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Abstract—In magnetic resonance imaging (MRI), non-
Cartesian scan trajectories are advantageous in a wide
variety of emerging applications. Advanced reconstruc-
tion algorithms that operate directly on non-Cartesian
scan data using optimality criteria such as least-squares
(LS) can produce significantly better images than con-
ventional algorithms that apply a fast Fourier trans-
form (FFT) after interpolating the scan data onto a
Cartesian grid. However, advanced LS reconstructions
require significantly more computation than conventional
reconstructions based on the FFT. For example, one LS
algorithm requires nearly six hours to reconstruct a single
three-dimensional image on a modern CPU. Our work
demonstrates that this advanced reconstruction can be
performed quickly and efficiently on a modern GPU, with
the reconstruction of a 643 3D image requiring just three
minutes, an acceptable latency for key applications.
This paper describes how the reconstruction algorithm

leverages the resources of the GeForce 8800 GTX (G80)
to achieve over 150 GFLOPS in performance. We find
that the combination of tiling the data and storing
the data in the G80’s constant memory dramatically
reduces the algorithm’s required bandwidth to off-chip
memory. The G80’s special functional units provide sub-
stantial acceleration for the trigonometric computations
in the algorithm’s inner loops. Finally, experiment-driven
code transformations increase the reconstruction’s per-
formance by as much as 60% to 80%.

I. INTRODUCTION

Mainstream microprocessors such as the Intel Pen-

tium and AMD Opteron families have driven rapid

performance increases and cost reductions in science

and engineering applications for two decades. These

commodity microprocessors have delivered GFLOPS

to the desktop and hundreds of GFLOPS to cluster

servers. This progress, however, has slowed since 2003

due to constraints on power consumption. Since that

time, advances in computational throughput have been

driven by graphics processing units (GPUs), which will

likely drive the next wave of computational advances

for science and engineering applications. This trend is

illustrated in Figure 1.

Recent advances in architecture have also increased

the GPU’s attractiveness as a platform for science and

engineering applications. Prior to 2006, GPUs found

very limited use in this domain due to their limited

support for both IEEE floating-point standards and

arbitrary memory addressing. However, the recently

released AMD R580 and NVIDIA G80 GPUs offer full

support for IEEE single-precision floating-point values

(with double-precision soon to follow) and permit

reads and writes to arbitrary addresses in memory [1],

[2]. Furthermore, modern GPUs use massive multi-

threading, fast context switching, and high memory

bandwidth to tolerate ever-increasing latencies to main

memory by overlapping long-latency loads in stalled

threads with useful computation in other threads [3].

Fig. 1. Theoretical peak GFLOPS on modern GPUs and CPUs.
Each core of the Core2 processors can retire four single-precision,
multiply-accumulate operations per cycle, yielding peak theoretical
throughput of 24 GFLOPS/core. The G80 and Tesla have peak theo-
retical throughput of 345.6 GFLOPS and 518 GFLOPS, respectively.
Earlier data points are derived from inspection of slide 7 in [4].

Increased programmability has also enhanced the

GPU’s suitability for science and engineering appli-

cations. For example, the G80 supports the single-

program, multiple-data (SPMD) programming model,

in which each thread is created from the same pro-

gram and operates on a distinct data element, but all

threads need not follow the same control flow path.

As the SPMD programming model has been used on

massively parallel supercomputers in the past, it natu-

ral to expect that many high-performance applications



will perform well on the GPU [3], [5]. Furthermore,

general-purpose applications targeting the G80 are de-

veloped using ANSI C with simple extensions, rather

than the cumbersome graphics application program-

ming interfaces (APIs) [6], [7] and high-level languages

layered on top of graphics APIs [8], [9], [10] that have

been used in the past.

Magnetic resonance imaging (MRI) is one applica-

tion that can benefit greatly from these increases in

computational resources and advancements in architec-

ture and programmability. Emerging MRI applications

such as functional imaging of the brain and dynamic

imaging of the beating heart often use non-Cartesian

scan trajectories to quickly obtain high-quality scan

data. Advanced reconstruction algorithms that operate

directly on non-Cartesian scan data using optimality

criteria such as least-squares (LS) can produce signifi-

cantly better images than conventional algorithms that

apply a fast Fourier transform (FFT) after interpolating

the scan data onto a Cartesian grid. However, advanced

methods based on LS require several orders of magni-

tude more computation than FFT-based reconstructions

because the underlying structure of the LS-based recon-

struction problem is much more complex.

