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The imaging unit consisted of an intensified Peltier 
cooled charge-coupled device (CCCD), model LN/CCD-
1300EB, which was equipped with an ST-133 controller and 
a 50-mm Nikon lens (Roper Scientific, Princeton Instrument, 
Trenton, NJ, USA). In this system, a pseudocolor image 
represents light intensity (with blue representing least intense 
and red most intense). In all cases, the integrated light is the 
result of a two-minute exposure and acquisition. The expo-
sure conditions (including time, f/stop, position of the stage, 
binding ratio, and time after injection with luciferin) were 
maintained at identical levels so that all measurements 
would be comparable.

Computational Methods

Phase Assignment

Consider a series of microarray expression values for gene x, with N 
samples of the form Y = {x0, x1, x2, . . . xN−1}. We assigned phase to 
each expression time series by computing cross-correlation

Rðf Þ=
PN−1

0 xi −xð Þ yf −y
 

PN−1
0 xi −xð Þ yi −yð Þ

where x is a gene expression time series of N points and y is an 
artificially generated profile of ideal cosine function

yi = cos
2π

p
* i

 

where p is the number of time-points in a complete circadian 
cycle, i.e., 4 in this dataset. To account for all phases, the artifi-
cial cosine curve profile has been regenerated with a phase shift 
by 1 time-point. The highest correlation among all possible phase 
shifts was assigned as the most probable phase. The significance 
of periodicity was not assessed before the phase assignment. 
Consequently, we assigned the most probable potential phase to 
all profiles, both truly periodic and chaotic.
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APPENDIX

Methods

Animal Studies

Data Processing and Time Series Analysis

Intact mice of both genders, transgenic for the human osteocal-
cin promoter/luciferase reporter gene, were used at ages 1, 3, 
and 5 mos and 1.5 yrs (N = 5 for each gender and time-point). 
Mice were trained for a 12-hour light/dark cycle for a minimum 
of 2 wks prior to each study. Each animal was sequentially ana-
lyzed at times 0, 6, 12, 18, and 24 hrs of the light/dark cycle 
throughout a single 24-hour period. Data were analyzed statisti-
cally as detailed below.

Quantitative analysis of luciferase expression was performed 
with the MetaImaging series 4.6 software (Molecular Devices, 
Downingtown, PA, USA), with a constant measurement field 
for all time-points. Results are presented in integrated luciferase 
units.

Seven skeletal sites were analyzed: calvaria, tail, maxillo-
mandibular complex, carpals, and tarsals.

In vivo Bioluminescence Imaging

In all experiments, the animals were anesthetized with a mixture 
of ketamine and xylazine, injected intraperitoneally at 1 µL/g 
body weight. Ten min before the light emissions were monitored, 
each animal was given an intraperitoneal injection of beetle luci-
ferin (Promega Corp., Madison, WI, USA) in phosphate-buffered 
saline (PBS) at 126 mg/kg body weight. The mice were placed in 
a light-tight chamber (a dark box), and a gray-scale image of the 
animal was first recorded in dimmed light. Photon emission was 
then integrated over a period of 2 min and recorded as pseudo-
color images (Contag et al., 1997; Honigman et al., 2001; Iris  
et al., 2003). Based on our published data, an internal control (at 
the tail level) was needed for quantification of the results, 
because our hOC-Luc mice differed in their luciferase expression 
levels (Iris et al., 2003).
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Appendix Figure 1. In vivo whole-body bioluminescence imaging of 
transgenic mouse at 5 time-points within a 24-hour cycle of a repre-
sentative animal. The mouse displayed is a 5-month-old female. Intact 
mice of both genders for the human osteocalcin promoter/luciferase 
reporter gene were used at ages 1, 3, and 5 mos and 1.5 yrs. N = 5 
for each gender and time-point. Each animal was sequentially ana-
lyzed at t = 0, 6, 12, 18, and 24 hrs of the light/dark cycle through-
out one 24-hour period for each animal.

Appendix Figure 2. Quantified in vivo bioluminescence imaging of a 
transgenic mouse at 5 time-points within a 24-hour cycle. Chart shows 
a representative group of 5-month-old females. Results compare the 
osteocalcin circadian patterns of expression for individual data sites 
with the maxillomandibular complex. Results show no statistical sig-
nificance within each individual skeletal site, except for the maxillo-
mandibular complex. Calvaria, left carpals, right carpals, left tarsals, 
right tarsals, and tail. 

