PΦB	0.18	0.23	N/D	89
VO1 C ₅₄₆ A [†]	0.20	0.15	55	N/D
VO1-His ₆	0.23	0.29	90	101
NpR1597g2 (UB1)	0.28	0.50	75 (40) [‡]	97
UB1-PØB	0.11	0.10	N/D	103
UB1 C ₂₉₈ A	0.65	0.4	70	82 [§]
NpF1183 (NpCph1a, TP1)	0.20	0.22	85	83
TP1 C ₂₅₈ H ¹	0.03	0.03	<10	N/D
Cph1 H ₂₆₀ C	0.18	0.11	60	24

Table S1. Characterization of phytochromes and CBCRs*

*Specific absorbance ratio (SAR) was calculated from peak absorbances of the bilin band and the protein band at 280 nm. Denatured SAR (in acidic guanidinium chloride) permits more direct comparison of proteins with different peak wavelengths in the native state. Percent conversion to *15E* photoproduct for PCB adducts was estimated from the denatured spectra relative to standards, but the absence of suitable PΦB standards precluded a similar approach for those samples. Percent recovery of the ground state was estimated from the forward and reverse difference spectra. N/D, not determined.

Values are reported for photoconversion with violet light in the presence of 50 mM DTT.

*Value in parentheses is for 400 nm photoequilibrium.

[§]Recovery is for 500 nm light without DTT. Recovery with 436 nm light and 50 mM DTT, 62%. Recovery in the presence of DTT is not corrected for presence of any *15Z* DTT adduct.

¹Forward photochemistry was too inefficient to allow characterization of the reverse reaction.

Table S2. Peak wavelengths*

Protein	Native λ_{max} (nm)	Denatured λ_{max} (nm)
NpF2164-GAF2	382 (–); 446 (+)	672; 580
NpF2164-GAF3 (VO1)	398 (–); 588 (–)	677; 582
VO1-ΡΦΒ	418 (–); 602 (–)	680; 586
VO1 C ₅₄₆ A [†]	614; 592	676; 582
VO1-His ₆	398; 588	676; 578
NpR1597-GAF2 (UB1)	378 (–); 448 (+)	676; 576 (674; 578) [‡]
UB1-PΦB	396 (–); 474 (+)	682; 578
UB1 C ₂₉₈ A [§]	622; 558	674; 578 (674; 586)
NpF1183 (NpCph1a, TP1) [¶]	392; 598, 670	674; 578
TP1 C ₂₅₈ H	612; –	662; –
Cph1 H ₂₆₀ C	406; 570	682; 582
Cph1 ^{II}	662; 704	674; 582
α-PEC**	563; 506	599; 508

*Peak wavelengths are reported for the bilin transition of longest wavelength (S¹) as 15Z; 15E. All proteins were expressed as intein-CBD fusion proteins with coexpression of PCB unless otherwise stated. Where measured, the CD sign for each transition is reported in parentheses for the native protein. Values for denatured samples were derived from difference spectra.

 $^{\rm t} {\rm Values}$ are reported for photoconversion with violet light in the presence of 50 mM DTT.

*Values in parentheses are for 334 nm illumination.

 $^{\rm S}$ Values in parentheses are in the presence of DTT. The free 15E value was derived from the DTT-addition difference spectrum to avoid overlap with the free 15Z state.

¹Multiple values for the *15E* state of TP1 reflect thermal evolution of photoproduct, which proceeded as a first-order process with an apparent rate constant of 0.2 min⁻¹.

Peak wavelengths (1) are references for covalent PCB adducts.

**Values for α-phycoerythrocyanin (α-PEC) calculated from spectra provided by Kai-Hong Zhao (Huazhong Agricultural University) as references for covalent PVB adducts.

PNAS PNAS

¹ Shang L, Rockwell NC, Martin SS, Lagarias JC (2010) Biliverdin amides reveal roles for propionate side chains in bilin reductase recognition and in holophytochrome assembly and photoconversion. *Biochemistry* 49:6070–6082.

Table S3. Accession information for insert-Cys CBCRs*

Name [†]	Locus tag	Organism	Amino acids
Aazo_4225	Aazo_4225	Nostoc azollae 0708	650–791
AmaxDRAFT_4613	AmaxDRAFT_4613	Arthrospira maxima CS-328	387–510
NIES39_J03990-GAF2	NIES39_J03990	Arthrospira platensis NIES-39	349–472
MC7420_3869	MC7420_3869	Microcoleus chthonoplastes PCC 7420	378–501
Sy7002A0689	SYNPCC7002_A0689	Synechococcus sp. PCC 7002	211-337
cce_1413	cce_1413	Cyanothece sp. ATCC 51142	219-337
cce_4289	cce_4289	Cyanothece sp. ATCC 51142	236-350
CY0110_23126	CY0110_23126	Cyanothece sp. CCY0110	214–327
Ct8802_1740-GAF2	Cyan8802_1740	Cyanothece sp. PCC 8802	225-343
NpF2164-GAF2	Npun_F2164	Nostoc punctiforme ATCC 29133 [‡]	287-415
\$7335_348	\$7335_348	Synechococcus sp. PCC 7335	47–165
Ct7822_2884-GAF2	Cyan7822_2884	Cyanothece sp. PCC 7822	250-368
Ct7822_5290-GAF2	Cyan7822_5290	Cyanothece sp. PCC 7822	275-392
Ct7424_1855-GAF2	PCC7424_1855	Cyanothece sp. PCC 7424	259–377
MC7420_107	MC7420_107	Microcoleus chthonoplastes PCC 7420	264–382
Aazo_0203	Aazo_0203	Nostoc azollae 0708	294–411
NpR1597-GAF2 (UB1)	Npun_R1597	Nostoc punctiforme ATCC 29133 [‡]	254–372
Ava_1210	Ava_1210	Anabaena variabilis ATCC 29413	252-370
all4261-GAF2	all4261	Nostoc sp. PCC 7120	252-370
L8106_25145	L8106_25145	Lyngbya sp. PCC 8106	564-688
L8106_05116-GAF4	L8106_05116	Lyngbya sp. PCC 8106	954–1072
MC7420_7724-GAF2	MC7420_7724	Microcoleus chthonoplastes PCC 7420	499–650
NIES39_C00690	NIES39_C00690	Arthrospira platensis NIES-39	407-529
L8106_24225-GAF2	L8106_24225	Lyngbya sp. PCC 8106	385-508
Osci3400013	OSCI_3400013	Oscillatoria sp. PCC 6506	567-690
Ct8802_4055-GAF3	Cyan8802_4055	Cyanothece sp. PCC 8802	492-617
Ct8802_4055-GAF4	Cyan8802_4055	Cyanothece sp. PCC 8802	701–824
Ct8802_4055-GAF2	Cyan8802_4055	Cyanothece sp. PCC 8802	285-408
NpF2164-GAF3 (VO1)	Npun_F2164	Nostoc punctiforme ATCC 29133 [‡]	499–622
CwDRAFT_2358	CwatDRAFT_2358	Crocosphaera watsonii WH 8501	106–230
Ct8802_4055-GAF5	Cyan8802_4055	Cyanothece sp. PCC 8802	901–1026

*Accession information is provided in the form of the GenBank locus tag. The numbers of the aligned amino acids are shown, corresponding to the first through sixth GAF beta strands. This alignment is intended to show the sequence diversity in this subfamily; therefore, some identical CBCR sequences from closely related *Cyanothece* and *Arthrospira* species are not shown. [†]Name given in Fig. S3.

^{*}Also known as Nostoc punctiforme sp. PCC 73102.

PNAS PNAS