
Supplementary Information

Phase transitions in contagion processes mediated by

recurrent mobility patterns

Duygu Balcan1,2 and Alessandro Vespignani1,2,3?

December 12, 2010

1Center for Complex Networks and Systems Research (CNetS), School of Informatics and Computing,

Indiana University, Bloomington, IN 47408, USA
2Pervasive Technology Institute, Indiana University, Bloomington, IN 47406, USA

3Institute for Scientific Interchange (ISI), Torino, Italy
?email: alexv@indiana.edu

Invasion Threshold

The global behavior of the contagion process is determined by the largest eigenvalue R∗ of the

subpopulation next generation matrix G as detailed in the Methods section of main paper. If

the eigenvalue R∗ > 1 we have that the subpopulation invasion process is supercritical and the

disease will be able to globally spread across subpopulations. This is equivalent to define a sub-

population reproductive number R∗
1–5 that in structured metapopulation systems is equivalent

to basic reproductive number R0 at the single population level:

R∗ =
2N(R0 − 1)2ρ

R2
0(1 + 〈k〉/〈k2〉+ ρ)

F (〈k〉, 〈k2〉, 〈k3〉, 〈k4〉) , (1)
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where

F (〈k〉, 〈k2〉, 〈k3〉, 〈k4〉) ≡ 1
〈k〉〈k2〉

[
〈k3〉 − 〈k2〉+ (〈k4〉 − 〈k3〉)1/2

(〈k2〉 − 〈k〉)1/2
]

. (2)

The infectious diseases will spread globally in the metapopulation system only if R∗ > 1. Thus,

by setting R∗ = 1, we can define an epidemic threshold relation for the mobility ratio ρ,

ρc =
1 + 〈k〉/〈k2〉

2N(1−R−1
0 )2F (〈k〉, 〈k2〉, 〈k3〉, 〈k4〉)− 1

, (3)

below which the infection remains confined to a small number of subpopulations. In an infinite

metapopulation system the threshold is defined rigorously and the fraction of infected subpopu-

lations is zero below the threshold and finite only if the mobility parameters set the ratio ρ above

the threshold value. The threshold value is defined for the ratio between the rates characterizing

the mobility process. This condition is therefore twofold on the mobility dynamics if we fix

one of the two parameters σ and τ , and let the other parameter free. On one hand the threshold

relation is σc = ρc τ−1,

σc =
(1 + 〈k〉/〈k2〉)τ−1

2N(1−R−1
0 )2F (〈k〉, 〈k2〉, 〈k3〉, 〈k4〉)− 1

. (4)

This intuitively states that the rates of diffusion has to be large enough (σ > σc) to guarantee

the spreading of the disease. Interestingly, however, we can also define the threshold relation

for τ by τc = ρcσ
−1,

τc =
(1 + 〈k〉/〈k2〉)σ−1

2N(1−R−1
0 )2F (〈k〉, 〈k2〉, 〈k3〉, 〈k4〉)− 1

, (5)

that is telling that the global spreading of the contagion porcess can be achieved by reducing the

return rates of individuals; in other words by extending the visit times of individuals in nearby

subpopulations (τ > τc). This last conditions however breaks down when τ becomes much

larger than the contagion time scale thus breaking the time-scale separation6 assumption used

here.

Another very interesting feature of the above threshold condition is the explicit effect of the

network topology encoded in the moments of degree distribution 〈k〉, 〈k2〉, etc. As already been
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observed in the case of Markovian diffusion case4,5, the heterogeneity of the network favors the

global spread of the epidemic by lowering the threshold value. Indeed, for heavy-tailed degree

distribution P (k) ∼ k−γ with γ > 1, the nth moment scales as kn+1−γ
max if n ≥ γ − 1 and

kmax � kmin. This means that for n ≥ γ − 1, the nth moment of the degree distribution tends

to diverge in the infinite size limit of the network, as in this limit kmax →∞, virtually reducing

the threshold to zero. Even at finite size, however, the threshold value is generally smaller the

higher the network heterogeneity is. In order to make this last statement transparent, we will

turn our attention to the scaling of the moments of degree distribution for very large system

sizes. In the case of 1 < γ < 2, the term 〈k〉/〈k2〉 in the nominator of ρc scales as

〈k〉
〈k2〉

∼ k−1
max . (6)

In the range 2 < γ < 3, the scaling is

〈k〉
〈k2〉

∼ kγ−3
max . (7)

