OXIDATION OF 3,4-DIHYDROXYPHENYLACETALDEHYDE, A TOXIC DOPAMINERGIC METABOLITE, TO A SEMI-QUINONE RADICAL AND AN ORTHO-QUINONE

David G. Anderson¹, S. V. Santhana Mariappan², Garry R. Buettner³, Jonathan A. Doorn¹*
Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa,
Iowa City, IA 52242-1112¹, Central High Field NMR Research Facility, Department of
Chemistry, University of Iowa, Iowa City, IA 52242-1294², and Free Radical and Radiation
Biology Program, ESR Facility, Department of Radiation Oncology, College of Medicine,
University of Iowa, Iowa City, IA 52242-1101³

Running head: Oxidation of DOPAL

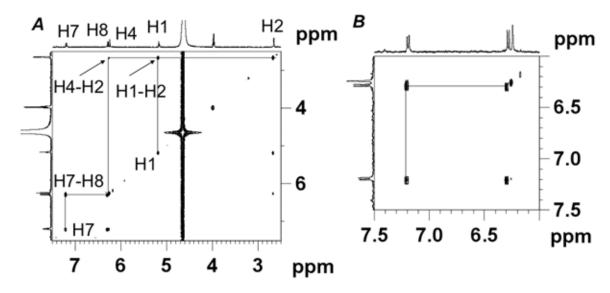
Address Correspondence to: Jonathan A. Doorn, Ph. D., 115 So. Grand Ave, College of Pharmacy, Iowa City, IA 52242-1112. Telephone: 319-335-8834. Fax: 319-335-8766. Email: jonathan-doorn@uiowa.edu

Supplementary Tables

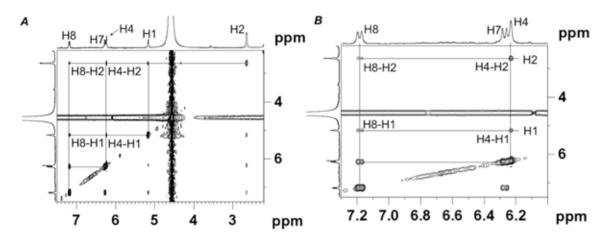
Supplementary Table 1. Summary of NMR Correlations and Cross-Peaks.

Experiment	<u>Cross-Peaks Evident</u>
COSY	H1-H2; H2-H4; H7-H8;
NOSEY	H1-H4; H1-H8; H2-H4; H2-H8; H4-H8;
HMQC	H1-C1; H2-C2; H4-C4; H7-C7; H8-C8;
HMBC	H2-C3; H4-C5; H7-C3; H7-C6; H8-C5;

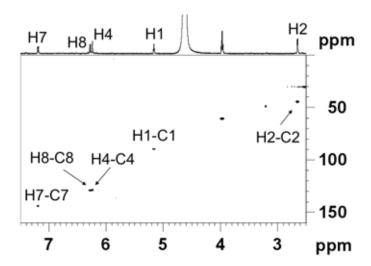
Supplementary Table 2. ¹H and ¹³C Peak Assignments for the DOPAL quinone.

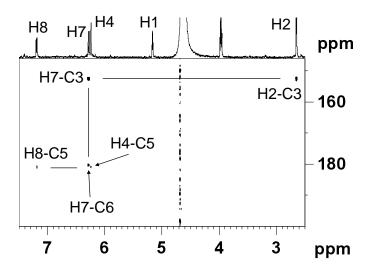

Position	¹ H Shift	¹³ C Shift
1	5.17	89.8
2	2.65	44.4
3	n/a	152.5
4	6.24	128.8
5	n/a	181.0
6	n/a	180.3
7	7.20	144.1
8	6.28	128.9

All values reported in ppm.


Supplementary Figures

Supplementary Figure 1. Structure of the DOPAL-*ortho*-quinone. The numbered positions indicate atom locations for all supplementary figures.


Supplementary Figure 2. ¹H-¹H COSY NMR Spectrum of Oxidized DOPAL. The figure is annotated to highlight relevant cross-peaks (*A*). The aromatic region is magnified for clarity (*B*). COSY is a homonuclear correlation technique for determining proton couplings in a molecule.


Supplementary Figure 3. ¹H-¹H NOSEY NMR Spectrum of Oxidized DOPAL. The spectrum is annotated to highlight relevant cross-peaks (*A*). The aromatic region is magnified for clarity (*B*). NOSEY is a homonuclear correlation technique for identifying resonances that are in close spatial proximity within a molecule.

Supplementary Figure 4. ¹H-¹³C HMQC NMR Spectra of Oxidized DOPAL. The spectrum is annotated to highlight relevant cross-peaks. HMQC is a 2D inverse correlation technique for determining direct (single bond) heteronuclear couplings in a molecule.

Supplementary Figure 5. ¹H-¹³C HMBC NMR Spectrum of Oxidized DOPAL. The spectrum is annotated to highlight relevant cross-peaks. HMBC is a 2D inverse correlation technique for determining long range (2-4 bond) heteronuclear couplings in a molecule.

Supplementary Figure 6. Lifetime of the DOPAL Quinone Over Time. The relative intensities of the 8.44 ppm peak (hypothesized polymer) and the quinone are shown over time.

