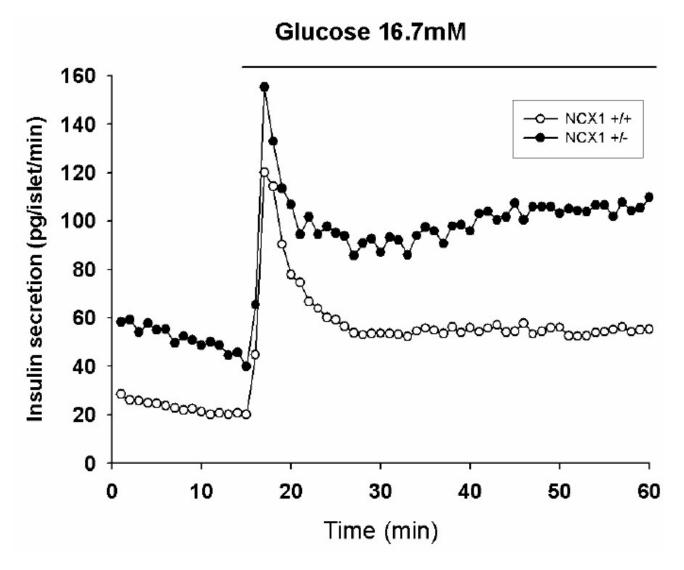
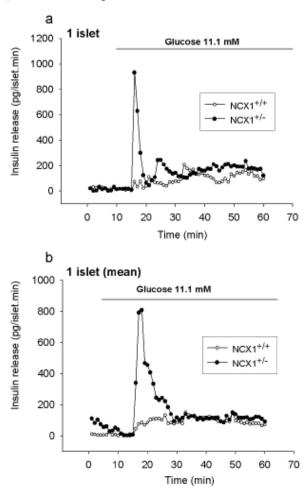

Supplementary Table 1. D-[U-¹⁴C]glucose and D-[5-³H]glucose metabolism, and ATP generation in Ncx1^{+/-} and Ncx1^{+/-} islet cells.

Cells	Ncx1 ^{+/+}		Nex1 ^{+/-}	
D-glucose	2.8 mM	16.7 mM	2.8 mM	16.7 mM
D-[U- ¹⁴ C]glucose oxidation	6.80 ± 0.77 $(12)^{a}$	43.40 ± 3.16 (15)	10.34 ± 1.19 (25)	29.79 ± 2.69 (24)
D-[5- ³ H]glucose	64.58 ± 6.40	293.95 ± 18.54	93.30 ± 7.76 (25)	305.53 ± 29.02
utilization	(17)	(19)		(21)
$^{14}\text{C}0_2/^3\text{H}_2\text{O} \text{ ratio (\%)}$	10.80 ± 1.19 (10)	16.32 ± 1.72 (15)	11.75 ± 1.12 (25)	11.07 ± 1.10 (21)
ATP generation ^b	363.10 ± 32.40	2135.10 ± 133.90	554.00 ± 53.7	1710.00 ± 148.80
	(10)	(15)	(25)	(21)

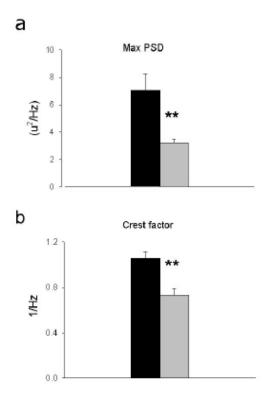
^aAll results are expressed as pmol of D-glucose equivalent per 120 min and islet


^b(pmol/islet over 120 min)

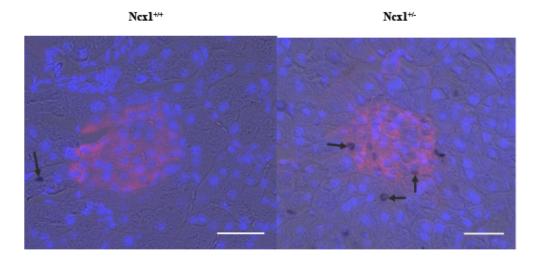
Supplementary Figure 1. Histological and histochemical analysis of main organs (brain, heart, lung, liver, spleen, stomach, intestine and thymus) of Ncx1^{+/+} and Ncx1^{+/-}mice.