For these advanced reconstruction algorithms to be

viable in clinical settings, dramatic and inexpensive

computational acceleration is required. We find that

certain MRI reconstructions designed for non-Cartesian

data are extremely well suited to acceleration on mod-

ern GPUs. In particular, we show that an advanced al-

gorithm, which requires nearly six hours to reconstruct

a 3D image on a modern CPU, completes the same

reconstruction in just three minutes on a modern GPU.

The acceleration of nearly 300X achieved on the GPU

makes the advanced reconstruction viable in clinical

settings for many emerging MRI applications.

The remainder of this paper is organized as follows.

Section II describes the architecture of the NVIDIA

GeForce 8800 GTX and discusses the advantages of

advanced MRI reconstructions. Section III presents

the GPU-based implementation of the advanced recon-

struction algorithm. Section IV describes experimental

methodology. Section V presents results and discusses

architectural features of the GeForce 8800 that en-

able the advanced reconstruction algorithm to achieve

roughly 150 GFLOPS in performance. Sectio VI dis-

cusses related work in GPGPU-based medical imaging.

Section VII concludes.

II. BACKGROUND

A. The GeForce 8800 GTX

The GeForce 8800 GTX (G80) has a large set of pro-

cessor cores which are able to directly address a global

memory. This architecture supports the single-program,

multiple-data (SPMD) programming model, which is

more general and flexible than the programming mod-

els supported by previous generations of GPUs, and

which allows developers to easily implement data-

parallel kernels. In this section we discuss NVIDIA’s

Compute Unified Device Architecture (CUDA) and the

microarchitectural features of the G80 that are most

relevant to accelerating MRI reconstruction. A more

complete description is found in [2], [11].

From the application developer’s perspective, the

CUDA programming model consists of ANSI C sup-

ported by several keywords and constructs. CUDA

treats the GPU as a coprocessor that executes data-

parallel kernel functions. The developer supplies a

single source program encompassing both host (CPU)

and kernel (GPU) code. NVIDIA’s compiler, nvcc,

separates the host and kernel codes, which are then

compiled by the host compiler and nvcc, respectively.

The host code transfers data to and from the GPU’s

global memory via API calls, and initiates the kernel

code by performing a function call.

Figure 2 depicts the microarchitecture of the G80.

The GPU consists of 16 streaming multiprocessors
(SMs), each containing eight streaming processors
(SPs), or processor cores, running at 1.35GHz. Each

SM has 8,192 registers that are shared among all

threads assigned to the SM. The threads on a

given SM’s cores execute in SIMD (single-instruction,

multiple-data) fashion, with the instruction unit broad-

casting the current instruction to the eight cores. Each

core has a lone arithmetic unit that performs single-

precision floating point arithmetic and 32-bit integer

operations. Additionally, each SM has two special
functional units (SFUs), which perform more complex
FP operations such as the inverse square root and

the trigonometric functions with low latency. Both

the arithmetic units and the SFUs are fully pipelined.

Thus, each SM can perform 18 FLOPS per clock

cycle (1 multiply-add operation per SP and one com-

plex operation per SFU), yielding 388.8 GFLOPS of

peak theoretical performance for the GPU (16SM ∗
18FLOP/SM ∗ 1.35GHz).

The G80 has 86.4 GB/s of bandwidth to its 768MB,

off-chip, global memory. Nevertheless, with compu-

tational resources supporting nearly 400 GFLOPS of

performance and each FP instruction operating on up

to 8 bytes of data, applications can easily saturate that

bandwidth. Therefore, as depicted in Figure 2, the G80

has several on-chip memories that can exploit data

locality and data sharing to reduce an application’s

demands for off-chip memory bandwidth. For example,

the G80 has a 64KB, off-chip constant memory, and
each SM has an 8KB constant memory cache. Because

the cache is single-ported, simultaneous accesses of
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Fig. 2. Basic Organization of the G80

different addresses yield stalls. However, when mul-

tiple threads access the same address during the same

cycle, the cache broadcasts the address’s value to those

threads with the same latency as a register access. This

feature proves quite beneficial for MRI reconstruction

algorithms that operate on non-uniform scan data. In

addition to the constant memory cache, each SM has

a 16KB shared memory that is useful for data that
is either written and reused or shared among threads.

