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1 Introduction

In this supplementary information we present all the mathematical and the-
oretical details of the modeling presented in the main paper (see Box 1).
The technique used for solving the differential equations was developed and
reported in a previous work (Dalessi et al., in preparation).
In Section 2, we discuss in more detail the general model and the corre-
sponding set of 1D differential equations describing the Dpp steady state
gradient in wild-type (wt) tissues (Dpp external, Tkv-bound and internalized
components) as well as the approximation allowing to simplify the problem
(linearization) and to obtain explicit analytical solutions. In a first step (cf.
Section 3), we investigate three limit case scenarios and look for the corre-
sponding sets of parameters. In these scenarios we assume that the total
Dpp is mainly external, mainly Tkv-bound or mainly internalized.
In the tkv clonal regions, the number of receptors is altered and the three
Dpp components are affected via a modification of the effective binding rate
and transcytosis. In Section 4 we present the analytical expressions for the
profiles in the presence of tkv clones. In Sections 5 and 6, we show (graph-
ically) the effect of the clones within the three limit scenarios and compare
them qualitatively to the loss-of-function (LOF) experimental data.
In Section 7 we present a simplified model which completely neglects tran-
scytosis and, in Section 8, we exploit quantitative data extracted from the
gain-of-function (GOF) experiments to further refine our initial parameter
choice. Finally, in Section 9, we compare the numerical solution of the initial
non-linear problem to our simplified analytical solution.

2 Dpp wild-type profile

2.1 General wild-type model

The total Dpp profile Mtot(x) has three distinguished components: external
Dpp, Tkv-bound Dpp and internalized Dpp.
The external Dpp Me(x) diffuses in the extracellular medium and can bind
to the Tkv receptors. The bound Dpp Mb(x) can unbind or be internalized.
The internalized Dpp Mi(x) is degraded or transported to the neighboring
cell by transcytosis. The set of differential equations governing the three
components at steady state, already presented in the main text (cf. Box 1),
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reads

d
dt
Me(x) = 0 = DeM

′′
e (x)− k

+
T (x)Me(x) + k

−

Mb(x) + S(x) (1)
d
dt
Mb(x) = 0 = k

+
T (x)Me(x)− k

−

Mb(x)− κMb(x) (2)
d
dt
Mi(x) = 0 = DiM

′′
i (x)− αiMi(x) + κMb(x). (3)

T (x) = T0 − Mb(x) represents the local number of free receptors (with T0

being the homogeneous local total number of receptors), De the extracellular
diffusion constant, k

+
and k

−

the binding/unbinding rates, S(x) refers to the
morphogen production region, κ is the internalization rate and αi represents
the internal linear degradation. Finally, we also assume that transcytosis can
be described in a diffusive way by introducing an ”effective internal diffusion
constant” Di (see Bollenbach et al. [1]). The total Dpp profile is given by
Mtot(x) = Me(x) +Mb(x) +Mi(x).

Assuming T (x) > 0, the first differential equation can be uncoupled using
Eq. (2) and the other two equations solved step-by-step:

−DeM
′′
e (x) +

κk
+
T0Me(x)

k
+
Me(x) + (k

−

+ κ)
= S(x) (4)

Mb(x) =
k

+
T0Me(x)

k
+
Me(x) + (k

−

+ κ)
(5)

−DiM
′′
i (x) + αiMi(x) = κMb(x). (6)

This problem, however, requires a numerical solving because the term T (x)Me(x)
induces a non-linearity in the equations.

2.2 Linearization of the differential equations

Under the assumption of a large number of receptors (T0 >> max(Mb(x))),
the number of free receptors is almost constant. Setting T (x) ≡ T0, Eqs.
(4)-(6) become linear and reduce to

−DeM
′′
e (x) + αeMe(x) = S(x) (7)

Mb(x) =
αe

κ
Me(x) (8)

−DiM
′′
i (x) + αiMi(x) = κMb(x), (9)

where we introduced an “external effective degradation constant”

αe +
κk

+
T0

k
−

+ κ
. (10)
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We note that Eq. (7) has the same form as a standard linear 1D Ordinary
Differential Equation (ODE) describing the steady state profile of a diffusive
process (diffusion constant De) with the linear degradation rate αe. In our
model, however, the effective degradation term αeMe(x) corresponds to the
loss of the external morphogen component through binding to the Tkv recep-
tors and not to a real degradation term. The new parameter αe can therefore
be understood as an “effective binding rate”. Furthermore, Eq. (8) shows
that the bound Dpp is proportional to the external Dpp and represents a
balance between the effective degradation and the internalization κMb(x).
Finally, the last equation (9) is again a linear diffusion-degradation differen-
tial equation with degradation rate αi. Its source term, namely the internal-
ization term κMb(x), is not anymore localized inside the production region
but is completely delocalized over the full wing imaginal disc pouch. This
kind of differential equations can nevertheless be solved analytically and all
the mathematical tools are reported in our previous work (Dalessi et al., in
preparation). In the particular case of no transcytosis at all (i.e. Di = 0),
the internalized Dpp also becomes linearly dependent on the external Dpp:
Mi(x) =

αe

αi
Me(x) and the total Dpp concentration Mtot(x) can be described

by a unique ODE, namely

−DeM
′′
tot(x) + αeMtot(x) = αe

(

1

αe
+

1

κ
+

1

αi

)

S(x).

