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Fig. S1. Stimuli. The object images presented to monkeys and humans. The four images marked by yellow 
stars were excluded from the analysis because of insufficient data in the monkey experiments. Responses to 
the remaining 92 form the basis of all analyses. Several of our human subjects described two of the stimuli as 
ambiguous during debriefing. These two stimuli (egg plant, back of a human head) are marked by a red “A”. 
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Fig. S2. Interspecies correlation of IT object dissimilarities related to single stimuli. This figure addresses 
the question to what extent each of the stimuli is similarly represented in both species. A stimulus is considered 
“similarly represented” if its pattern of representational dissimilarities to the other 91 stimuli is correlated 
between human and monkey IT. For each stimulus, we consider its row (or, equivalently, its column) in the 
representational dissimilarity matrix in each species (Fig. 1) and plot the monkey-IT dissimilarities against the 
human-IT dissimilarities (analogously to Fig. 3). In addition, we plot a straight line for each stimulus, which is 
obtained as the least-squares fit to the 91 human-IT dissimilarities (vertical axis) of that stimulus and extends 
horizontally along the range of the corresponding 91 monkey-IT dissimilarities. The stimulus itself is plotted on 
the left end of the line. In order to highlight the stimuli most inconsistently represented in monkey and human, 
the scatterplots, fit lines, and stimuli are overplotted in the order of their interspecies representational-
dissimilarity correlation, starting from the most highly correlated (green scatterplot and fit line, thin fibers in Fig. 
2b) and progressing to the least interspecies-correlated stimulus (red scatterplot and fit line, thick fibers in Fig. 
2b). The scatterplots and fit lines for intermediate stimuli are plotted in intermediate colors ranging from green to 
red, which linearly reflect the interspecies correlation (see colorbar). 
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Fig. S3. Statistical analyses of single-stimulus interspecies dissimilarity correlations. In both panels (a 
and b), each stimulus is placed along a horizontal axis according to its interspecies dissimilarity correlation (see 
previous figure for details). The stimuli are spaced out vertically so that they could be displayed in a larger size. 
In each panel (a and b), the red line shows the interspecies-correlation histogram for the 92 stimuli. (a) 
Statistical analysis addressing the question, which single stimuli show interspecies dissimilarity correlation. As in 
Fig. 3, we use randomization of stimulus labels to test the interspecies dissimilarity correlation. Here we assess, 
which single-stimulus interspecies correlations are significant. Each gray line shows a histogram obtained by 
randomizing the stimulus labels for one species before computing the interspecies dissimilarity correlations. 
Each of 1000 such randomizations simulates the null hypothesis that there are no interspecies correlations. We 
define an interspecies correlation threshold (dashed black line) that is exceeded by even a single stimulus in 
only 5% of the 1000 null simulations (i.e. by thresholding the randomization distribution of maxima among the 92 
interspecies correlations obtained in each null simulation). This threshold limits the family-wise false-positives 
rate at p<0.05. A similar threshold (dashed gray line) is obtained by (incorrectly) assuming normality and 
independence, and using the Bonferroni method to control the family-wise false-positives rate. Using either 
method, about 61 of the 92 stimuli, including all faces, exhibit significant interspecies correlation. (b) Statistical 
analysis addressing the question, whether stimuli vary in terms of interspecies correlation. The analysis in (a) 
highlights some stimuli and not others as significantly consistently represented in IT of both species. However, 
this does not mean that there are significant differences between single-stimulus interspecies correlations. A 
mixture of significant and insignificant interspecies correlations as obtained in (a) could result from an 
interspecies correlation constant across all stimuli in conjunction with noise. We therefore tested the null 
hypothesis that all single-stimulus interspecies correlations are equal. We simulated the null distribution of equal 
interspecies correlation across all stimuli by shuffling interspecies pairs of dissimilarites across stimuli (without 
replacement). This conserves the overall interspecies correlation and yields single-stimulus interspecies 
correlations that differ only because of the noise and limited data points (91 interspecies dissimilarity pairs for 
each stimulus). Each of 1000 null simulations yielded an interspecies correlation for each stimulus (1000 
histograms shown in gray). We define a lower interspecies correlation threshold (dashed black line on the left), 
such that lower interspecies correlations occur for even a single stimulus in only 2.5% of the 1000 null 
simulations (i.e. by thresholding the randomization distributions of minima). Analogously, we define an upper 
threshold (dashed black line on the right), such that higher interspecies correlations occur for even a single 
stimulus in only 2.5% of the 1000 null simulations (i.e. by thresholding the randomization distributions of 
maxima). These two thresholds limit the family-wise false-positives rate at p<0.05. Results show that human 
faces exhibit significantly higher interspecies correlations than the stimulus set as a whole and several stimuli 
(including images of animate and inanimate objects) exhibit significantly lower interspecies correlations. The two 
stimuli with the lowest interspecies correlation (eggplant, back-view of human head) were the only two stimuli 