In all the other cases of γ > 3, the term 〈k〉/〈k2〉 has a finite value. That means that the

nominator of ρc is finite for any γ > 1. Now lets turn our attention to the denominator of ρc and

analyze the scaling of F (〈k〉, 〈k2〉, 〈k3〉, 〈k4〉). In the case of 1 < γ < 2, F scales as

F (〈k〉, 〈k2〉, 〈k3〉, 〈k4〉) ∼ 〈k3〉+ 〈k4〉1/2〈k2〉1/2

〈k〉〈k2〉
∼ kγ−1

max . (8)

In the case of 2 < γ < 3, second moment 〈k2〉 in the denominator and higher moments in the

numerator are dominant, leading to the scaling relation:

F (〈k〉, 〈k2〉, 〈k3〉, 〈k4〉) ∼ 〈k3〉+ 〈k4〉1/2〈k2〉1/2

〈k2〉
∼ kmax . (9)

In the range 3 < γ < 4, only the third moment 〈k3〉 in the numerator dominates, thus

F (〈k〉, 〈k2〉, 〈k3〉, 〈k4〉) ∼ 〈k3〉 ∼ k4−γ
max . (10)

In the range 4 < γ < 5, only the fourth moment 〈k4〉 in the numerator dominates, leading to

F (〈k〉, 〈k2〉, 〈k3〉, 〈k4〉) ∼ 〈k4〉1/2 ∼ k(5−γ)/2
max . (11)
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The above expressions state that for any heavy-tailed degree distribution with exponent γ < 5,

F (〈k〉, 〈k2〉, 〈k3〉, 〈k4〉) tents to diverge in the limit of infinite network size, which in turn pushes

the threshold value ρc to zero. While, on the other hand, if γ > 5 then F (〈k〉, 〈k2〉, 〈k3〉, 〈k4〉)

has a finite value.

Computational model

Inside each subpopulation we consider an SIR epidemic model7, in which each individual is

classified by one of the discrete disease states at any point in time. The rate at which a sus-

ceptible person in subpopulation i acquires the infection, the so-called force of infection7 λi, is

determined by interactions with infectious individuals. The force of infection λi acting on each

susceptible individual in subpopulation i has been assumed to follow the mass action principle

λi(t) = β
I∗i (t)

N∗i (t)
, (12)

where β is the transmission rate of infection and I∗i (t)/N∗i (t) is the prevalence of infectious

individuals in the subpopulation. Each person in the susceptible compartment (S) contracts

the infection with probability λi(t)∆t and enters the infectious compartment (I), where ∆t is

the time interval considered. Each infectious individual permanently recovers with probability

µ∆t, entering the recovered compartment (R).

Synthetic subpopulation networks

Generation of substrate networks. In order to compare with theoretical calculations, topolog-

ically uncorrelated random graphs have been considered. In this case, analytical calculations

show that epidemic invasion threshold only depends on the degree distribution of the subpop-

ulation networks. In order to verify this result, two different network topologies have been

generated:

• Erdős-Rényi graphs8 have been synthetized by assigning a link between each pair of
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nodes with probability 〈k〉/(V − 1), where V is the number of nodes and 〈k〉 is a pre-

scribed average node degree.

• Networks with power-law degree distribution, P (k) ∼ k−γ with kmin ≤ k ≤ kmax, have

been generated by uncorrelated configuration model9,10. All the scale-free networks have

been generated by setting γ = 2.1 and kmin = 2.

For the sake of comparison, the average degree of Erdős-Rényi graphs has been set to that of

scale-free networks.

Subpopulation sizes. From a pool of NV people, a population size Ni is assigned to each

subpopulation i, defining its permanent residents. The population size is chosen at random from

a multinomial distribution with probability proportional to ki, which ensures the metapopulation

system to obey Nk = Nk/〈k〉.

Mobility parameters. The rate σij at which a resident of subpopulation i commutes to a neigh-

boring subpopulation j ∈ υ(i) assumes

σij = σ
Nj

Ni +
∑

`∈υ(i) N`

. (13)

Each resident in subpopulation i leaves its origin and visits subpopulation j with probability

σij∆t. A commuter in subpopulation j returns back to its resident subpopulation i with proba-

bility τ−1∆t.

Simulations have been initialized with I(0) = 10 infectious individuals, seeded randomly

in a single subpopulation of degree kmin, while the rest of the population is assumed to be

susceptible to infection.