Finally, for read-only data that is shared by many

threads but not necessarily accessed simultaneously by

all threads, the off-chip texture memory and the on-

chip texture caches exploit 2D data locality to provide

dramatic reduction in memory latency.

Threads executing on the G80 are organized into a

three-level hierarchy. At the highest level, each kernel

creates a single grid, which consists of many thread
blocks. The maximum number of threads per block
is 512. Each thread block is assigned to a single

SM for the duration of its execution. Threads in the

same block can share data through the shared memory

and can perform barrier synchronization by invoking

the syncthreads primitive. Threads are otherwise
independent, and synchronization across thread blocks

is safely accomplished only by terminating the kernel.

Finally, threads within a block are organized into warps
of 32 threads. Each warp executes in SIMD fashion,

with the SM’s instruction unit broadcasting the same

instruction to the eight cores on four consecutive clock

cycles.

SMs can perform zero-overhead scheduling to inter-

leave warps on an instruction-by-instruction basis to

hide the latency of global memory accesses and long-

latency arithmetic operations. When one warp stalls,

the SM can quickly switch to a ready warp in the same

thread block or a ready warp in some other thread block

assigned to the SM. The SM stalls only if there are

no warps with ready operands available. Scheduling

freedom is high in many applications because threads

in different warps are independent with the exception

of explicit synchronizations among threads in the same

thread block.

Tuning the performance of a CUDA kernel often

involves a fundamental trade-off between the efficiency

of individual threads and the thread-level parallelism

(TLP) among all threads. This trade-off exists because

many optimizations that improve the performance of

an individual thread tend to increase the thread’s use

of limited resources that are shared among all threads

assigned to an SM. For example, as each thread’s reg-

ister usage increases, the total number of threads that

can simultaneously occupy the SM decreases. Because

threads are assigned to an SM not individually, but in

large thread blocks, a small increase in register usage

can cause a correspondingly much larger decrease in

SM occupancy. Section V-D examines this trade-off in

the context of MRI reconstruction.

B. MRI Reconstruction with Non-Cartesian Data

Magnetic resonance imaging (MRI) is commonly

used by the medical community to safely and non-

invasively probe the structure and function of biolog-

ical tissues from all regions of the body, and images

generated using MRI have a profound impact in both

clinical and research settings. MRI is performed using

specialized hardware that takes advantage of the known

quantum-mechanical interactions of atomic nuclei with

magnetic fields. Due to the imaging physics, data is

modeled as sampling the desired image in the k-space

domain (i.e., the spatial-frequency domain or Fourier
transform domain). The sampled k-space points define
the scan trajectory, and the geometry of the scan

trajectory has a first-order impact on the quality of

the reconstructed image and on the complexity of the

reconstruction algorithm.

For Cartesian trajectories, which sample k-space on a

uniform grid, statistically optimal image reconstruction

can be performed quickly and efficiently by applying

the fast Fourier transform (FFT) directly to the acquired

data. There is no such efficient algorithm for optimal

reconstruction from data collected with more general

sampling trajectories. However, non-Cartesian Fourier

sampling is becoming increasingly common in MRI.

For example, trajectories with radial [12], spiral [13],

stochastic [14], and randomly-perturbed [15] sampling

patterns can be superior to Cartesian trajectories in

terms of imaging speed, hardware requirements, and

sensitivity to artifacts caused by non-ideal experimental

conditions.

A variety of techniques have been proposed to re-

construct non-Cartesian (non-uniformly sampled) data.
In the most common approach, gridding, the data is
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first interpolated onto a uniform Cartesian grid and

then reconstructed in one step via the FFT [16], [17].

However, gridding satisfies no optimality criterion, and

has limited ability to deal with important imaging

scenarios, such as parallel imaging [18].