described as ambiguous by human subjects during debriefing (Fig. S1). Their significantly low interspecies 
correlation is consistent with the idea that the IT representation reflects not only the visual appearance, but also 
the conceptual interpretation of a stimulus. 
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Fig. S4. Species-specific face representation. Here we selectively analyzed the representation of monkey, 
ape, and human faces in monkey and human IT. (a) The face stimuli have been arranged such that their 
pairwise distances approximately reflect response-pattern similarity. The arrangement was computed by 
multidimensional scaling with the same settings as in Fig. 2 and elsewhere in this paper (dissimilarity: 1 - 
Pearson r, criterion: metric stress, arrangements scaled to match the areas of their convex hulls and rigidly 
aligned for easier comparison with the Procrustes method). A line (dashed gray) separating the monkey/ape 
faces from the human faces has been manually added. Visual inspection suggests that human IT may better 
discriminate the human faces than the monkey faces and that the converse may hold for monkey IT. (b) 
Statistical analysis comparing human- and monkey-IT mean dissimilarities for human faces (left) and for 
monkey/ape faces (right). The left bar shows that dissimilarities among human faces are significantly larger in 
human IT than in monkey IT (p=0.009). The right bar shows that dissimilarities among monkey/ape faces are 
larger in monkey IT than in human IT in our data, although the effect is not significant (p=0.12). The difference 
between the two effects is significant (p=0.02). Because the dissimilarities are not independent or normal, the 
statistical tests and error bars (indicate +/- 1 standard error) are based on bootstrap resampling of the stimulus 
set. Note that our stimulus set is not well-suited for comparing the representation of human and monkey/ape 
faces, because faces were a small subset of our stimuli and because the monkey/ape faces were few and 
varied in species, pose, and view more than the human faces. The comparison in (b) of the representations of a 
given set of stimuli (either human faces or monkey faces) between human and monkey IT nevertheless provides 
an interesting lead for future studies designed to address this question. 
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Fig. S5. Representation in human early visual cortex defined at 224-5000 voxels. Human early visual 
cortex shows no evidence of categorical clustering in the fMRI data. This result is independent of the number of 
voxels included in the region of interest (rows). Early visual cortex was defined by selecting the most visually 
responsive voxels within a manually drawn anatomical mask in each subject. As for human IT, independent data 
were used for voxel selection. Dissimilarity matrices (left), multidimensional scaling arrangements (middle), and 
hierarchical clustering trees (right) were computed with the same parameters as for IT (Figs. 1, 2, 4, 
respectively). 
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Fig. S6. Model representations (1). We processed our stimuli to obtain their representations in a number of 
low-level models (rows, continued in Fig. S7). We analyzed these model representations in the same way as the 
brain-activity data from early visual cortex and IT. None of the models could account for the categorical 
clustering found in monkey and human IT. The models are described in the section Model representations in the 
Supplemental Material. Dissimilarity matrices (left), multidimensional scaling arrangements (middle), and 
hierarchical clustering trees (right) were computed with the same parameters as for IT (Figs. 1, 2, 4, 
respectively). 
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Fig. S7. Model representations (2). Continuation of Fig. S6. See legend of Fig. S6. 
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Fig. S8. Unsupervised stimulus-quartet arrangements for monkey and human IT. For 15 representative 
stimulus quartets, this figure depicts the representation in human and monkey IT in terms of unsupervised 
arrangements reflecting response-pattern similarity. As in Fig. 2, images placed close together elicited similar 
response patterns; images placed far apart elicited dissimilar response patterns. There is no special significance 
to the choice of 4 as the number of stimuli. However, considering quartets allows us to appreciate the underlying 
dissimilarity relationships at a glance. Moreover, the inevitable distortion of the original dissimilarities in the 2-
dimensional arrangement is very small when only 4 stimuli are considered at a time. The arrangements were 
computed using multidimensional scaling with the same settings as for Fig. 2 (dissimilarity: 1-Pearson 
correlation, criterion: metric stress). For each stimulus quartet, the two arrangements (human, monkey) have 
been rigidly aligned for easier comparison (Procrustes alignment) and scaled to the same approximate size. We 
introduce “rubberband graphs” (gray lines connecting the stimuli) to depict the residual distortion: the gray lines 
behave like rubberbands, thinning when stretched beyond the length they are to represent and thickening when 
compressed. More precisely, the actual dissimilarity equals the area of the rubberband connection (dissimilarity 
= line thickness × line length). 
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Fig. S9. Representation in left and right human IT. The categorical clustering in human IT is only weakly 
dependent on the cortical hemisphere (left human IT in top row, right human IT in bottom row). Here we 
selected 266 voxels according to their visual responsiveness (independent data) within each hemisphere’s 
manually defined IT mask. Dissimilarity matrices (left), multidimensional scaling arrangements (middle), and 