Introducing, for β = e and i, the Green functions

Gβ(x) =
e−|x|/λβ

2αβλβ

,

where λβ =
√

Dβ/αβ are the decay lengths of the exponentials, we obtain
the following integral expressions for the Dpp components (for more details
we refer to Dalessi et al., in preparation):

Me(x) =

∫

R

dy Ge(x− y)S(y) (11)

Mb(x) =
αe

κ
Me(x) (12)

Mi(x) = κ

∫

R

dy Gi(x− y)Mb(y) = αe

∫

R

dy Gie(x− y)S(y) (13)

where Gie(x− y) +
∫

R
dz Gi(x− z)Ge(z − y) =

αeλ2
eGe(x−y)−αiλ2

iGi(x−y)

αeαi(λ2
e−λ2

i )
.

The effect of an increase of the homogeneous local total number of receptors
with the distance from the production region has been studied numerically.
As it only affects in a minor way the Dpp profiles, in this simplified model
we therefore always assume a constant value T0.

5



2.3 Analytical expressions for the finite size Dpp pro-
duction region

In the literature, morphogen sources (production regions) are often modeled
as a point source at the origin Sδ(x) = s0δ(x), with s0 being the molecular
production rate per time unit. In such a case, the external Dpp at steady
state is a pure decreasing exponential M δ

e (x) = s0Ge(x) and the internalized
Dpp expression reduces to M δ

i (x) = s0Gie(x). Despite its analytical simplic-
ity, this choice is however not very adequate, because the first derivative of
M δ

e (x) presents a discontinuity at the source where we expect a smoother
behavior. To account for this, we consider a constant production of Dpp in
an extended region [−x0, 0] corresponding to a source

Sθ(x) = s0
x0
θ(−x)θ(x+ x0).

The analytical solutions for the external and internalized Dpp are obtained
from

Mθ
β(x) =

1

x0

∫ 0

−x0

dyM δ
β(x− y)

and can be expressed in a condensed way as follows:

Mθ
e (x < −x0) = −f+

e (x)

Mθ
e (x ∈ [−x0, 0]) = ge(x) (14)

Mθ
e (x > 0) = f−

e (x)

Mθ
i (x < −x0) = −a

(

λ2
ef

+
e (x)− λ2

i f
+
i (x)

)

Mθ
i (x ∈ [−x0, 0]) = a

(

λ2
ege(x)− λ2

i gi(x)
)

(15)

Mθ
i (x > 0) = a

(

λ2
ef

−
e (x)− λ2

i f
−
i (x)

)

,

where we defined

a =
αe

αi(λ2
e − λ2

i )

fκ
β (x) =

s0
2x0αe

(

1− eκx0/λβ
)

eκx/λβ

gβ(x) =
s0

2x0αe

(

2− ex/λβ − e−(x+x0)/λβ
)

.

We note in (14) that outside the production region, the profile Mθ
e (x) is

purely exponential with the same decay length λe as in M δ
e (x) (Dalessi et al.,

in preparation). The only qualitative difference between the two profiles is
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the flattening inside the production region (vanishing derivative at the center
of the source x = −x0/2).
An alternative way to model an extended source would be to consider a
normal (Gaussian) distribution: in this case, the production region has no
clear-cut boundaries and the profile is no longer a pure exponential. Never-
theless, far enough from the source, the corresponding external Dpp profile is
very similar to an exponential (Dalessi et al., in preparation). In the follow-
ing sections we always model a finite size production region and we therefore
omit the redundant θ labeling.

3 Limit scenarios and parametrical study

3.1 Introduction

Our model involves six parameters that are not directly constrained ex-
perimentally: αβ , λβ (for β = e, i), κ and x0. Recalling the relationship
λβ =

√

Dβ/αβ, we can either use the decay lengths λβ or the diffusion con-
stants Dβ as free parameters.
Since it is very hard to determine experimentally the value of these parame-
ters, we consider some constraints to reduce the parameter space. We first no-
tice that the total relative abundances of each component Iβ =

∫

R
dxMβ(x),

for β = e, b and i, are given by

Ie =
s0
αe

, Ib =
s0
κ
, Ii =

s0
αi

.

Thereby, considering a global normalization Itot = Ie + Ib + Ii = 1, the three
constants αe, κ and αi are univocally determined imposing the relative abun-
dance of each component. For the numerical applications, we set the width
of the production region to x0 = 0.15L and fix the last two parameters, λe

and λi, imposing that (i) the total Dpp profile Mtot(x) outside the source
is an exponentially decaying profile with decay length λ = 0.2L, where L is
the half-length of the Drosophila wing disc pouch (see Kicheva et al. [2]),
and that (ii) every component displays a strong confinement inside the pouch
rβ = Mβ(−L)/Mβ(−x0/2) < 2%.

