Supplemental data – Mul et al., 2011

Supplemental Figure S1. Progression of neuropathy, lipodystrophy and muscle wasting phenotypes in Lpin1^{1Hubr} rats

A. The onset of the $Lpin1^{1Hubr}$ phenotype occurred approximately between PND 7 and PND 14. Early onset (left male pup) resulted in a more severe phenotype compared to later onset (right male pup) due to decreased mobility, and possibly decreased suckling behavior. *B*. At PND 13, $Lpin1^{1Hubr}$ pups showed severe lipodystrophy, hindquarter muscle wasting, and decreased body length as compared to wild-type pups. *C*. At PND 28, $Lpin1^{1Hubr}$ rats showed severe lipodystrophy, hindquarter muscle wasting, a decreased body length, and no characteristic retraction of the hindlimbs as compared to wild-type rats. However, at PND 49 and onwards, some $Lpin1^{1Hubr}$ rats gain the ability to retract their hindlimbs when picked up. Moreover, the severe lipodystrophy and hindquarter muscle wasting in $Lpin1^{1Hubr}$ rats became less pronounced. At PND 90, almost all $Lpin1^{1Hubr}$ rats regain the ability to retract their hindlimbs. *D*. Wild-type rats splayed their hindlimbs to their body. However, at PND 49 and onwards, $Lpin1^{1Hubr}$ rats splayed their hindlimbs to their body when picked up by the tail, whereas $Lpin1^{1Hubr}$ rats clenched their hindlimbs to their body. However, at PND 49 and onwards, $Lpin1^{1Hubr}$ rats splayed their hindlimbs to their body when picked up by the tail, whereas $Lpin1^{1Hubr}$ rats clenched their hindlimbs to their body. However, at PND 49 and onwards, $Lpin1^{1Hubr}$ rats splayed their hindlimbs and toes when picked up by the tail, whereas $Lpin1^{1Hubr}$ rats clenched their hindlimbs to their body. However, at PND 49 and onwards, $Lpin1^{1Hubr}$ rats splayed their hindlimbs to their body when picked up by the tail, when picked up by the tail $Lpin1^{1Hubr}$ rats regained the ability to splay their hindlimbs.

Supplemental Figure S2. Linkage analysis

Linkage analysis based on the genotyping results in the Wistar/BN F_5 population using 321 informative markers revealed a significant LOD score for the $Lpin1^{1Hubr}$ mutation in a region on chromosome 6 between 37.1Mb and 40.7Mb. Rat Lpin1 is located on chromosome 6 at 40.3Mb.

Supplemental Figure S3. Increased DNA replication and cell proliferation in *Lpin1*^{1Hubr} sciatic nerves.

A. Immunohistochemistry of DAPI and BrdU in medial sciatic nerve tissue at PND 90 revealed increased cellularity and DNA replication in $Lpin 1^{1Hubr}$ rats as compared to wild-type rats. *B*. Relative expression of *Cyclin D1* (marker of cell proliferation) was increased in $Lpin 1^{1Hubr}$ rats at PND 21 and PND 90 as compared to wild-type rats (** P < 0.001; n = 2 per group).

Supplemental Figure S4. Decreased body weight in male and female Lpin1^{1Hubr} rats