hierarchical clustering trees (right) were computed with the same parameters as for Figs. 1, 2, 4. 
. 
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Fig. S10. Representation in human IT defined at 100-10,000 voxels. The similarity structure and categorical 
clustering characteristic of human IT is only weakly dependent on the number of voxels selected for inclusion in 
the region of interest. Voxels were selected according to their visual responsiveness as assessed with 
independent data. The human-IT region shown in the second row (316 voxels) is that used for Figs. 1-6. When 
thousands of voxels are included in the region of interest, the categorical structure becomes less distinct. 
Nevertheless multidimensional scaling still separates animate and inanimate objects at 10,000 voxels (bottom 
row, middle panel). Dissimilarity matrices (left), multidimensional scaling arrangements (middle), and 
hierarchical clustering trees (right) were computed with the same parameters as for Figs. 1, 2, 4. 
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Fig. S11. Representation in human IT without FFA and PPA. Excluding FFA and PPA bilaterally from the 
voxels selected to define human IT did not qualitatively change the similarity structure or categorical clustering. 
FFA and PPA were defined in each hemisphere at 1141 mm3 (150 voxels) and 1521 mm3 (200 voxels), 
respectively, by means of an independent block-design localizer experiment. Human IT was defined bilaterally 
at 316 voxels as for Figs. 1-4, but FFA and PPA were first excluded from the cortex mask in both hemispheres. 
The dissimilarity matrix (left), multidimensional scaling arrangement (middle), and hierarchical clustering tree 
(right) were computed with the same parameters as for Figs. 1, 2, 4. 
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Fig. S12. Response patterns in human IT, but not human early visual cortex, allow linear discrimination 
between animates and inanimates. Single-subject data show highly significant linear discriminability of 
animates and inanimates in human IT (t(animate-inanimate)=8.65, p=6.8e-14), whereas linear discriminability of 
these categories is not evident in human early visual cortex (t(animate-inanimate)=-0.178, p=0.57). The single-
image response patterns in early visual cortex (top) and IT (bottom) have been projected onto a dimension 
defined to discriminate animates from inanimates. The dimension used is the category-centroid-connection 
dimension (equivalent to the Fisher linear discriminant computed with the assumption of isotropic, 
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homoscedastic noise). To avoid circularity, the discriminant is computed using a leave-one-out procedure: In 
order to determine the location of a given single-image response pattern on the discriminant dimension, the 
other 95 single-image response patterns are used to compute the category centroids defining the discriminant 
dimension (the thin tick marks indicate the centroid locations defining the discriminant; left for animates, right for 
inanimates). Note that this approach uses not only independent response estimates, but also different images 
(the other 95) for defining the discriminant. The thick vertical lines indicate the category means (red for animate, 
black for inanimate) on the discriminant dimension. Error bars indicate the +/- 1 standard error of the mean. The 
96 stimulus images (Fig. S1) have been located along the discriminant (upper portion of each panel) with 
vertical scattering to allow a larger image size. Colored dots (red for animate, black for inanimate) show the two 
category distributions (middle portion of each panel), again with vertical random scattering. Probability-density 
estimates (kernel-smoother method) are shown in the lower portion of each panel (red for animate, black for 
inanimate). 
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Fig. S13. Scatterplot of stimulus-pairs relating monkey- and human-IT representations. The scatterplot in 
Fig. 3a, containing a dot for each stimulus pair, relates monkey- and human-IT dissimilarities. Here we zoom in 
on two regions of Fig. 3a, in order to make space for plotting each pair of stimuli, whose dissimilarity in monkey 
and human IT determines the horizontal and vertical location of the corresponding dot in the scatterplot. For 
each pair, the two stimuli are placed side by side, centered on the location of the dot that represents the pair in 
Fig. 3a. (a) This region contains the stimulus pairs that are furthest from the line of identity. They have the 
greatest difference between monkey- and human-IT dissimilarity (1 - Pearson r) with the monkey dissimilarity 
greater than the human dissimilarity. (Note that the corresponding region with greater human- than monkey-IT 
dissimilarities is unpopulated.) An attractive interpretation would be that these pairs are more similar to humans 
than to monkeys. Note, however, that the relationship between human and monkey representational 
dissimilarities may not be linear. Plausible interpretations suggest themselves for many of the pairs, but remain 
speculative. (b) This region contains the stimulus pairs eliciting the most similar activity patterns in both monkey 
and human IT. This region is dominated by pairs of human faces. 
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Fig. S14. Scatterplot of stimulus-pairs relating monkey- and human-IT representations (continued). This 
figure follows the same logic as the previous one, but zooms in on a third region of Fig. 3a. This region contains 
the stimulus pairs eliciting the most dissimilar activity patterns in both monkey and human IT. This region is 
dominated by pairs of stimuli crossing the animate-inanimate category boundary. (Dotted rectangles indicate the 
two regions zoomed in on in the previous figure.) 
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Supplemental text 
 