In short, non-Cartesian scan trajectories are often

superior to Cartesian scan trajectories in terms of the

quality of the data obtained during the scan. Non-

uniformly sampled data can be interpolated onto a

Cartesian grid and then reconstructed via the FFT in

one step, but this technique introduces inaccuracies

and produces sub-optimal images. By contrast, op-

timal image reconstructions can be performed using

advanced algorithms that perform the reconstruction

iteratively [19], [20], [21], [22], [23], [24]. These

iterative algorithms require substantially more com-

putation than algorithms based on gridding. A class

of iterative algorithms leverages the observations of

Wajer et al. in [25] to remove all approximations from
the reconstruction while simultaneously improving the

reconstruction’s speed. These advanced algorithm have

been impractical for large-scale problems due to com-

putational constraints, but become practical when ac-

celerated on the GPU. One such algorithm is described

below.

The advanced reconstruction algorithm operates di-

rectly on non-uniformly sampled data and uses the

least-squares (LS) optimality criterion. The algorithm

uses an iterative linear solver to solve Eq. 1, where

ρ is the desired image, FH
F is a matrix that depends

only on the scan trajectory, and F
H

d is a vector that

depends both on the scan trajectory and the acquired

data. Element (j, k) of FH
F is defined as Q (xj − xk),

where Q(x) is given by Eq. 2. The overwhelming

bulk of the algorithm’s computation occurs during the

precomputation of Q (x) and F
H

d (see Eqs. 2 and 3)

rather than during the iterations of the linear solver.

F
H

Fρ = F
H

d (1)

Q (xn) =

M∑

m=1

|φ(km)|
2
e(i2πkm·xn) (2)

[
F

H
d

]
n

=

M∑

m=1

φ∗(km)d(km)e(i2πkm·xn) (3)

These precomputations are usually approximated us-

ing a gridding-type technique [25], [20], [26]. How-

ever, accurately approximating these precomputations

becomes computationally difficult, particularly as the

dimensionality of the problem increases beyond the

typical 2D images to which this technique has been

previously applied. In this work, we demonstrate the

feasibility of computing these precomputations exactly
using the GPU, enabling practical use of this algorithm

for the large-scale 3D and 4D reconstruction problems

present in MRI.

In summary, the advanced LS algorithm performs

optimal reconstruction of data obtained from non-

Cartesian scan trajectories, which are advantageous

in many applications of MRI. Over 99.9% of the

algorithm’s computation is devoted to precomputing

the quantities Q and F
H

d . However, given a re-

construction problem of N pixels and M scan data

points the precomputations of Q and F
H

d have O(MN)

complexity, compared to O(NlogN) complexity for

algorithms based on gridding and the FFT. Our work

demonstrates that these precomputations can be per-

formed quickly and efficiently on modern GPUs. This

increased computational efficiency makes the advanced

reconstruction of non-Cartesian scan data practical.

III. RECONSTRUCTION OF NON-CARTESIAN DATA

The advanced MR image reconstruction algorithm

described in Section II-B consists of three steps: com-

puting Q (which depends only on the scan trajectory),

computing F
H

d (which depends on the scan trajectory

and on the scan data), and finding the image via a linear

solver. In the CPU-based implementation over 99.9% of

the algorithm’s runtime occurs during the computation

of Q and F
H

d . We therefore choose to accelerate the

computation of Q and F
H

d on the GPU, leaving the

iterative solver to run on the CPU. The remainder of

this section describes the algorithms used to computeQ

and F
H

d and the implementations of those algorithms

on the GPU. Because the two algorithms are nearly

identical, we describe only Q’s algorithm in detail.

A. Computing Q

As Figure 3(a) shows, the algorithm for Q is an

excellent candidate for acceleration on the GPU be-

cause it is embarrassingly data-parallel. The algorithm

first computes the magnitude-squared of φ at each data

point in the trajectory space (k-space), then computes

the real and imaginary components of Q at each point

in the image space. The value of Q at any point in the

image space depends on the values of every data point,

but no elements of Q depend on any other elements

of Q. Therefore, all elements of Q can be computed

independently and in parallel.