A. No significant difference in body weight between wild-type/heterozygous (WT/HET; mixed gender) and $Lpin1^{1Hubr}$ (mixed gender) rats was observed at PND 4 (n = 4-9 per group) and PND 10 (n = 7-18 per group). However, as the $Lpin1^{1Hubr}$ phenotype develops, body weight started to diverge and body weight was decreased in $Lpin1^{1Hubr}$ rats (mixed gender) as compared to wild-type rats (mixed gender) at PND 21 (n = 8-9 per group; * P < 0.05). *B*. Body weight of male $Lpin1^{1Hubr}$ rats ($Lpin1^{1Hubr}$ rats ($Lpin1^{1Hubr}$) rats between PND 28 and PND 90 (n = 4-11 per group; $^{\$}P < 0.001 Lpin1^{1Hubr}$ vs. WT; $^{\dagger}P < 0.001 Lpin1^{1Hubr-/-}$ vs. $Lpin1^{1Hubr+/-}$; Bonferroni *post hoc* analysis). *C*. Body weight of female $Lpin1^{1Hubr}$ rats was decreased as compared to female wild-type; $^{\$}P < 0.001 Lpin1^{1Hubr}$ vs. heterozygous; Bonferroni *post hoc* analysis). *D*. Relative body weight of male $Lpin1^{1Hubr}$ vs. heterozygous; Bonferroni *post hoc* analysis). *D*. Relative body weight of female $Lpin1^{1Hubr-/-}$ rats was decreased as compared to female wild-type; $^{\dagger}P < 0.001 Lpin1^{1Hubr-/-}$ rats was decreased as compared to female Lpin1^{1Hubr} vs. heterozygous; Bonferroni *post hoc* analysis). *D*. Relative body weight of female $Lpin1^{1Hubr-/-}$ rats was decreased as compared to female wild-type (WT) and heterozygous ($Lpin1^{1Hubr-/-}$) rats was decreased as compared to female wild-type (WT) and heterozygous ($Lpin1^{1Hubr-/-}$) rats was decreased as compared to male wild-type (WT) and heterozygous ($Lpin1^{1Hubr-/-}$) rats was decreased as compared to female Lpin1^{1Hubr} per second point hoc analysis). D. Relative body weight of female $Lpin1^{1Hubr-/-}$ rats was decreased as compared to female wild-type (WT) and heterozygous ($Lpin1^{1Hubr-/-}$) rats between PND 21 and 90 (n = 4-11 per group). *E*. Relative body weight of female $Lpin1^{1Hubr-/-}$ rats was decreased as compared to female wild-type (WT) and heterozygous ($Lpin1^{1Hubr-/-}$) rats between PND 21 and 90 (n =

Supplemental Table S1: primer sequences (F, forward; R, reverse; m, mouse; r, rat)

Name	Sequence
mUbiquitin	F: CAGCCACCAAGACTGACCAA
	R: CATTCACCAGTGCTATGAGGGA
rUbiquitin	F: AGTGCGGAAAACTGGAAGCC
	R: GGACTGGATTACTTGGTCAGTCTTG
mCds1	F: CTGAGCCTGGTGAAGAAGCACTAC
	R: CCATGCGAACATATAGAACTGCA
rCds1	F: TTTGAAGGCATGATATGGTTCCT
	R: CATTGCAGATGACGCTTGATATG
rFahn4	F: GGAGACGAGATGGTGACAAGC
11 400 1	R [·] TCACGCCTTTCATGACACATTC
rPpary1	F: GCAAGAGATCACAGAGTATGCCAA
	R: TCAAGGTTAATGAAACCAGGGATAT
"D., "	
rPpary2	
	R. OOCATCICIOIOICAACCAIO
rLpinEx18-19	F1: GCCTGCCGATGTGTATTCCTAC
-	F2: CAAAGCTGTATCACAAAGTAAGCCA
	R1: ATTCTATTCAGGGACACTCCCA
ul uiu l a	
rLpin1a	
	KS. GETCAGAATCACTITITIGGTGTTG
rLpin1 <i>β</i>	F4: GTAGATTGTCAGAGGACTCCCCCT
	R4: CAAGAGCTAGAGAGAACTCCCTCG
rMpz,	F: TTCACAAGTCTTCTAAGGACTCCTCG
	R: GCACIGGCG1C1GCCG
rPmp22	F: GGAGTCTTCCAAATCCTTGCTG
<i>T</i>	R: GATGGCCGCTGCACTCAT
rKrox20	F: GGAGGCCCCTTTGATCAGA
	R: TGTTGATCATGCCATCTCCAG
rOct6	F. GAGCTTCAAGAACATGTGCAAGCT
1000	R. TCCAGCCACTTGTTGAGCAG
rCyclinD1	F: GCACTTTCTTTCCAGAGTCATCAA
	R: CAGGCACGGAGGCAGTC