Summary of the previous evidence on IT categoricality 
 

Ever since neuropsychology described object-category-related deficits following brain 

damage (Humphreys and Forde, 2001; Capitani et al., 2003; Martin, 2007), it has been 

generally accepted that there is some relationship between conventional categories and 

human-IT representations. Human neuroimaging has investigated category-average 

responses, showing that IT contains focal regions whose activation is correlated with 

conventional categories (Puce et al., 1995; Martin et al., 1996; Kanwisher et al., 1997; 

Aguirre et al., 1998; Epstein and Kanwisher, 1998; Downing et al., 2001; Downing et al., 

2006) and that the category can be read out from the IT response pattern with a linear 

classifier (Haxby et al., 2001; Cox and Savoy, 2003; Carlson et al., 2003). However, these 

studies investigated responses averaged across many different stimuli within predefined 

categories. This approach requires the assumption of a particular category structure and 

therefore cannot address whether the representation is inherently categorical. IT features 

might respond to natural image fragments that happen to be correlated with categories, 

without being optimized to distinguish categories. 

Monkey studies, as well, have reported IT responses correlated with natural categories 

(Vogels, 1999; Tsao et al., 2003; Kiani et al., 2005; Hung et al., 2005; Tsao et al., 2006; Afraz 

et al., 2006) and novel, experimentally defined, categories (Sigala and Logothetis, 2002; 

Baker et al., 2002; Freedman et al., 2003). However, step-function-like categorical responses 

as reported for cells in medial temporal (Kreiman et al., 2000; Quiroga et al., 2005), prefrontal 

(Freedman et al., 2001), and parietal regions (Freedman and Assad, 2006) are not typically 

observed in either single IT cells (Vogels, 1999; Freedman et al., 2003; Kiani et al., 2007; but 

see Tsao et al., 2006) or category-sensitive fMRI responses (Haxby et al., 2001), suggesting 

that IT may have a lesser role in categorization (Freedman et al., 2003). Consistent with this 

perspective, one influential computational model of primate object recognition (Riesenhuber 

and Poggio, 2002; Serre et al., 2007) employs categorization training (i.e. supervised 

learning) to optimize the stage thought to correspond to prefrontal cortex. The model’s IT 

stage is not optimized for categorization. 
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Representational similarity analysis 
 

Estimation of single-image response patterns in the monkeys. The analyses are based on all 

cells that could be isolated and for which sufficient data was available across the stimuli. This 

yielded a total of 674 neurons for both monkeys combined (322 in monkey 1 and 352 in 

monkey 2). For each stimulus, each neuron’s response amplitude was estimated as the 

average spike rate within a 140-ms window starting 71 ms after stimulus onset (for details, 

see Kiani et al., 2007). 