Spectral Analysis

The time series Y = {x0, x1, x2, . . . xN−1} can be converted from 
time-domain, where each variable represents a measurement in 
time to a frequency domain by the Discrete Fourier Transform 
(DFT) algorithm. Frequency domain representation of the series 
of experiments is also known as a periodogram, which can be 
denoted by I(w) :

IðoÞ= 1

N

XN− 1
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,o∈ 0, p½ .

If a time series has a significant sinusoidal component with 
frequency w ∈[0, π], then the periodogram exhibits a peak at 
that frequency with a high probability. Conversely, if the time 
series is a purely random process (a.k.a. “white noise”), then  
the plot of the periodogram against the Fourier frequencies 
approaches a straight line (Priestley, 1981). 

Fisher’s g Test

Significance of the observed periodicity can be estimated by 
Fisher g statistics, as recently recommended (Wichert et al., 
2004). Fisher derived an exact test of the maximum periodog-
ram coordinate by introducing the g statistic

g= maxk I okð Þ
PN=2

k= 1 I okð Þ
,

where I(ωk) is a k-th peak of the periodogram. Large values of g 
indicate a non-random periodicity. To calculate the p-value of 
the test under the null hypothesis, we used the exact distribution 
of g given by

P g> xð Þ=
X
1=x

p= 1

−1ð Þp n!

p! n− pð Þ!
1− pxð Þn− 1

 
,

where n = [N/2] and p is the largest integer less than 1/x. This 
algorithm closely follows the guidelines recommended for 
analysis of periodicities in time-series microarray data (Wichert 
et al.), with the exception that we applied our own C++ code 
instead of R scripts.

Permutation Test

The alternative test for significance of a particular (in our case 
circadian) periodicity among large numbers of gene expression 
profiles is based on the random permutation procedure. Consider 
a time series Y = {x0, x1, x2, . . . xN−1}, in which technical varia-
tion approaches or even exceeds the amplitude of periodic 
expression. In a very short time series, there is a significant prob-
ability of observing a periodicity due to stochastic reasons. 
However, the periodic change of the base expression level can still 
be identified in spite of the high noise level. Let YR be a random 
permutation of the time series Y and its corresponding periodog-
ram IR(w). If the periodogram IY(w) contains a significant peak 

corresponding to a particular frequency, this peak results from a 
particular order of observation is in the Y. A random permutation 
would preserve the same noise level, but not the periodicity. 
After DFT, a periodogram IR(w) represents only the peaks 
occurring by chance. To avoid random re-institution of periodic-
ity of length T (in this case circadian), we generate YR by mul-
tiple shuffling of randomly selected time-points xn a xm, where 
T |/  |n − m |, i.e., each shuffle swaps time-points from different 
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phases. Comparing permutations with deliberately wiped out 
periodicity with the original time series, we can estimate 
whether a particular order of observations (i.e., time series) is 
important. For each gene expression profile, we generate two 
series of min(n!,1000) random permutations. Each permutated 
series YR is transformed to the frequency domain, and a single 
peak of the periodogram IR(w) is stored. The p-value for the 
null hypothesis of the random nature of a particular peak of a 

periodogram can be estimated by comparing the stored IR(w) 
values with the observed I(w):

p=
KIRðoÞ≥ IYðoÞ

min n!, 1000ð Þ .

Here, K is the number of permutated series YR for which the 
circadian peak of a periodogram is higher or equal to that of the 

Appendix Figure 3. Concatemer of data for individual data sites. Circadian oscillation of osteocalcin promoter/luciferase reporter in maxillo-
mandibular complex of transgenic mice in vivo. Anesthetized mice (n = 23-28) were examined in a bioimaging device for light emission at 
six-hour intervals over a 24-hour period immediately following injection with luciferin. Data from the individual animals have been concate-
nated in order of emission amplitude and frequency profile (upper panel). Periodogram based on a common scale of magnitude (lower panel). 
(a) Calvaria, (b) left carpals, (c) right carpals, (d) left tarsals, (e) right tarsals, and (f) tail. 