We first investigate three limit cases: the total Dpp is (i) mainly external,
(ii) mainly bound to the Tkv receptors or (iii) mainly internalized. In the
next section (see Section 4), we obtain analytical expressions for the Dpp
profiles in a tissue with tkv clones. The three limit cases give rise to three
distinct scenarios which are compared to the experimental data.
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3.2 Total Dpp mainly external

In this first case, we set Ie = 0.8, Ib = Ii = 0.1 leading to αe = 5
4
s0, κ =

αi = 10s0. We note that the external Dpp production rate s0 cancels out
in Eqs. (14) and (15). Since the total Dpp profile is dominated by its
external component which decreases exponentially outside the production
region, assuming λe

∼= λ = 0.2L is a good approximation. Finally, the
maximal allowed transcytosis rate to ensure a good confinement ri < 2% of
Mi(x) is given by λMax

i
∼= 1

2
λe. The resulting Dpp profiles are presented in

Fig. 1. We point out that in this limit scenario, we allow transcytosis to range
between Di = 0 (no transcytosis) to DMax

i = 0.1L2s0 (maximal transcytosis).
However, comparing Figs. 1 (a) and (b), the total Dpp profile is almost not
affected because the value of λi only influences the internalized component
which represents a minor fraction of the total Dpp. In (a), we also note that
the profiles Mb(x) and Mi(x) are identical. This is because, in absence of
transcytosis, Mi(x) = κ

αi
Mb(x) = Mb(x). By contrast, in (b), the profile

Mi(x) (blue line) is flattened due to the transcytosis (internal diffusion).

- 1.0 - 0.5 0.0 0.5 1.0
x[L]

0.5

1.0

1.5

2.0

M [a.u.]

- 1.0 - 0.5 0.0 0.5 1.0
x[L]

0.5

1.0

1.5

2.0

M [a.u.]

(a) (b)

Figure 1: Dpp profile (solid black line) and its external (solid red line),
bound (dashed green line) and internalized (dotted blue line) components
for the limit scenario dominated by the external component. The source
width has been set to x0 = 0.15L (vertical thin lines). The parameters are
λe = 0.2L, αe =

5
4
s0, κ = αi = 10s0. We consider no transcytosis (λi = 0) in

(a) and maximal transcytosis λMax
i = 1

2
λe in (b).

3.3 Total Dpp mainly bound

Here Ie = Ii = 0.1, Ib = 0.8 yielding κ = 5
4
s0, αe = αi = 10s0, λe =

0.2L, λMax
i

∼= 1
2
λe. The profiles correspond to Fig. 1 but with red and green

lines exchanged.
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3.4 Total Dpp mainly internalized

We have Ie = Ib = 0.1, Ii = 0.8 leading to αi =
5
4
s0, κ = αe = 10s0. In this

case, the approximation λe
∼= λ = 0.2L is not valid anymore and a numerical

exponential fitting procedure of Mtot(x > 0) is required. This leads to a set
of allowed pairs (λe, λi) as shown in Fig. 2. In Fig. 3, we present the resulting

0.05 0.10 0.15 0.20
Λe

0.05

0.10

0.15

0.20

Λi

Figure 2: Relationship between λe and λi under the requirement of a good
numerical exponential fit with decay length λ = 0.2L of Mtot(x) outside the
production region when the total Dpp is mainly internalized.

profiles with no transcytosis (a) and maximal transcytosis (b). Transcyto-
sis strongly affects, directly or indirectly, each Dpp component because the
global diffusion is shared between pure external diffusion (characterized by
the parameter λe) and transcytosis (parameter λi). Thereby, strong transcy-
tosis imposes a smaller external diffusion constant. The total Dpp profile is
however almost identical in all cases because we imposed an exponential de-
cay with λ = 0.2L. As αe = κ, the external and Tkv-bound Dpp components
are always identical (cf. Eq. (12)).

4 Modeling clones

4.1 tkv clones model

A clonal experiment involves a mutation in a subset of clustered cells in tis-
sue. This can be modeled mathematically by considering that one or more
parameters (like the diffusion or degradation constant) are no longer uniform
in space but altered in the clonal region. Although in a general case this is a
non-trivial problem to solve (non-constant coefficient differential equations),
a 1D clone model at steady state can nevertheless be studied analytically by
considering different constant values of the parameters outside and inside the
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Figure 3: Dpp profile (solid black line) and its external (solid red line),
bound (dashed green line) and internalized (dotted blue line) components
for the limit scenario dominated by the internalized component. The source
width has been set to x0 = 0.15L (vertical thin lines). The parameters are
αi =

5
4
s0, κ = αe = 10s0. We consider no transcytosis (λi = 0, λe = 0.2) in

(a) and maximal transcytosis (λi
∼= 0.2, λe

∼= 0.09) in (b).

clone C = [x1, x2] and solving separately the differential equations in front,
inside and behind the clone. Flux conservation and function continuity at the
boundaries allow to connect the local solutions and fix the constants related
to the homogeneous solutions of the differential equations.