Supplementary Figure 2. Effect of Ncx1 heterozygous inactivation on glucose-induced insulin release

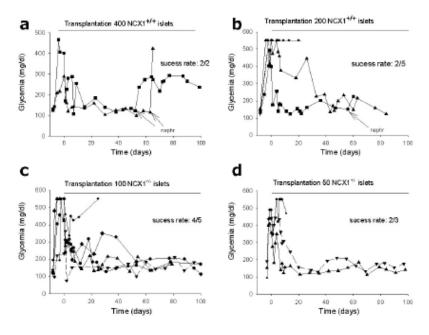
Effect of 16.7 mM glucose on insulin release from groups of 20 islets. Mean of 4 individual experiments in each case. The islets were from different mice.


Supplementary Figure 3. Effect of Ncx1 heterozygous inactivation_on insulin release from 1 single islet

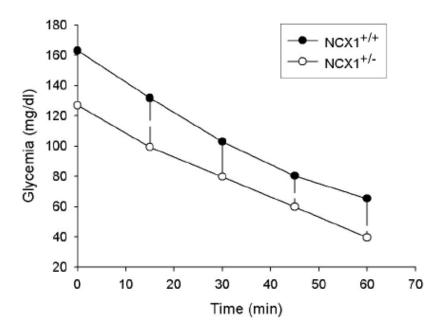
Representative experiment. (b) Mean of 4 experiments. The islets were from different mice.


Supplementary Figure 4. Effect of Ncx1 heterozygous inactivation on 11.1 mM glucose-induced changes in $[Ca^{2+}]_i$

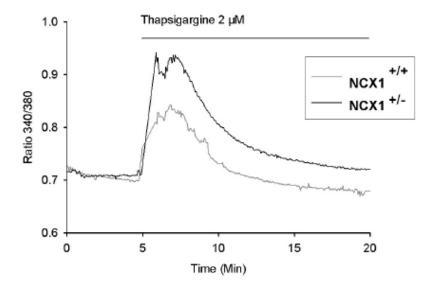
Power spectral density (PSD) analysis of the $[Ca^{2^+}]_i$ oscillations of the curves illustrated in Figure 2. (a) maximum of the peak of power spectra and (b) crest factor (ratio of peak/integral), mean \pm SEM of 5 individual traces, in each case. ** P<0.003 vs Ncx1^{+/+} islets. Black: NCX1^{+/+}, grey: NCX1^{+/-} islets.


Supplementary Figure 5. Effect of Ncx1 heterozygous inactivation on β-cell proliferation rate

Representative micrographs of proliferation rate measurement from 5 to 6 pancreases per genotype. The arrows show BrdU positive nuclei in endocrine (β -cells coloured in red) and exocrine tissue. Sections were double stained for BrdU in black (immunoperoxidase) and for β -cells in red (immunofluorescence) and counterstained with DAPI (blue nuclei). The micrographs were from pancreatic sections of 12 weeks old Ncx1^{+/+} (left panel) and Ncx1^{+/-} (right panel) mice. Scale bar = 0.2 μ m.


Supplementary Figure 6. Effect of Ncx1 heterozygous inactivation on the ability of islets transplantation to cure diabetes

Effect of transplanting grafts of (**a**) 400, (**b**) 200, (**c**) 100 and (**d**) 50 islets from $Ncx1^{+/+}$ or $Ncx1^{+/-}$ mice on non-fasting blood glucose levels. The success rate of diabetes cure (blood glucose level <220 mg/dl) was 2/2 and 2/5 for 400 and 200 $Ncx1^{+/+}$ islet, respectively, and 4/5, 2/3 for 100 and 50 islets $Ncx1^{+/-}$ islets, respectively.


Supplementary Figure 7. Effect of Ncx1 heterozygous inactivation_on intraperitoneal insulin sensitivity test.

Insulin was injected intraperitoneally at a dose of $0.52~\mathrm{U/Kg}$ body weight, in the fasting state (2h). n = 5 in each case.

Supplementary Figure 8. Effect of Ncx1 heterozygous inactivation on ER Ca²⁺content.

Effect of thapsigargin (2 μ M) on $[Ca^{2+}]_i$ in $Ncx1^{+/+}$ and $Ncx1^{+/-}$ islets. Mean of 6 individual experiments in each case. The period of exposure to thapsigargin is indicated by a bar above the curves.

