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Supplementary Figure 1. Fluorescence intensity measurement distributions

for each color in four sequencing cycles. Before normalization, the distribution of

intensities in the FTC channel are skewed towards a higher range compared to the

other channels in later cycles, resulting in the FTC bias seen in (Fig. 1a).



Supplementary Tables

Supplementary Table 1. Mapping statistics for two E. coli genomic DNA
samples before and after quantile normalization. Sample 1 are 50bp reads,
sample 2 are 36bp reads. Observe there is an increase in the total number of
mapped reads. Most striking is the increase in perfect matches, indicating a higher
accuracy in the color calls after normalization. These samples were processed on

two different labs, with independent library preparations and sequencing machines.

Before QN After QN % change
Sample 1 Total Mapped Reads 660850 710226 7.47
1826966 0 mismatches 246542 281590 14.22
total reads 1 mismatch 169708 180460 6.34
2 mismatches 134467 138811 3.23
3 mismatches 110133 109365 -0.70
Sample 2 Total Mapped Reads 14090775 14985313 6.35
30296640 0 mismatches 5490005 6202116 12.97
total reads 1 mismatch 3511552 3679413 4.78
2 mismatches 2794532 2829559 1.25

3 mismatches 2294686 2274225 -0.89



Supplementary Table 2. Mapping statistics for two H. sapiens genomic DNA 36-
bp samples from the One Thousand Genomes Project. Each sample was
processed in different sequencing centers, thus independent library preparation and
sequencing machines. In general, accuracy improved more in Sample 2.
Anecdotally, although biases towards the end of reads are found in both samples,
the color balance in early cycles of Sample 2 correspond closer to the color balance
expected from the human genome. That is, our method is more successful in
removing bias in later cycles when the quality of the earlier cycles is good. In other

words, good library preparation leads to better bias-correction.

Before QN After QN % change
Sample 1 Total Mapped Reads 493683 515566 4.43
1392626 0 mismatches 165546 177487 7.21
total reads 1 mismatch 125067 131213 491
2 mismatches 109794 112039 2.04
3 mismatches 93276 94827 1.66
Sample 2 Total Mapped Reads 700605 732433 4.54
2085077 0 mismatches 188330 205331 9.03
total reads 1 mismatch 178920 191088 6.80
2 mismatches 173863 178733 2.80

3 mismatches 159492 157281 -1.39



Supplementary Table 3. Effect of normalization on mapped reads from E. coli
sample. Each row corresponds to reads in each mapping strata (0 mismatches, 1
mismatch, ...) before normalization, columns indicate the percentage of reads in each
mapping strata after normalization. For instance, all perfectly mapped reads remain
mapped after normalization (89.5% still perfectly mapped) while 25.9% of reads
mapped with one mismatch become perfect matches and 7.8% of unmapped reads

before normalization can be mapped after normalization.
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Supplementary Table 4. Effect of normalization on accuracy in E. coli sample.
More reads map uniquely after normalization, there are fewer errors per mapped
read, and, more importantly, there is a ~6.4% reduction in the number of valid
adjacent errors. The latter results in a lower rate of false-positive SNP calls (Fig. 1d

of main text).

Before After % change
Normalization Normalization
Uniquely mapped reads 12969144 13794868 +6.36
Colors w/ errors per mapped read 1.05 0.99 -4.92

Valid adjacent color errors per mapped read 0.027 0.025 -6.42



Supplementary Methods

Quantile Normalization: The Rsolid normalization procedure assumes that the

distribution fj. of intensity measurements for cycle j and color channel c is the

mixture of two distributions:

fie=(1-pc) foj + pcfij

where pcis the proportion of dinucleotides corresponding to color c in the sample
being sequenced, while fy;and fi;are background and signal distributions for the
corresponding sequencing cycle. The mixture model of signal and background
distributions is motivated by Fig. 1b in the main text, and is the principle behind
existing model-based base-calling methods for second-generation sequencing datal.
Accordingly, the main assumption in our model is that the signal and background
intensity distributions are the same for all color channels, while the different

mixture proportions make the resulting distributions different.

Our quantile normalization method follows four steps:

* Estimate sample color proportions: for this step we use the fact that early
sequencing cycles are usually good and use these to compute sample color
proportions p. as the proportion of times color channel ¢ has highest intensity
over all measurements in sequencing cycles 3-5. If a practical estimate of
dinucleotide proportions can be derived from sequence analysis, our method can
use that estimate instead.

* Estimate background and signal distributions for each cycle: in each cycle j,
we take the highest intensity for each read as coming from the signal
distribution f7;, and the other three measurements as coming from the
background distribution fo;.

* Compute reference distribution for each channel and cycle: for each channel ¢

and cycle j we sample from the estimated signal and background distributions f3;



and fyj according to estimated proportion p, this results in a reference
distribution f.

* Quantile normalize: we use a standard quantile normalization procedure? to
normalize the observed intensities in each channel to the reference distributions

obtained in step 3.

This gives a new set of intensities from which color-calls are made by selecting the
highest of the four intensities for each read and cycle. This procedure is
computationally efficient. The most expensive step is sorting the observed intensity
measurements in each channel and cycle, and the reference distributions created for
normalization. In our tests, we are able to process a complete flow cell of data (~300
million reads) in two hours using ten commodity computing cluster nodes. Intensity
measurements for each panel are normalized together, since intensity distributions
are different across panels. For data from recently released Solid systems (3plus
system), which uses smaller beads and therefore produces more intensity data, our
algorithm scales as expected and we are able to process a complete flow cell of data
in 4 hours. Note that our software scales at the same rate as a sorting algorithm.
Also note that the amount of time consumed by our software is trivial compared to

the computational requirements of mapping these data.

Materials: Software implementing the quantile normalization procedure is available
online at http://rafalab.jhsph.org/Rsolid. The H. sapiens samples from the 1000
genomes project are available online from the Short Read Archive
(http://www.ncbi.nlm.nih.gov/Traces/sra), with accession numbers SRR010750
(Sample 1) and SRR011318 (Sample 2). The H. sapiens samples were mapped to the
UCSC hg18 reference using Corona Lite software
(http://solidsoftwaretools.com/gf/project/corona/), allowing 3 or fewer
mismatches and no trimming. The E. coli samples were mapped to the DH10B, NCBI
Reference Sequence NC_010473 using SOCS3. SNP calls in Fig. 1c were made using
Corona for both mapping and SNP calling.
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