In this study, we performed experiments with tkv clones affecting the num-
ber of receptors (T clone

0 = nT0). In the LOF experiments, we assume that
inside the clone we have no receptors at all (n = 0) whereas in the GOF
experiments, the number of receptors increases (n > 1). Since αe ∼ T0 (see
Eq. (10)), tkv clones affect the effective degradation constant leading to
αclone
e = nαe. Furthermore, since we consider that transcytosis is receptor-

mediated, the effective internal diffusion constant Di is also affected by the
clone. Assuming a linear dependence Di ∼ T0, this leads to Dclone

i = nDi

inside the clone.
In [3], Eldar and Barkai presented an extensive study of clone effects on mor-
phogen profiles. In this work, we focus on a 1D model at steady state taking
into account the effects of receptor-mediated transcytosis.

From the set of differential equations (7)-(9), we see that the profiles af-
fected by the clone M̄β(x), involving the space-dependent parameters αe(x)
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and Di(x), are solution of

−DeM̄
′′
e (x) + αe(x)M̄e(x) = S(x) (16)

M̄b(x) =
αe(x)

κ
M̄e(x) (17)

−
(

Di(x)M̄
′
i(x)

)′
+ αiM̄i(x) = κM̄b(x). (18)

4.2 External component

In this case (see Eq. (16)), the effective degradation is affected since inside
the clone C = [x1, x2] we have αclone

e = nαe ⇒ λclone
e = 1√

n
λe.

Focusing on the particular case of a clone with 0 < x1 < x2, the general
solution for the profile M̄e(x) reads

M̄e(x < x1) = Me(x) + c1e
−x/λe + c2e

x/λe

M̄e(x ∈ C) = c3e
−√

nx/λe + c4e
√
nx/λe (19)

M̄e(x > x2) = c5e
−x/λe + c6e

x/λe .

The particular solution Me(x) corresponds to the wt profile defined in Eq.
(14). The constants c1 and c6 are set to zero to satisfy the conditions
M̄e(±∞) = 0. The four remaining n-dependent constants c2 to c5 are fixed
by imposing functional continuity and flux conservation conditions at the two
clone boundaries xj , j = 1, 2. For the external component, flux conservation
reduces to continuity of the first derivative because the diffusion constant is
not affected by the clone and Je(x) = −De(x)M̄

′
e(x) = −DeM̄

′
e(x).

Introducing

f0 = f−
e (x1)

(

e2
√
nx2/λe

(√
n + 1

)2 − e2
√
nx1/λe

(√
n− 1

)2
)−1

f(a1, a2) = 2f0e
(a1x1−a2x2)/λe ,

the coefficients read

c2 = (n− 1)f0e
−x1/λe

(

e2
√
nx1/λe − e2

√
nx2/λe

)

c3 = (
√
n+ 1)f(

√
n,−2

√
n)

c4 = (
√
n− 1)f(

√
n, 0)

c5 = 2
√
nf(

√
n,−1−

√
n).

As expected, for n = 1 the effects of the clone vanish and M̄e(x) reduces to
the wt profile given in (14).
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The particular case n = 0, related to the LOF experiments, can be obtained
taking the limits

lim
n→0

c2 = g0e
−x1/λe(x1 − x2)

lim
n→0

(

c3e
−x/λe + c4e

x/λe
)

= 2g0 (x− (x2 + λe))

lim
n→0

c5 = −2λeg0e
x2/λe ,

where g0 = f−
e (x1)/(x1 − x2 − 2λe). As expected, we find that the solution

inside the clone becomes linear since the differential equation (16) reduces to
DeM̄

′′
e (x ∈ C) = 0.

The analytical solution M̄ l
e(x) for a clone located on the left part of the

source (Cl = [−x0 − x2,−x0 − x1]) can be deduced directly from the previ-
ous case, M̄ l

e(x) = M̄e(−x0 − x), because the wt problem is symmetric with
respect to the center of the source x = −x0/2. A clone inside or crossing
the production region requires a modification of the set of equations (19)
and a consequent new analytical resolution because additional non-vanishing
particular solutions appear. Multiple clones can also be modeled solving the
differential equation separately in front, inside and behind each clone.

4.3 Bound component

From Eq. (17), we directly obtain M̄b(x) from M̄e(x):

M̄b(x /∈ C) =
αe

κ
M̄e(x)

M̄b(x ∈ C) = n
αe

κ
M̄e(x).

For n = 0, the profile levels drop to zero inside the clone, M̄b(x ∈ C) = 0.

4.4 Internalized component

The procedure is similar to that presented in Section 4.2, but assuming
Dclone

i = nDi ⇒ λclone
i =

√
nλi:

M̄i(x < x1) = m̄i(x) + d2e
x/λi

M̄i(x ∈ C) = m̄C
i (x) + d3e

−x/
√
nλi + d4e

x/
√
nλi

M̄i(x > x2) = m̄i(x) + d5e
−x/λi ,
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where

m̄i(x) = κ

∫

R

dy Gi(x− y)M̄b(y) and (20)

m̄C
i (x) = κ

∫

R

dy GC
i (x− y)M̄b(y)

are the particular solutions outside and inside the clone, with

GC
i (x) =

e−|x|/√nλi

2
√
nαiλi

.