Real-world subpopulation networks

Realistic simulations have been performed using the county to country commuting network in

the continental United States11. The network consists of about 3, 100 nodes, each of which cor-

responds to a US county. Weighted link from node i to node j represents the daily number of
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commuters from county i to county j. Thus, the population size of each node and the commut-

ing rates among them are fully determined by the data. The return rate τ−1, however, has been

set to τ−1 = 3 day−1 corresponding to a regular working day (8 hours). Simulations have been

initialized with I(0) = 10 infectious individuals seeded in Los Angeles County, California.

Statistical analysis

Since we aim at determining the epidemic invasion threshold, we have let the metapopulation

system run until the infection dies out. In the numerical results presented in main paper, all the

realizations resulting in at least one diseased subpopulation have contributed to the statistical

analysis. For each set of parameters, we have generated at least 1, 000 system realizations.

Since the subpopulation networks and dynamical processes on them are subject to fluctuations

in the case of synthetic populations, we have sampled at least 10− 20 network realizations and

100−200 dynamical realizations on each of them. While in the case of the real-world scenarios,

we have generated at least 1, 000 dynamical realizations.

Contagion and mobility dynamics

We will follow the notations defined in main paper and represent each individual by its disease

state X , its permanent subpopulation i and its present subpopulation j ∈ υ(i). Since all the

individuals sharing the same three indices (X, i, j) are identical in terms of the dynamical

processes, we are going refer to the number of such individuals at time t by Xij(t). Then, by

definition, the instantaneous compartment size X∗j (t) in subpopulation j can be expressed as

X∗j (t) = Xjj(t) +
∑

`∈υ(j)

X`j(t) , (14)

and the total number of individuals as N∗j =
∑

X X∗j . The number of individuals in each com-

partment X with a residence in i and present in j is subject to discrete and stochastic dynamical

processes defined by disease and transport operators. The disease operator Dj represents the

change due to the compartment transition induced by the infection dynamics, and the transport
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operator ΩX represents the variation due to mobility.

The termDj can be written as a combination of a set of transitions {Dj(X, Y )}, whereDj(X, Y )

represents the number of transitions from compartment X to Y and is simulated as an integer

random number extracted from a multinomial distribution. Then the change due to infection

dynamics reads as

Dj(X) =
∑
Y

[Dj(Y,X)−Dj(X, Y )] . (15)

As a concrete example let us consider the temporal change in the infectious compartment. There

is only one possible transition from the compartment, that is to the recovered compartment. The

number of transitions is extracted from the binomial distribution

PrBinom(Iij(t), pIij→Rij
) , (16)

determined by the transition probability

pIij→Rij
= µ∆t , (17)

and the number of individuals in the compartment Iij(t) (its size). This transition causes a

reduction in the size of the compartment. The increase in the compartment size is due to the

transitions from susceptible into infectious compartment. This is also a random number ex-

tracted from the binomial distribution

PrBinom(Sij(t), pSij→Iij
) , (18)

given by the chance of contagion

pSij→Iij
= λj(t)∆t , (19)

and the number of attempts equal to the number of susceptibles Sij(t). After extracting these

numbers from the appropriate distributions, we can calculate the total change Dj(I) in infec-

tious compartment as

Dj(I) = Dj(S, I)−Dj(I, R) . (20)
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Transport operator ΩX expresses the total change in compartment sizes due to the commuting of

permanent residents of subpopulation i back and forth. The variation in Xij can be decomposed

into Ω→X (i, j) and Ω←X (j, i) as

ΩX = Ω→X (i, j)− Ω←X (j, i) . (21)

The first term Ω→X (i, j) represents an increase that is caused by the departing residents of sub-

population i to visit subpopulation j. The Ω→X (i, j) is a random number extracted from the

multinomial distribution

PrMultinom(Xii(t), {pXii→Xi`
|` ∈ υ(i)}) , (22)

determined by the probability of commuting to subpopulation j

pXii→Xij
= σij∆t , (23)

and the number of such trails Xii(t). The second term Ω←X (j, i) corresponds to a reduction

in Xij and is due to the return trips from subpopulation j to permanent subpopulation i. The

Ω←X (j, i) is also a random number extracted from the binomial distribution

PrBinom(Xij(t), pXij→Xii
) , (24)

given by the probability of returning home

pXij→Xii
= τ−1∆t , (25)

and the size of the compartment Xij(t).

We have assumed that the infection does not alter people’s behavior, i.e., all the compartments

are identical in their mobility.
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