 

Estimation of single-image response patterns in the humans. Single-image response patterns 

were estimated by univariate linear modeling. We concatenated the runs within a session 

along the temporal dimension. For each voxel, we performed a single univariate linear model 

fit to obtain a response-amplitude estimate for each of the 96 stimuli.  The model included a 

hemodynamic-response predictor for each of the 96 stimuli. Since each stimulus occurred 

once in each run, each of the 96 predictors had one hemodynamic response per run and 

extended across all within-session runs included (i.e. all runs except those used for region-of-

interest definition). The predictor time courses were computed using a linear model of the 

hemodynamic response (Boynton et al., 1996) and assuming an instant-onset rectangular 

neural response during each condition of visual stimulation. For each run, the design matrix 

included these stimulus-response predictors along with six head-motion-parameter time 

courses, a linear-trend predictor, a 6-predictor Fourier basis for nonlinear trends (sines and 

cosines of up to 3 cycles per run) and a confound-mean predictor. Trends were, thus, 

modeled by a separate set of predictors for each run. The trend predictors for a particular run 

had zero entries for all other runs along time. For head-motion models and confound means 

as well, separate predictors accounted for each run. For each stimulus, we converted the 

response-amplitude (beta) estimate map into a t map. The resulting t maps (one for each 

stimulus) were used for representational similarity analysis. 

 

Computation of representational dissimilarity matrices. For each pair of stimuli, the 

dissimilarity between the associated response patterns is measured as 1 minus the Pearson 

linear correlation across cells or voxels within a region of interest (0 for perfect correlation, 1 
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for no correlation, 2 for perfect anticorrelation). The resulting dissimilarities for all pairs of 

object images are assembled in a representational dissimilarity matrix (RDM; Fig. 1). Each 

cell of the RDM, thus, compares the response patterns elicited by two stimuli. As a 

consequence, an RDM is symmetric about a diagonal of zeros.1 

 

Testing relatedness of two representational dissimilarity matrices by randomization of 

condition labels. We use the Pearson correlation coefficient r to assess the relatedness of 

two RDMs (e.g. Figs. 3, S2). The correlation is restricted to the upper (or equivalently the 

lower) triangle of each RDM. In order to decide whether two RDMs are related, we perform 

statistical inference on the RDM correlation. The classical method for testing correlations 

assumes independent pairs of measurements for the two variables. For RDMs such 

independence cannot be assumed, because each dissimilarity is dependent on two response 

patterns, each of which also codetermines the dissimilarities of all its other pairings in the 

RDM. We therefore test the relatedness of RDMs by randomization (e.g. Nichols and Holmes 

2002). In particular, we use randomization of the condition labels to rearrange the rows and 

columns of an RDM. We choose a random permutation of the conditions (i.e. of the 92 

stimuli), reorder rows and columns of one of the two RDMs to be compared according to this 

permutation, and compute the correlation. By repeating this step 10,000 times, we obtain a 

distribution of correlations simulating the null hypothesis that the two RDMs are unrelated. If 

the actual correlation (i.e. the one for consistent labeling between the two RDMs) falls within 

the top 5% of the simulated null distribution of correlations, we reject the null hypothesis of 

unrelated RDMs. More generally, we estimate the p value as the percent rank/100 of the 

actual correlation in the randomization distribution. The percent rank is conservatively 

estimated, such that p<0.0001 indicates that the actual correlation was higher than any of the 

10,000 correlations obtained after randomization of the condition labels. 

                                            
1 Alternatively, two separate data sets can be used, such that the vertical dimension of the RDM indexes pattern 

estimates from data set 1 and the horizontal dimension indexes pattern estimates from data set 2. The diagonal 

then contains dissimilarity estimates for replications of the same condition. Moreover, for each pair of conditions, 

two entries symmetrical about the diagonal of the RDM contain separate estimates of the pattern dissimilarity. 

We use the single-pattern-set approach here, because it provides more data along time for each fMRI pattern 

estimate. The overlapping hemodynamic responses to the stimuli are more precisely estimated when more runs 

are available not only by a factor of sqrt(n), where n is the number of runs, but by a larger factor, because longer 

random sequences more closely approximate the ideal of uncorrelated hemodynamic-response predictors. 
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The condition-label randomization test is justified by the random assignment of 

conditions (i.e. stimuli) to experimental trials. Under the null hypothesis of no relation between 

the RDMs, the conditions are exchangeable, i.e. the true labeling and each random relabeling 

of one RDM yield correlations drawn from the same distribution (i.e. from the null distribution). 