The coefficients read

d2 = h0e
−x1

λi

(

2
√
ne

x1+x2√
nλi ∆1

2, 1 + (
√
n− 1)e

2x1√
nλi ∆−1

1, n + (
√
n+ 1)e

2x2√
nλi∆1

1, n

)

d3 = h0e
x1+x2√

nλi

(

(
√
n− 1)e

x1√
nλi ∆1

2, 1 + (
√
n + 1)e

x2√
nλi ∆−1

1, 1

)

d4 = h0

(

(
√
n− 1)e

x1√
nλi ∆−1

1, 1 + (
√
n+ 1)e

x2√
nλi ∆1

2, 1

)

d5 = h0e
x2

λi

(

2
√
ne

x1+x2√
nλi ∆−1

1, 1 − (
√
n− 1)e

2x1√
nλi ∆1

2, n + (
√
n+ 1)e

2x2√
nλi∆−1

2, n

)

,

with

h0 =

(

e
2x1√
nλi (

√
n− 1)2 − e

2x2√
nλi (

√
n+ 1)2

)−1

∆k
j,m =

√
m(MC

i (xj)−Mi(xj)) + kλi(n
d
dx
MC

i (xj)− d
dx
Mi(xj)).

In the particular case where n = 0, we obtain M̄i(x ∈ C) ≡ 0 since inside
the clone, both the source term κM̄b(x) and the diffusion constant are zero.
The particular solution reduces to m̄0

i (x) ≡ limn→0 m̄i(x) and the constants
d2 and d5 to

lim
n→0

d2 = −λie
−x1/λi d

dx
m̄0

i (x1)

lim
n→0

d5 = λie
x2/λi d

dx
m̄0

i (x2).

ensuring vanishing derivatives at the clone boundaries d
dx
M̄i(x1)=

d
dx
M̄i(x2)=0.

5 Analysis of the clonal effects

5.1 Introduction

In this section, we present graphically the effect of the clones on the total
Dpp profile for the three limit scenarios discussed in Section 3. For the LOF

13



we present the figures for the particular case n = 0 (no receptors inside the
clone), and for the GOF we consider n = 10.
We recall that our parameters were determined based on the wt profiles, thus
the relative ratios of the corresponding components are no longer preserved
in the clone profiles. Indeed, clones affect the effective degradation constant
αe leading to a global net increase or decrease of external Dpp. For the Tkv-
bound and internalized components, however, the total number of molecules
is preserved.

5.2 Total Dpp mainly external

The parameters corresponding to this first limiting case (80% of the total
Dpp in the wt profile is external, 10% is Tkv-bound and 10% is internalized)
were calculated in section 3.2 and the corresponding wt profiles are shown in
Fig. 1. In Fig. 4, we present the modified Dpp profiles in the presence of a
LOF and GOF clone respectively.
We first notice in Figs. 4 (a) and (b), for the LOF case, that the sets of
parameters corresponding to Di = 0 (no transcytosis) and maximal transcy-
tosis give qualitatively very similar results. This is because the internalized
component (dotted blue lines), which is affected by transcytosis, only repre-
sents 10% of the total Dpp. Furthermore, internalized Dpp levels, as well as
Tkv-bound Dpp levels, vanish inside the clone independently of the transcy-
tosis magnitude due to the absence of receptors and transcytosis. The global
behavior of the total Dpp profiles show a small decrease inside the clone.
For the GOF case, Figs. 4 (c) and (d) are slightly different. Instead of a
small decrease inside the clone, we obtain a relatively consistent increase of
total Dpp levels with the appearance of a peak at the beginning of the clone.
In absence of transcytosis, as in the wt profile, the bound and internalized
profiles are identical to each other, for both the LOF and GOF cases.

5.3 Total Dpp mainly bound

The parameters corresponding to the second limit case (80% of the total Dpp
in the wt profile is Tkv-bound, 10% is external and 10% is internalized), were
calculated in section 3.3. Results for the LOF and GOF cases are reported
in Fig. 5.
In the LOF case, the total Dpp levels are considerably reduced inside the
clone while in the GOF case a very high peak appears at the beginning of
the clone. This is a direct consequence of the fact that the bound component,
which dominates the global behavior of the profile, is strongly affected by the
lack, respectively strong increase, of receptors inside the clone.
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Figure 4: Clone effects on the Dpp profile in the LOF (n = 0) (a)-(b) and
GOF (n = 10) (c)-(d) cases. We show the total Dpp (black solid line)
and its external (solid red line), bound (dashed green line) and internalized
(dotted blue line) components for the scenario dominated by external Dpp.
The source width has been set to x0 = 0.15L (vertical lines) and the clone
is located between x1 = 0.05L and x2 = 0.15L. The parameters are λe =
0.2L, αe =

5
4
s0, κ = αi = 10s0. In (a) and (c) there is no transcytosis and

in (b) and (d) transcytosis is maximal (λMax
i = 1

2
λe).