Despite the algorithm’s inherent parallelism, poten-

tial performance bottlenecks are evident. First, in the

loop that computes the elements of Q, the ratio of

floating-point operations to memory accesses is only

3:2. Thus, the GPU-based implementation of the algo-

rithm must conserve memory bandwidth and tolerate

memory latency. Second, the ratio of FP arithmetic
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Fig. 3. Advanced MRI reconstruction algorithm based on least-squares (LS) optimality. Panels (a) and (b) show pseudocode for the algorithms
that compute Q and F

H
d , respectively. Panel (c) depicts the implementation of the Q algorithm on the GPU.

to FP trigonometry is only 5:1. Thus, GPU-based

implementation must tolerate or avoid stalls due to

long-latency sin and cos operations.
The GPU-based implementation of the algorithm that

computes Q (see Figure 3(c)) uses the G80’s constant

memory caches to shatter the potential bottleneck posed

by memory bandwidth and latency. To overcome the

memory bottleneck, the computation is divided into

many CUDA grids,1 with each CUDA grid operating
on a distinct set of data values, i.e. a data tile. For
each CUDA grid, the host CPU loads the data tile

into constant memory before invoking the kernel. Each

thread in the CUDA grid then computes a partial sum

for a single element of Q by iterating over all the points

in the data tile. This optimization increases the ratio of

FP operations to global memory accesses dramatically.

Likewise, the special functional units (SFUs) en-

able the algorithm to avoid the potential bottleneck

of long latency trigonometric operations. When the

use fast math compiler option is invoked, the sin and
cos operations are not linked to long-latency library
calls, but rather are executed as individual, low-latency

instructions on the SFUs. The speed of the SFU comes

at the expense of some loss in accuracy when the

argument to the sin or cos is very small, but, as we
show in Section V, this optimization has negligible

impact on the overall accuracy of the algorithm.

B. Computing F
H

d

As Figure 3(b) shows, the algorithm for F
H

d is

nearly identical to the algorithm forQ. The GPU-based

implementation of the F
H

d algorithm is precisely anal-

ogous to the implementation of the Q algorithm, as

1To avoid confusion with MRI reconstruction via interpolation
(gridding), we refer to the unit of computation performed during
a kernel invocation as a CUDA grid.

are the potential bottlenecks and the techniques used

to overcome those bottlenecks. The primary difference

between the two algorithms is that the F
H

d kernel per-

forms an additional four FP computations, increasing

the kernel’s register usage by 25% to 50% over the Q

kernel, depending on the loop unrolling factor.

IV. METHODOLOGY

To quantify the effects of the G80’s architectural

features on the performance and quality of the recon-

struction, we implemented several versions of the ad-

vanced algorithm. The unoptimized version (UNOPT)

simply executes in data-parallel fashion on the GPU,

leveraging neither the constant memory nor the special

functional units (SFUs). Another version (CMEM) uses

the constant memory caches to overcome the bottle-

neck imposed by memory bandwidth and latency. In

addition to using the constant memory caches, a third

version (CMEM SFU) uses the SFUs to compute fast,

approximate versions of the sin and cos operations.
Finally, a fourth version (CMEM SFU EXP) also uses

experiment-driven code transformations to balance re-

source consumption, thereby improving the algorithm’s

utilization of the GPU.

To obtain a reasonable baseline, we implemented two

versions of the advanced algorithm on the CPU. The

first version (CPU DP) uses double-precision for all

floating-point values and operations, while the second

version (CPU SP) uses single-precision. Both CPU

versions are coded with SSE intrinsics and linked

with the AMD Core Math Library [27], which pro-

vides fast, approximate implementations of the sin and
cos functions. Experiments (not shown) indicate that
these optimizations increase the performance of the

CPU implementations by a factor of 4X-6X.
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To facilitate comparison of the advanced reconstruc-

tion based on least-squares (LS) optimality with the

conventional reconstruction based on gridding and the

FFT, we also ran two versions of the conventional

reconstruction. The first version is coded in C, uses

the FFTW library, and is highly optimized. We use this

version to report the runtime of the conventional recon-

struction. The second version, coded in MATLAB, is

considerably less efficient, but affords more flexibility

for comparing the image quality against the quality of

the images produced by the advanced reconstruction.

We use this version for image quality comparisons.

