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APPENDICES

Appendix 1, Figure. The relation between intact dentin (data extracted from the article by Tersariol et al., 2010) and carious dentin enzyme activi-
ties. (A) Cysteine cathepsin activity in intact (white diamonds) and carious (black circles) dentin. The intact-dentin values have been multiplied by 
10 to fit them into the same scale. (B) MMP activity in intact (white diamonds) and carious (black circles) dentin. The intact-dentin values have been 
multiplied by 10 to fit them into the same scale. 
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Appendix 2, Figure. Schematic presentation of potential functional mechanisms of activation and function of cysteine cathepsins and MMPs in caries 
lesions. Green blocks with MMPs (red triangles) or cathepsins (yellow arrowheads) indicate inactivity of enzyme, either as a proform or in complex 
with specific (TIMPs, cystatins) or non-specific (e.g., a2 macroglobulin) proteinase inhibitors. Activation of protein (indicated as removal of green 
blocks) may represent either elimination of inhibitor, transformation from latent to active form, or both. (A) pH changes in plaque (acidic pH neu-
tralized by salivary buffers) convert salivary proMMPs (s-MMP) and/or MMP-TIMP complexes into active MMP (Tjäderhane et al., 1998; Sulkala
et al., 2001); activated MMPs then degrade dentin matrix proteins (Tjäderhane et al., 1998). (B) At least cathepsin B directly cleaves and inactivates 
MMP-specific tissue inhibitors TIMP-1 and TIMP-2 (Nagase, 1997), and may thus change the balance between MMPs and their inhibitors. Acidic 
pH in plaque activates salivary cysteine cathepsins (s-Cat), which in turn either proteolytically activate salivary proMMPs or degrade TIMP-inhibiting 
MMPs, or both, resulting in active MMPs. Therefore, cysteine cathepsins activated at the acidic phase of caries may further activate dentin-bound 
or salivary MMPs, which in turn would become functional after neutralization of pH by salivary buffers (Tjäderhane et al., 1998). (C) Activation of 
dentin-bound MMP and/or cathepsin (d-MMP and d-Cat, respectively) by pH changes in caries lesions, resulting in dentin matrix enzymatic deg-
radation. (D) Acid activation of dentin-bound cathepsin, with further activation of dentin-bound MMP by active cathepsin. (E) Glycosaminoglycan 
(GAG: black dot) activation (e.g., Rozman et al., 1999) and stabilization (Almeida et al., 2001) of cathepsin (and possibly MMPs, as suggested 
by Ra and Parks, 2007), allowing for functional activity of cathepsins, even in neutral pH. Glycosaminoglycans (GAGs) are able to accelerate the 
conversion of zymogen forms of cysteine cathepsins into its mature forms at neutral pH, activating cathepsin B (Rozman et al., 1999), cathepsin L 
(Ishidoh and Kominami, 1994), cathepsin S (Kopitar et al., 1996), and congopain (Serveau et al., 2003). The presence of glycosaminoglycans 
in the dentin extracellular matrix (Embery et al., 2001) and their release during acid-demineralization and subsequent proteolytic degradation of 
acid-demineralized dentin matrix (Dung et al., 1995) support the possibility that GAGs are involved in in vivo processing of cysteine cathepsins 
in carious dentin. Interestingly, procathepsin S is capable of autocatalytic activation not only at acidic pH but also at neutral pH in the presence of 
related glycosaminoglycans (Vasiljeva et al., 2005). Also, we have showed that cathepsin B is stabilized at pH 7.4 by interaction with heparan 
sulfate and heparin glycosaminoglycans (Almeida et al., 2001). (F) Dentinal-fluid-derived enzymes degrading demineralized matrix. Analysis of 
the data presented in this manuscript indicates that odontoblast- or pulp-tissue-derived cysteine cathepsins are more important in dentinal caries 
lesions. Analysis of previous data indicates that at least MMP-20 may also be functional in dentinal caries matrix degradation (Sulkala et al., 2002).
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