More generally, condition-label randomization can be used to test various RDM statistics 

against the null hypothesis that the condition labels are interchangeable (in the sense of not 

affecting the true test statistic). Note that the central results of this paper all rely on the 

condition-label randomization test (Figs. 3, 5, 6, S3a), but condition-bootstrap resampling has 

been used to test additional hypotheses (Figs. 5, S4). 

 

Testing statistics of representational dissimilarity matrices by bootstrap resampling of the set 

of conditions. Not all hypotheses about RDMs can be tested by randomization. For example, 

the randomization test cannot be used to assess whether the mean of an RDM is greater 

than some constant, because the mean will be the same for each relabeling. Moreover, by 

condition-label randomization we test the null hypothesis that the condition labels are 

interchangeable. This may not be the desired null hypothesis. A less rigorous, but more 

versatile approach is bootstrap resampling (Efron and Tibshirani, 1993), which we apply here 

to the set of experimental conditions (i.e. the stimuli), in order to simulate a distribution of 

RDMs. Like the randomization test, the bootstrap test is appropriate for RDMs in that it does 

not rely on either distributional assumptions or the assumption of independence of the 

dissimilarity estimates. As mentioned above, tests assuming independent data may not be 

valid for RDMs, because dissimilarities within an RDM have a complex dependency structure. 

Like the condition-label randomization described above, the bootstrap resampling here 

operates at the level of the experimental conditions and, thus, simulates the dependency 

structure of RDMs. 

The condition bootstrap test proceeds by resampling the set of conditions with 

replacement: If there are nc condition labels, we draw nc times from the whole set, to obtain a 

set of nc labels. The bootstrap set of condition labels may include multiple instances of some 

labels and exclude others altogether. We construct a bootstrap RDM by resampling the 

original RDM according to the bootstrap sample of condition labels. We then compute the 

statistic of interest (e.g. the mean of all dissimilarities). We repeat this process many times 

(e.g. 10,000 times) to obtain a bootstrap distribution for the statistic.  
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The bootstrap resampling can be stratified in order to compare sets of conditions. For 

example, in order to test whether between-category dissimilarities are greater than within-

category dissimilarities (Fig. 5), we separately bootstrap resampled the animates set and the 

inanimates set, recomputing mean B of between-category dissimilarities and the mean W of 

within-category dissimilarities to obtain the test statistic B minus W. 

The bootstrap distribution of the statistic allows us to obtain error bars on arbitrary 

RDM statistics: the standard deviation of the bootstrap distribution is the standard error of the 

estimate of the statistic. In addition, we can define a 95% confidence interval by excluding 5% 

of the extreme values in the distribution (either on one side for a one-sided test or on both 

sides symmetrically for a two-sided test). If the value assigned to the test statistic by the null 

hypothesis falls outside the confidence interval, the null hypothesis is rejected. This is a valid 

test, because the confidence interval will include the null value with 95% probability given that 

the null hypothesis is true and assuming that the bootstrap resampling is an accurate 

simulation. The latter assumption is questionable, therefore the bootstrap procedures we 

describe here should be considered rough, approximate methods of inference. 

A further complication of this method is that the bootstrap resampling of the set of 

condition labels moves zeros from the diagonal into the off-diagonal parts of the RDM 

whenever a condition is selected multiple times in the bootstrap resampling. (For 96 

conditions, this is a small proportion of the entries: on the order of 1%.) In order to prevent 

these zeros from biasing the statistic, we exclude them before computing the statistic. For the 

purpose of condition bootstrapping, it may be preferable to use two data sets for computing 

the RDM (as suggested above), such that each diagonal value reflects a dissimilarity 

between two replications of the same response pattern. 