All reconstructions are performed on data obtained

from a non-uniform, three-dimensional scan of a hu-

man brain. The scan data was obtained using a 9.4

Tesla scanner, and the imaged atoms are sodium, which

exist in the brain in much lower concentrations than

the hydrogen atoms that are typically scanned. There

are 3.2M data points in the data set, and the image is

reconstructed with 64 pixels in each dimension, for a

total of 256K pixels.

The conventional reconstructions and the CPU-based

implementations of the advanced reconstruction are

executed on one core of a 2.66 GHz Core 2 Extreme

quad-core CPU, which has a peak theoretical capacity

of 10.6 GFLOPS per core. The system has a 4MB

L2 cache and 4GB of main memory. The GPU-based

implementations of the advanced reconstruction are ex-

ecuted on a 1.35 GHz GeForce 8800 GTX using CUDA

version 0.8. The G80, which has a peak theoretical

capacity of 345.6 GFLOPS, is housed in a system

with a 2.4 GHz Core 2 dual-core CPU, 4MB of L2

cache, and 3GB of main memory. The final stage of

the advanced reconstruction (the linear solver) has not

been ported to the GPU, and is therefore executed on

the quad-core CPU.

Throughout the following section, we make a subtle

yet important distinction between reconstruction time
and algorithmic runtime. Reconstruction time refers
to the time required to reconstruct an image, which

includes the time to compute F
H

d and the time to run

the linear solver. The computation of Q is excluded

from the reconstruction time because Q depends only

on the scan trajectory and therefore be computed once,

before the data is acquired, and then used during the

reconstructions of many images. By contrast, algorith-

mic runtime includes the time to compute F
H

d and Q

and the time to run the linear solver.

V. EVALUATION

To be useful in clinical settings, the LS-based

reconstruction should exhibit runtime comparable to

conventional reconstruction algorithms currently used

in clinical settings. Furthermore, the GPU-accelerated

TABLE I

Performance of LS-based and FFT-based MRI

reconstructions. The LS-based reconstruction times

include the time to compute F
H

d and the time to run

the linear solver. The computation of Q is excluded

from the reconstruction time because Q depends only

on the scan trajectory and can therefore be computed

before the scan data is acquired.

Arch Algorithm Recon Time (m)
CPU (DP) LS 519.59
CPU (SP) LS 343.91
GPU LS 3.19
CPU FFT 0.39

implementation of the LS reconstruction (GPU-LS)

should not sacrifice accuracy relative to CPU-based im-

plementations of the same algorithm. Our experiments

indicate that the GPU-accelerated, LS-based algorithm

meets both of these criteria. As Table I shows, GPU-

LS reconstructs the image in just over 3 minutes, while

the conventional algorithm based on gridding and FFTs

reconstructs the image in 23 seconds. While the gridded

reconstruction is clearly faster, the speed of the GPU-

LS reconstruction is sufficient for key MRI applications

in clinical and research settings.

With regards to accuracy, the advanced reconstruc-

tion and the gridded reconstruction produce images that

are, in this case, visually indistinguishable. Figure 4

shows the same 2D slice from several of the 3D recon-

structions. The superiority of the LS-based algorithm

would be better demonstrated at higher resolution or

on a different data set.

In terms of algorithmic runtime, the GPU-

accelerated algorithm achieves a net speedup of 283x

over the CPU-based implementation of the same al-

gorithm. To put this result into perspective, the GPU-

based algorithm completes in roughly 10 minutes,

while the CPU-based algorithm finishes in roughly

2 days. Clearly, the CPU-based implementation of

the advanced reconstruction algorithm is not a viable

option. As Table II shows, the GPU accelerates the

computation of Q and F
H

d by 358x and 222x, respec-

tively.

The remainder of this section describes how the

implementation of GPU-LS leverages the G80’s re-

sources to achieve such impressive performance. We

find that the constant memory caches are quite effective

in reducing the number of accesses to global memory,

while the special functional units provide substantial

acceleration for the trigonometric computations in the

algorithm’s inner loops. We also find that experiment-

driven code transformations have a significant impact

6



TABLE II

Impact of optimizations on GPU-based computation of Q and FHd. The speedup column lists the speedup

achieved by this version of the algorithm over the version listed on the preceding row. The first three

implementations of the Q and F
H

d algorithms, which do not use experiment-driven code transformations, have

128 threads per block and a tiling factor of 256. The inner loops are not unrolled. The experimentally optimized

implementations used the highest-performing combination of settings for threads per block, tiling factor, and loop

unrolling factor, as determined by an exhaustive search.