5.4 Total Dpp mainly internalized

The parameters corresponding to the last limiting case (80% of the total
Dpp in the wt profile is internalized, 10% is external and 10% is Tkv-bound)
were calculated in Section 3.4 and the corresponding wt profiles are shown
in Fig. 3. Results for the LOF and GOF cases are reported in Fig. 6.
When there is no transcytosis (λi = 0, λe = 0.2L), the behavior of the total
Dpp profiles in Fig. 6 (a) and (c) are identical to those in Fig. 5 (a) and (c).
In the LOF case with transcytosis, Dpp levels are low after the clone because
clone-crossing can only happen externally by pure diffusion (Di = 0).
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Figure 5: Clone effects on the Dpp profile in the LOF (n = 0) (a)-(b) and
GOF (n = 10) (c)-(d) cases. We show the total Dpp (black solid line)
and its external (solid red line), bound (dashed green line) and internalized
(dotted blue line) components for the scenario dominated by bound Dpp.
The source width has been set to x0 = 0.15L (vertical lines) and the clone
is located between x1 = 0.05L and x2 = 0.15L. The parameters are λe =
0.2L, κ = 5

4
s0, αi = αe = 10s0. In (a) and (c) there is no transcytosis and

in (b) and (d) transcytosis is maximal (λMax
i = 1

2
λe).

In the GOF case with transcytosis, the effect of strong transcytosis is to at-
tenuate the peak inside the clone and cancel the effect of the clone (internal
diffusion from inside to outside the clone). Only for a clone very close to the
production region, like in Fig. 6 (d), a small peak is still present.

In our model we always consider that transcytosis is receptor-mediated. A
hypothetical theoretical model involving receptor-independent transcytosis
would give, as shown in Fig. 7, qualitatively similar results for the GOF
case, but a completely different behavior for the LOF case. Indeed, since
transcytosis is no longer zero inside the clone, the levels of Dpp inside the
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clone can increase via cell-by-cell transport. In a receptor-independent tran-
scytosis model, both LOF and GOF cases would therefore be qualitatively
indistinguishable from the scenario where the total Dpp is mainly external
(cf. Figs. 4 (b) and (d)). The analytical expression for the internalized
component would reduce to M̄i(x) = m̄i(x) (cf. Eq. 20).
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Figure 6: Clone effects on the Dpp profile in the LOF (n = 0) (a)-(b) and
GOF (n = 10) (c)-(d) cases. We show the total Dpp (black solid line)
and its external (solid red line), bound (dashed green line) and internalized
(dotted blue line) components for the scenario dominated by internalized
Dpp. The source width has been set to x0 = 0.15L (vertical lines) and the
clone is located between x1 = 0.05L and x2 = 0.15L. The parameters are
αi =

5
4
s0, κ = αe = 10s0. In (a) and (c) there is no transcytosis (λi = 0, λe =

0.2L) and in (b) and (d) transcytosis is maximal (λi
∼= 0.2L, λe

∼= 0.09L).
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Figure 7: Clone effects on the Dpp profile in the LOF (n = 0) (a) and GOF
(n = 10) (b) cases for an hypothetical receptor-independent transcytosis
model with maximal transcytosis (λi

∼= 0.2L, λe
∼= 0.09L). We show the

total Dpp (black solid line) and its external (solid red line), bound (dashed
green line) and internalized (dotted blue line) components for the scenario
dominated by internalized Dpp. The source width has been set to x0 = 0.15L
(vertical lines) and the clone is located between x1 = 0.05L and x2 = 0.15L.
The parameters are αi =

5
4
s0, κ = αe = 10s0.

6 Qualitative comparison with LOF experi-

ments

Experimental data for LOF experiments (see Fig. 4 in the main paper and
supplementary figures S5 and S6) suggest that there are significant Dpp lev-
els inside and behind the clone. These qualitative evidences allow to reject
a model in which the majority of Dpp is internalized and transported via
receptor-mediated transcytosis (see Figs. 6 (b), low levels inside and behind
the clone). We expect therefore a mixing between the other two scenarios,
namely the total Dpp being mainly external and mainly bound. Furthermore,
non-negligible levels inside the clone suggest that the external component
should be the dominating one. As these two scenarios are only marginally
affected by transcytosis (see Figs. 4 (a)-(b) and 5 (a)-(b)), we conclude that
external diffusion, and not receptor-mediated transcytosis, plays the domi-
nant role in Dpp gradient formation.

In the following sections, we therefore consider a simplified model (see Sec-
tion 7) which completely neglects transcytosis (λi = 0) and only involves
two Dpp components: diffusing Dpp (external component) and non-diffusing
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Dpp (Tkv-bound and internalized components).
Experimental data for GOF experiments (see Fig. 3 in the main paper and
supplementary figure S3) show a peak of total Dpp inside the clone. In Sec-
tion 8 we analyze quantitatively the GOF experiments and infer the relative
abundance of the components.

7 A simplified external-bound model

7.1 Introduction

According to the experimental data (see Section 6), transcytosis only affects
marginally the total profile and can be neglected. A model involving only
diffusing Dpp (external component) and non-diffusion Dpp (Tkv-bound and
internalized components) is therefore a good approximation to our problem
and simplifies the search for optimal parameters (data quantification).
The equations governing the two components, namely Me(x) and Mbi(x), are
obtained from Eqs. (7)-(9) and read

−DeM
′′
e (x) + αeMe(x) = S(x) (21)

Mbi(x) = Mb(x) +Mi(x) =
αe

κbi
Me(x), (22)

with κbi +

(

1
κ
+ 1

αi

)−1

.

