
Cluster analysis and cluster validation

Correlation-based distances

Apart from metric distances correlation coefficients may be utilized as measures of similar-
ity. Given two measurements x = {xi, i = 1, . . . , N} and y = {yi, i = 1, . . . , N}, Pearson’s
correlation coefficient is calculated using the following formula (cf. [1]):

cor(x,y) =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)
2
√∑n

i=1 (yi − ȳ)
2

(1)

where

x̄ =
1

n

n∑
i=1

xi (2)

denotes the arithmetic mean of vector x. Assuming a linear interrelation between the series of
measurements of two proteins the correlation coefficient measures their degree of correlation.
Resulting values ([−1 . . . 1]) can then be transformed in a distance value d:

d(x,y) = 1− cor(x,y)2 (3)

With a slight modification—the subtraction of each protein’s mean abundance value is omitted—
Pearson’s uncentered correlation coefficient provides another possibility to measure similarities
between two classification objects:

r(x,y) =

∑n
i=1 (xi) (yi)√∑n

i=1 (xi)
2
√∑n

i=1 (yi)
2

(4)

Formal definition of cluster analysis

Formally, a cluster analysis can be described as the partitioning of a number N of classification
objects or—in the sense of proteomics—a number of patterns with an endless dimension P in
K groups or clusters {Ck, k = 1, . . . ,K}. Given N objects X = {xi, i = 1, . . . , N}, where xi,j

denotes the j-th element of xi, the grouping of all objects with index i = 1, . . . , N in clusters
k = 1, . . . ,K can be defined as follows:

wk,i =

{
1, if pattern xi ∈ cluster Ck

0, otherwise
(5)

Two conditions apply for the matrix W(X) = [wk,i]K×N to ensure that the association of
each object to a cluster is unique (please note that this only applies for hierarchical (a) and
partitioning (b) cluster analysis. In case of probabilistic (c) approaches a pattern may belong
to more than one cluster with a certain probability):

wk,i ∈ {0, 1} ;

K∑
k=1

wk,i = 1 (6)

Furthermore, let the following definition denominate the number of objects belonging to a
cluster Ck:

|Ck| =
N∑
i=1

wk,i (7)
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Cluster indexes for cluster validation

Calinski-Harabasz

The cluster index of Calinski and Harabasz [2] is calculated using the following equation:

CH(K) =
[trace B�K − 1]

[trace W�N −K]
for K ∈ N (8)

where B denotes the error sum of squares between different clusters (inter-cluster)

trace B =

K∑
k=1

|Ck| ‖ Ck − x ‖2 (9)

and W the squared differences of all objects in a cluster from their respective cluster center
(intra-cluster)

trace W =

K∑
k=1

N∑
i=1

wk,i ‖ xi − Ck ‖2 (10)

Calculated for each possible cluster solution the maximal achieved index value indicates the
best clustering of the data. The important characteristic of the index is the fact that on the
one hand trace W will start at a comparably large value. With increasing number of clusters
K, approaching the optimal clustering solution in K∗ groups, the value should significantly
decrease due to an increasing compactness of each cluster. As soon as the optimal solution
is exceeded an increase in compactness and thereby a decrease in value might still occur; this
decrease, however, should be notably smaller. On the other hand, trace T should behave in
the opposite direction, getting higher as the number of clusters K increases, but should also
reveal a kind of softening in its rise if K gets larger than K∗.

Index-I

Maulik and Bandyopadhyay [3] proposed a cluster index that is, in principle, composed of
three individual elements:

I(K) =

(
1

K
× E1

EK
×DK

)p

for p,K ∈ N (11)

While the first factor simply normalizes each index value by the overall number of clusters K,
the second term sets the overall error sum of squares of the complete datasets in relation to
the intra-cluster error of a given clustering:

EK =

K∑
k=1

N∑
i=1

wk,i ‖ xi − x̄k ‖ for K ∈ N (12)

A third factor takes into account the maximally observed difference between two of the K
clusters:

DK = max
p,q=1,...,K∧p 6=q

‖ x̄p − x̄q ‖ for K ∈ N (13)

The index computation includes a variable parameter p ∈ N that may be “used to control the
contrast between the different cluster configurations”’ [3, p.1651]. The authors recommend a
value of p = 2.