Total Q FHD
Optimizations Runtime Runtime GFLOPS Incremental Runtime GFLOPS Incremental

(m) (m) Speedup (X) (m) Speedup (X)
CPU DP 4528.6 4009.0 0.3 N/A 518.0 0.4 N/A
CPU SP 3022.6 2678.7 0.5 1.5 342.3 0.7 1.5
GPU UNOPT 302.9 260.2 5.1 10.3 41.0 5.4 8.3
GPU CMEM 83.4 72.0 18.6 3.6 9.8 22.8 4.2
GPU CMEM SFU 17.6 13.6 98.2 5.3 2.4 92.2 4.0
GPU CMEM SFU EXP 10.7 7.5 178.9 1.8 1.5 144.5 1.6

Fig. 4. Reconstructed images. The images reconstructed by the
various GPU-based implementations of the advanced reconstruction
algorithm are visually indistinguishable.

on the algorithm’s performance. Specifically, the al-

gorithm’s performance is heavily dependent on the

tiling factor, the number of threads per block, and

the inner loop unrolling factor. Optimal values for

these parameters can be discovered using an automated

experimentation.

A. No Optimizations

As Table II shows, when computing Q and F
H

d

the unoptimized version of GPU-LS (GPU UNOPT)

achieves speedups of 10.3X and 8.3X, respectively,

over the single-precision CPU version (CPU SP). Be-

cause the implementations of Q and F
H

d are so

similar, we restrict our discussion to the Q kernel. In

this unoptimized version, the inner loop is not unrolled.

There are 128 threads per block, and 256 data points are

processed by each CUDA grid. Given these parameters,

each thread uses 15 registers. Therefore, up to 8192/15

= 546 threads can execute on each SM simultaneously.

However, given the granularity of 128 threads per

block, the number of threads simultaneously executed

by each SM is actually 4*128 = 512, which represents

67% utilization of the G80’s cores.

Because the kernel leverages neither the constant

memory nor the shared memory, memory bandwidth

and latency are significant performance bottlenecks.

With two 4-byte global memory accesses for every

three FP operations, and with memory bandwidth of

86.4 GB/s, the upper limit on the kernel’s perfor-

mance is only 32.4 GFLOPS. Due to other perfor-

mance bottlenecks, the kernel actually achieves only

5.2 GFLOPS. Nevertheless, the kernel’s performance

represents a substantial improvement over the CPU-

based implementations.

B. Constant Memory

Again focusing discussion on the Q kernel, the

GPU CMEM version achieves a speedup of 3.6X over

the unoptimized version. The only difference between

GPU CMEM and GPU UNOPT is that GPU CMEM

places each CUDA grid’s data tile in constant mem-

ory rather than global memory, thereby receiving the

benefits of each SM’s 8KB, on-chip constant memory

cache.

We now analyze the off-chip memory accesses on a

single SM during the execution of four thread blocks.

With 7 global memory accesses per thread, 128 threads

per thread block, and 4 thread blocks per SM, there

are 3,584 accesses to global memory. Assuming no

constant memory cache evictions due to conflicts, there

are also 1,024 accesses to constant memory (256 data

points per tile, with 4 floating-point values per data

element), yielding a total of 4,608 off-chip memory

accesses. The number of floating-point computations

performed by the 4 thread blocks is 4*128*256*12

= 1,572,864. Thus, the ratio of FP operations to off-

chip memory accesses has increased from 3:2 to 341:1.

However, the GPU CMEM version still achieves only

18.6 GFLOPS, which implies the existence of another

bottleneck.

7



C. Special Functional Units

In computing Q, the GPU CMEM SFU version

achieves speedup of 5.3X over the version that

uses only the constant memory. In this case, the

special functional units (SFUs) are responsible for

increasing the algorithm’s performance from 18.6

GFLOPS to 98.2 GFLOPS. When compiled with-

out the use fast math compiler option, the kernel
uses implementations of sin and cos provided by
an NVIDIA math library. However, when compiled

with the use fast math option, the sin and cos com-
putations each execute as a single instruction on an

SFU. As the images reconstructed by the versions that

use the SFUs are visually indistinguishable from the

images reconstructed by the versions that do not use

the SFUs, we conclude that the SFU’s approximate

implementations of sin and cos have negligible impact
on the reconstruction’s accuracy for this data set.