We recall that we model tkv clones by modifying the number of receptors
(T0 → nT0 for x ∈ C) and that both Dpp components are affected. For
the external component, the effective degradation αe (linear loss of external
component αeMe(x) by binding) is affected and there is an overall increase
(respectively decrease) of external Dpp if the number of receptors decreases
(respectively increases) inside the clone. The non-diffusing component is
proportional to αeMe(x), therefore linearly affected by the clone.
The model presented in [3], however, is slightly different since the authors
consider that degradation happens externally. As a consequence, at steady
state, the clones do not affect the external component but only the non-
diffusing one (see Eqs (1) and (2) in [3]).

7.2 Total Dpp profile

Introducing the relative percentage of external component a ∈]0, 1[, the pa-
rameters read λe = 0.2L, αe = s0

a
, κbi = s0

1−a
and the total Dpp profile
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affected by clones M̄tot = M̄e(x) + M̄bi(x) reduces to

M̄tot(x /∈ C) =
1

a
M̄e(x)

M̄tot(x ∈ C) =
(n

a
+ (1− n)

)

M̄e(x)

In Figs. 8 and 9 we present the results for LOF and GOF mutant clones
experiments. In (a), there is 10% of external Dpp (a = 0.1) and the total
Dpp profiles are identical to that in Figs. 5 (a) and 5 (c). In (c), there
is 80% of external Dpp (cf. Figs. 4 (a) and (c)) and in (b), we show an
intermediate case with a = 0.45.
Fig. 9 suggests that the amplitude of the peak at the beginning of the clone
depends on the value of a. We therefore show in Fig. 10 the ratio
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Figure 8: Clone effects on the Dpp profile in the LOF (n = 0) case. We
show the total Dpp (black solid line) and its external (solid red line) and
non-diffusing (dashed green line) components. The source width has been
set to x0 = 0.15L (vertical lines) and the clone is located between x1 = 0.05L
and x2 = 0.15L. The parameters are λe = 0.2L, αe =

s0
a
, κbi =

s0
1−a

. In (a)
a = 0.1, in (b) a = 0.45 and in (c) a = 0.8.

ρ(n, a) =
M̄tot(x

+

1 )

M̄tot(−(x0 + x1))
= cn

(

n + a(1− n)
)

.

between the peak inside the clone (x = x+
1 ) and the level at the opposite

position with respect to the source (x = −x0 − x1) for a ranging from 0.1 to

0.9 and different values of n (from 1 to 19). We note that cn =
M̄e(x

+

1
)

M̄e(−(x0+x1))

is a−independent, implying that for a given n, ρ(n, a) is linear with a.

In Fig. 11, we show the effect of the clone position for n = 10, a = 0.1 and
x1 ranging from 0.05L to 0.25L (clone width of 0.1L). As expected, ρ(n, a)
is strongly affected by the clone position and the ratio increases considerably
when the clones are closer to the source.
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Figure 9: Clone effects on the Dpp profile in the GOF (n = 10) case. We
show the total Dpp (black solid line) and its external (solid red line) and
non-diffusing (dashed green line) components. The source width has been
set to x0 = 0.15L (vertical lines) and the clone is located between x1 = 0.05L
and x2 = 0.15L. The parameters are λe = 0.2L, αe =

s0
a
, κbi =

s0
1−a

. In (a)
a = 0.1, in (b) a = 0.45 and in (c) a = 0.8.
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Figure 10: ratio ρ(n, a) between the peak inside the clone and the level at
the opposite position with respect to the source for M̄tot(x). n ranges from
1 (blue line, corresponding to the wt) to 19 (red line) and a from 0.1 to 0.9.
The source width has been set to x0 = 0.15L and the clone is located between
x1 = 0.05L and x2 = 0.15L.

8 Quantitative comparison with GOF exper-

iments

Experimental data for GOF experiments (see Fig. 3 in the main paper and
supplementary figures S3) show a peak of total Dpp inside the clone. In
our model, there are two parameters which are still unknown: n and a. We
extracted the total Dpp profile M(x) from each image and calculated the
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Figure 11: Clone effects on the Dpp profile in the GOF (n = 10) case. We
show the total Dpp (black solid line) and its external (solid red line) and
non-diffusing (dashed green line) components. The source width has been
set to x0 = 0.15L (vertical lines). Clone width is 0.1L and clone position
is x1 = 0.05L ((a)), x1 = 0.15L ((b)) and x1 = 0.25L ((c)). The other
parameters are λe = 0.2L, αe = 10s0, κbi =

10s0
9

(a = 0.1).

numerical value ρexp = M(x1)
M(−(x0+x1))

leading to an analytical relationship

ρexp = ρ(n, a) ⇒ a(n) = (ncn − ρexp) / ((n− 1)cn) .

The source width x0 and clone boundaries x1 and x2 have been extracted
from the image.

In Fig. 12 we show one example of data quantification. In (a), the experimen-
tal total Dpp profile is shown by GFP antibody staining, filtered with a low
Gaussian filter (solid black line). From the Dpp:GFP fluorescence intensity
(green line), we estimate the positions of the production region (the vertical
blue lines). The vertical red lines show the clone boundaries. The profile
has been rescaled as for the analytical profiles and a constant background
level has been removed. The value of the normalization constant and shift
has been obtained analytically computing an exponential fit (thin blue lines),
with decay length λfit = 20µm [2], in front of the clone and after the produc-
tion region (according to our model, we expect a pure exponential behavior
in these regions, see Eq. (19)). In (b) we present the corresponding a(n)
profile (data quantification). Since we expect at least a ten-fold increase in
receptor levels inside the clone, we conclude, in agreement with our qualita-
tive analysis of LOF images (cf. Section 6), that the dominant component
of total Dpp is external unbound (at least 80% in this example).