Davies-Bouldin

Instead of simply proposing a cluster index, Davies and Bouldin [4] formulated a general
framework for the evaluation of the outcomes of cluster algorithms. In analogy to Halkidi et
al. [5] an instance of their index DB(K) may be defined as follows:

DB(K) =
1

K

K∑
k=1

Rk for K ∈ N (14)
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where

Rk = max
j=1,...,K,j 6=k

(
Sk + Sj

dk,j

)
for k ∈ [1, . . . ,K] (15)

and

Sk =
1∑N

i=1 wk,i

N∑
i=1

wk,i ‖ xi − x̄k ‖ for k ∈ [1, . . . ,K] (16)

as well as
dk,j =‖ x̄k − x̄j ‖ (17)

For each cluster Ck an utmost similar cluster—regarding their intra-cluster error sum of
squares—is searched, leading to Rk. The index then defines the average over these values.
In contrast to the aforementioned cluster indexes, here, the minimal observed index indicates
the best cluster solution.

Krzanowski-Lai

Krzanowski and Lai [6] developed a cluster index that, similar to the index of Calinski and
Harabasz [2], is based on the squared differences of all objects in a cluster from their respective
cluster center—trace W. The authors define DIFF (K) as the difference between a clustering
of the data in K and a clustering in K − 1 clusters. Let J be the number of variables that has
been measured on each xi ∈ X and trace WK the sum of squares function that corresponds
to the clustering in K clusters, their measure DIFF (K) is then defined as follows:

DIFF (K) = (K − 1)
2
J · trace WK−1 −K

2
J · trace WK (18)

Here, the introduction of the normalizing factor 2
J is derived from the observation that—

given independently uniformly distributed measurements on each variable j ∈ [1, . . . , J ]—the
optimal clustering of the data will reduce the sum of squares exactly by this factor [6, p.25].

The authors claim that if there exists an optimal clustering solution in K∗ groups, the value
of DIFF (K∗) should be comparably large and positive (see index of Calinski and Harabasz
for further explanation). In contrast, all values of DIFF (K) for K > K∗ will have rather
small values (maybe even negative), while values for K < K∗ will be rather large and positive.
Bringing these observations together the index KL(K) is defined as follows:

KL(K) =| DIFF (K)

DIFF (K + 1)
| (19)

The optimal cluster solution is then indicated by the highest value of KL(K).

Figure of Merit

Coming from a gene expression background, the Figure of Merit [7] is based on the assumption
that the validity of a cluster is certainly increasing in value if in a second experiment the
same genes would group together and reveal a similar pattern of expression. Following a
bootstrapping or jackknife approach, one may assume that a cluster algorithm is successively
applied on a set of genes whereby in each iteration one experimental condition—in exact terms
a feature of each classification object, or a column of the data matrix—is left out. If a cluster
algorithm would have assigned each object to a cluster just by chance, it seems logical that
omitting a condition will lead to different results. Otherwise, it is likely that two cluster results
reveal a similar structure if the dependence on the left-out feature is small.
Let in the following X = {xi, i = 1, . . . , N} denote a set of N classification objects, each having
the dimension P ∈ N, such that xi,j is the j-th feature of xi, j ∈ 1, . . . , P ; furthermore, let
there be a number of clusters K ∈ N whereby W(X) = [wk,i]K×N describes the clustering of
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the data. Assuming that a clustering has been performed with a data matrix where the j-th
feature has been omitted, the Figure of Merit is defined as follows:

FOM(j,K) =

√√√√ 1

N

K∑
k=1

N∑
i=1

wk,i

(
xi,j − Ck,j

)2
(20)

where

Ck,j =
1

N

N∑
i=1

wk,ixi,j (21)

denotes the arithmetic mean in feature j of all objects of cluster k.
To avoid a bias towards the overall number of clusters, the so called “adjusted Figure of

Merit” takes this amount K into account:

adjusted FOM(j,K) · 1√
N−K
N

(22)

If the calculation is iterated over all P features of the classification objects, the “aggregate
Figure of Merit” can be computed:

aggregate FOM(K) =
∑
j=1

PFOM(j,K) (23)

The authors state that in the outcome “A small figure of merit indicates a clustering algorithm
having high predictive power. We compare clustering algorithms with the same number of
clusters, and over a range of number of clusters” [7, p.310].
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