The rationale for bootstrap resampling of a set of experimental conditions is to 

simulate the distribution of the statistic of interest that we expect to obtain for repetitions of 

the experiment performed with the same subjects but with different experimental conditions 

(e.g. stimuli) drawn from the same population of possible conditions that could have been 

used for the experiment (e.g. stimuli from the same categories). An interesting feature of this 

approach is its potential to generalize from the set of conditions actually used in the 

experiment to the hypothetical population of conditions, of which the actually chosen 

conditions can be considered a random sample. Note, however, that a sufficient number of 

conditions is required for this and the accuracy of the simulation is not guaranteed. For 

caveats and advanced bootstrap methods, see Hesterberg (2007). 



24 

 

 

Human localizer experiments and definition of regions of interest 
 

Definition of regions of interest. All regions of interest (ROIs) were defined on the basis of 

independent experimental data and restricted to a cortex mask manually drawn on each 

subject’s fMRI slices. Human IT was defined by selecting a variable number of voxels (316 

voxels in Figs. 1-6; 100-10,000 voxels in Fig. S11) within the inferior temporal portion of the 

bilateral cortex mask according to their visual responsiveness. Visual responsiveness was 

assessed using the t map for the average response to the 96 object images. The t map was 

computed on the basis of one third of the runs of the main experiment within each session. 

The remaining runs were used to perform all further analyses. To define early visual cortex, 

we selected the most visually responsive voxels, as for IT, but within a manually defined 

anatomical region around the calcarine sulcus within the cortex mask (Figs. 5, 6, S5). For 

control analyses (Fig. S11), we defined the FFA (Kanwisher et al., 1997) using the contrast 

faces minus objects, and the PPA (Epstein and Kanwisher, 1998) using the contrast places 

minus objects in analyzing the separate localizer block-design experiment described below.  

 

Localizer block-design experiment. We performed a functional localizer experiment using the 

same fMRI sequence as for the main experiment and a separate set of stimuli. Subjects 

viewed grayscale photos of faces, places, and objects (spanning a visual angle of about 5.7°) 

in category blocks. Each block lasted 30 s (stimulus-onset asynchrony: 1 s; stimulus duration: 

700 ms), alternating with 20-s fixation blocks. Three blocks were presented for each stimulus 

category (face, place, object), resulting in a total run duration of 7 min and 50 s. Stimuli were 

presented on a constantly visible uniform black background. Subjects continually fixated a 

central white cross and performed a one-back repetition-detection task on the images, 

responding with a left-thumb button press for each consecutive repetition (3 to 5 repetitions 

per block). Each stimulus was only presented once, except for the immediate repetitions to 

be detected in the one-back task. Stimuli were centered with respect to the fixation cross. 
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Model representations 
We processed our stimuli to obtain their representations in a number of low-level models. We 

then analyzed these model representations (Figs. S6, S7) in the same way as the brain-

activity data from early visual cortex and IT (Figs. 1, 2, 4, S5, S9-S11). Each image was 

converted to a representational vector as described below for each model. As for the brain-

activity data, each representational vector was then compared to each other representational 

vector by means of 1-r as the dissimilarity measure (where r is the Pearson linear correlation; 

only for the S-CIELAB representation, the conventional Delta E measure was used instead of 

1-r) to obtain a representational dissimilarity matrix, on which further analyses (Figs. S6, S7) 

were based. 

 

Color image (CIELAB). The RGB color images (175×175 pixels) were converted to the 

CIELAB color space, which approximates a linear representation of human perceptual color 

space. Each CIELAB image was then converted to a pixel vector (175×175×3 numbers). 

 

Low-resolution color image (28×28 pixels, CIELAB). The RGB color images (175×175 pixels) 

were downsampled to 28×28 pixels (with bicubic interpolation) and subsequently converted to 

the CIELAB color space. Each 28×28 CIELAB image was then converted to a pixel vector 

(28×28×3 numbers). 

 

Grayscale image. The RGB color images (175×175 pixels) were converted to grayscale. 

Each grayscale image was then converted to a pixel vector (175×175 numbers). 

 

Low-resolution grayscale image (28×28 pixels). The RGB color images (175×175 pixels) were 

converted to grayscale and subsequently downsampled to 28×28 pixels (with bicubic 

interpolation). Each grayscale image was then converted to a pixel vector (28×28 numbers). 