D. Experimental Optimization

While the GPU CMEM SFU version overcomes the

potential bottlenecks related to off-chip memory ac-

cesses and trigonometric computations, the algorithm

still performs at only 98.2 GFLOPS, which is less than

one-third of the G80’s peak theoretical performance.

There are two culprits: instruction mix and resource

utilization. Without unrolling the inner loop, the Q

kernel performs only 12 FP computations for every

26 overhead instructions (such as memory accesses

and integer instructions). When the loop is unrolled 16

times, the percentage of floating-point instructions rises

from 32% to 60%. However, the per-thread register

usage also rises from 11 to 30. Because the number

of threads that can execute simultaneously is inversely

proportional to the number of registers per thread,

the loop unrolling optimization must carefully balance

the competing goals of increasing the percentage of

FP instructions and maintaining high utilization of the

G80’s cores.

To determine the potential performance impact of

experiment-driven code transformations, we conducted

an exhaustive search that varied the number of threads

per block from 64 to 512, the tiling factor from 32

to 2,048, and the loop unrolling factor from 1 to

16. Each parameter was varied by powers of 2. For

reference, the GPU CMEM SFU kernels performed

no loop unrolling and set the number of threads per

block and the tiling factor to values near the center of

search space. The data set used during experimental

optimization was roughly 20X smaller than the data

set used for the reconstructions reported in this paper.

For the Q algorithm, the experiment-driven optimizer

selects 64 threads per block, a tiling factor of 2,048,

and a loop unrolling factor of 16. For the F
H

d al-

gorithm, the optimizer selects 64 threads per block,

a tiling factor of 64, and a loop unrolling factor of

8. The optimizer increases the performance of the Q

and F
H

d kernels to 179 GFLOPS and 145 GFLOPS,

respectively, representing increases of 82% and 57%

over the GPU CMEM SFU kernels.

VI. RELATED WORK

Medical imaging was one of the first GPGPU appli-

cations, with computed tomography (CT) reconstruc-

tion achieving a speedup of two orders of magnitude

on the SGI RealityEngine in 1994 [28]. A wide vari-

ety of CT reconstruction algorithms have since been

accelerated on the GPU [3], [29], [30], [31]. In [31]

the GPU is used to accelerate Simultaneous Algebraic

Reconstruction Technique (SART), an algorithm that

increases the quality of image reconstruction relative

to the conventional filtered backprojection algorithm.

SART, which is not typically used in clinical settings

because it requires significantly more computation than

backprojection, becomes a viable clinical option when

executed on the GPU.

By contrast, MRI reconstruction on the GPU has not

been studied extensively. Research in this area has fo-

cused on accelerating the fast Fourier transform (FFT),

which is a key component of many MRI reconstruction

algorithms. Speedups on the order of 2x-9x have been

achieved [32], [33], [34].

VII. CONCLUSIONS AND FUTURE WORK

The computational resources, architectural features,

and programmability of the GeForce 8800 GTX reduce

the time for an optimal reconstruction of non-uniform

MRI scan data from six hours to three minutes, making

the algorithm practical for many clinical and research

applications. This capability will also allow for the

practical application of more advanced algorithms that

incorporate other physical effects into the image recon-

struction, resulting in more accurate and informative

imaging techniques. However, there is still much work

to be done. The linear solver, which now accounts for

50% of the reconstruction time, becomes an impor-

tant candidate for acceleration. Also, a more rigorous

analysis of the accuracy of the advanced reconstruction

and the gridded reconstruction is warranted. Phantom

images, for which the exact reconstruction is known

a priori, are often used for this purpose in MRI

research. Finally, the optimizations that enabled the

reconstruction to achieve over 150 GFLOPS on the

GPU, including data tiling and experiment-driven code

transformation, should now be applied to CPU-based

implementations. Optimizing the CPU-based recon-

struction should provide a faster baseline and a better
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understanding of the architectural features that make

the advanced reconstruction feasible.
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