(a)

(c)

(e) (f)

(d)

(b)
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original time series Y. A high p-value exceeding the threshold—
for example, 0.05—means that at least 5 out of 100 random 
permutations of the time series produce a periodogram with the 
same or higher peak, corresponding to a given periodicity. Low 
p-values indicate a significant difference between periodograms 
IR(w), preserving circadian periodicity and purely random peri-
odograms with the same level of technical variation.

Autocorrelation

For a given a discrete time series Y = {x0, x1, x2, . . . xN−1}, the 
autocorrelation is simply the correlation of the expression 
profile against itself with a frame shift of k datapoints (where, 
0 ≤ k ≤ N − 1, often referred to as the lag).

For the time shift f, defined as f = i + k  if i + k < N and  
f = i + k − N otherwise.

Rðf Þ=
PN− 1

0 xi −xð Þ xf −x
 

PN− 1
0 xi −xð Þ2

:

 
.

For each time series, we calculate the maximum positive 
R(f) among all possible phase shifts f and use tabulated 0.05 
significance cut-off values for correlation coefficient. Time series 
that shows significant autocorrelation R(f) with the lag f corre-
sponding to one day (4 datapoints) are considered to be circadi-
ally expressed.

Data Analysis Pipeline

The data for computational analysis were prepared in the form 
of a text (tab-delimited) file containing time series in each row. 
Samples from different bones were analyzed separately. All 
absolute values x of signal intensity in a time series Y are con-
verted to z-score:

zi =
x− xi

σY

,

where σY is a standard deviation and x– is a mean or mesor value 
of time series Y. The first step of analysis assigns the most likely 
phase to each of the individual timelines. Profiles are then sepa-
rated into groups with the same assigned phase, and each phase 
group is analyzed separately. Within the same-phase group, 
expression profiles have been smoothed by the Savitsky-Golay 
polynomial algorithm (Savitzky & Golay, 1964). Periodicity of 
expression profiles within same-phase groups is tested by auto-
correlation, Fisher’s g test (Fisher, 1929), Pt-test (Ptitsyn et al., 
2006), and the Kolmogorov-Smirnov fit of permutated periodo-
gram (Ptitsyn et al., 2006).

Challenges of Data Analysis 
and Interpretation (Discussion)

Like other studies of circadian gene expression, the major chal-
lenge for analysis of periodicity is associated with an extremely 

low sampling rate. While, in microarray studies, increasing the 
number of time-points at which gene expression is measured is 
prohibitively expensive, the invasive procedure collecting the data 
from animals in this study makes shorter spacing between time-
points impossible. As in microarray data, at each time-point the 
level of gene expression is estimated with a large degree of sto-
chastic variation, which creates a high level of noise interfering 
with the rhythmic signal. As in microarray experiments, for the 
pattern analysis, we consider these biological replicates as a repli-
cation of a complete period rather than single points. Since our 
goal is to detect a pattern rather than to improve the precision of 
gene expression estimation at each time-point, it is correct to con-
catenate the replicated profiles, producing a single extended 
expression profile. Most of the microarray studies of circadian 
gene expression are limited by the length of the timeline, covering 
not more than 2 complete daily periods. In this study, each group 
of profiles contains 5 or 6 biological replicates, which improves 
our chances of identifying the periodicity compared with the 
microarray data. In contrast, a lower sampling rate created an 
additional challenge. While the general pattern remains similar, 
repeating every 24 hrs, stochastic variation of expression levels 
may lead to variations in the time of peak expression. If the acro-
phase (time of the peak value) is different in one of 5 or 6 periods 
of oscillation, the entire series will fail the statistical test for perio-
dicity. With only 4 points per period, even a small random devia-
tion of measured expression level may lead to incorrect estimation 
of acrophase and discrepancy between visually obvious repeating 
patterns and statistics. To overcome this contradiction, we decided 
to perform phase classification of expression profiles before test-
ing these profiles for periodicity. This strategy does not interfere 
with the statistical test for periodicity. The potentially most prob-
able phase can be assigned to a chaotic non-periodic expression 
profile. However, after we grouped expression profiles together by 
phase, we found only a small fraction of expression profiles show-
ing chaotic variation, with no detectable circadian periodicity.
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