 

Binary silhouette image. The RGB color images (175×175 pixels) were converted to binary 

silhouette images, in which all background pixels had the value 0 and all figure pixels had the 

value 1. Each binary silhouette image was then converted to a pixel vector (175×175 binary 

numbers). 
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CIELAB joint histogram (6×6×6 bins). The RGB color images (175×175 pixels) were 

converted to the CIELAB color space. The three CIELAB dimensions (L, a, b), were then 

divided into 6 bins of equal width. The joint CIELAB histogram was computed by counting the 

number of figure pixels (gray background left out) falling into each of the 6×6×6 bins. The joint 

histogram was converted to a vector (6×6×6 numbers). 

 

S-CIELAB (Delta E). The RGB color images (175×175 pixels, 2.9° visual angle) were 

compared (each to each other, to obtain a representational dissimilarity matrix) by means of 

the S-CIELAB Delta-E dissimilarity measure (Zhang and Wandell, 1997), which models the 

perceptual similarity of color images and, unlike CIELAB Delta E, accounts for pattern-color 

sensitivity results (Poirson and Wandell, 1993) by separating the image into components 

corresponding to different spatial-frequency bands. 

 

V1 model. The RGB color images (175×175 pixels, 2.9° visual angle) were converted to 

grayscale and given as input to population of modeled V1 simple and complex cells (Lampl et 

al., 2004; Riesenhuber and Poggio, 2002; Kiani et al., 2007). The receptive fields (RFs) of 

simple cells were simulated by Gabor filters of 4 different orientations (0°, 90°, -45° and 45°) 

and 12 sizes (7-29 pixels). Cell RFs were distributed over the stimulus image at 0.017° 

intervals in a cartesian grid (for each image pixel there was a simple and a complex cell of 

each selectivity that had its RF centered on that pixel). Negative values in outputs were 

rectified to zero. The RFs of complex cells were modeled by the MAX operation performed on 

outputs of neighboring simple cells with similar orientation selectivity. The MAX operation 

consists in selecting the strongest (maximum) input to determine the output. This renders the 

output of a complex cell invariant to the precise location of the stimulus feature that drives it. 

Simple cells were divided into four groups based on their RF size (7-9 pixels, 11-15 pixels, 

17-21 pixels, 23-29 pixels) and each complex cell pooled responses of neighboring simple 

cells in one of these groups. The spatial range of pooling varied across the four groups (4×4, 

6×6, 9×9, and 12×12 pixels for the four groups, respectively). This yielded 4 (orientation 

selectivities) × 12 (RF sizes) = 48 simple-cell maps and 4 (orientation selectivities) × 4 (sets 

of simple-cell RF sizes pooled) = 16 complex-cell maps of 175×175 pixels. All maps of simple 

and complex cell outputs were vectorized and concatenated to obtain a representational 

vector for each stimulus image. 
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HMAX-C2 model based on natural image fragments. This model representation developed by 

Serre et al. (2005) builds on the complex-cell outputs of the V1 model described above 

(implemented by the same group). The C2 features used in the analysis (Fig. S7) may be 

comparable to those found in primate V4 and posterior IT. The model has four sequential 

stages: S1-C1-S2-C2. The first two stages correspond to the simple and complex cells 

described above, respectively. Stages S2 and C2 use the same pooling mechanisms as 

stages S1 and C1, respectively. Each unit in stage S2 locally pools information from the C1 

stage by a linear filter and behaves as a radial basis function, responding most strongly to a 

particular prototype input pattern. The prototypes correspond to random fragments extracted 

from a set of natural images (stimuli independent of those used in the present study). S2 

outputs are locally pooled by C2 units utilizing the MAX operation for a degree of position and 

scale tolerance. A detailed description of the model (including the parameter settings and 

map sizes we used here) can be found in Serre et al. (2005). The model, including the natural 

image fragments, was downloaded from the author’s website in January 2007 (for the current 

version, see http://cbcl.mit.edu/software-datasets/standardmodel/index.html). 

 

Additional model representations. In addition to the models described above and analyzed for 

our stimulus set in Figs. S6 and S7, we tried a number of additional models (not shown). 

These included (1) low-passed and high-passed grayscale representations, (2) a version of 

the V1 model described above, in which we averaged all simple and complex cell responses 

representing the same retinal location (averaging also across orientation selectivities and RF 

sizes) in order to mimic the effect of downsampling by population averaging within fMRI 

voxels, and (3) higher-level shape-tuned units created within the HMAX model framework 

(Riesenhuber and Poggio, 2002) as described in Kiani et al. (2007). None of these model 

representations exhibited categorical clustering. 
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