In Fig. 13 we present the a(n) profiles for several GOF images (see Fig.
3 in the main paper and supplementary figures S3). We obtain, according to
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our model, that for a ten-fold increase in receptor number inside the clone,
around 60− 80% of the total Dpp should be external.
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Figure 12: In (a) we present the experimental GFP antibody staining profile,
extracted from one image and filtered with a low Gaussian filter (solid black
line). The Dpp-GFP fluorescence intensity (green line) shows the positions
of the production region (the vertical blue lines). The vertical red lines show
the clone boundaries (in this case on the left side of the production region).
The thin blue lines in front of the clone and after the production region are
obtained by computing an exponential fit and allow to obtain the value of
the global background shift. In (b) we present the corresponding a(n) profile
(data quantification). Since we expect at least a ten-fold increase in receptor
levels inside the clone (see vertical dashed line), we expect at least 80% of
Dpp to be external and unbound (horizontal dashed line).

9 Study of the non-linear contributions

In this section, we come back to the initial non-linear problem (see Section
2.1) and show that for our particular case (negligible transcytosis, most of
the Dpp is external), the linear approximation T (x) ∼= T0 is quite accurate.
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Figure 13: The data quantification a(n) for several GOF images. Dashed
lines represent the Dpp external component abundance for a ten-fold increase
in receptor concentration inside the clone.

9.1 Numerical resolution

Introducing again the effective diffusion αe and assuming Di = 0 and T (x) >
0 ⇔ T0 > max(Mb(x)), Eqs. (4)-(6) reduce to

−λ2
eαeM

′′
e (x) +

αeMe(x)
αe

κbi

Me(x)
τ0

+ 1
= S(x) (23)

Mbi(x) =

αe

κbi
Me(x)

αe

κbi

Me(x)
τ0

+ 1
. (24)

We note that τ0 +
κ
κbi

T0 appears as a free parameter in the non-linear prob-
lem and our linear approximation correspond to the limit τ0 → ∞.
For a step source S(x) = s0θ(x + x0)θ(−x), the parameters for the linear
model (see Section 7) were λe = 0.2L, κbi = s0

1−a
, αe = s0

a
, with a ∈]0, 1[

being the abundance of the external component. In the non-linear model,
as the Mbi(x) component is not diffusing, the relationship κ = s0

1−a
is still

valid. Assuming again a constant decay length λe = 0.2L, the remaining two
parameters are constrained by the normalization of the external component
Ie(αe, τ0) = a. The numerical αe(τ0) relationship for the particular case of
70% of external Dpp (i.e. a = 0.7) is presented in Fig. 14. However, if we im-
pose negligible levels at the pouch boundaries (rbi = Mbi(−L)/Mbi(−x0/2) <
2%, see Fig. 15 (a)), we find a minimal limiting value for τ0: τ

min
0

∼= 2. We
note that τ0 is expressed in the same arbitrary units as the Dpp profiles. The
justification of such a limiting value can be given considering Fig. 15 (b),
where we present the maximal amplitude Mbi(−x0/2) as a function of τ0.
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Figure 14: Numerical relationship αe(τ0) ensuring a normalization
Ie(αe, τ0) = a = 0.7 of the external Dpp component. τ0 ranges from 0.5 to
12 and the other parameters have been set to λe = 0.2L and κbi =
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Figure 15: In (a) we present the numerical relationship rbi =
Mbi(−L)/Mbi(−x0/2) and in (b) the numerical value of the maximal am-
plitude Mbi(−x0/2) as function of τ0 (ranging from 0.5 to 12). The other
parameters have been set to λe = 0.2L, κ = s0

1−a
= s0

0.3
and αe(τ0) according

to Fig. 14. The dotted horizontal line in (a) shows the position rbi = 2%
related to a minimal limit value τmin

0
∼= 2.

The amplitude of the bound component decreases when τ0 decreases. As the
normalization of the profile is fixed (Ibi = 1− a), we therefore expect a flat-
tening of the profile and, for τ0 < 2, non-negligible levels at the boundaries
are reached.

As expected, in Fig. 14, the profile αe(τ0) reaches the asymptotic value
αe(∞) = s0

a
corresponding to the linear approximation. In Fig. 16, we there-
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fore compare the wt, LOF and GOF profiles for the limiting value (τ0 = 2,
dotted lines) and for the asymptotic approximation (τ0 = 100, solid lines).
We clearly see that the profiles are qualitatively very similar, the main dif-
ference being inside the source and not related to the clone position, giving
a posteriori justification to our linear approximation of the problem.
However, we would like to point out that such a numerical study of the non-
linear problem starting from an arbitrary set of parameters obtained from
the linear model, e.g. for the scenarios where the total Dpp is mainly inter-
nalized or mainly bound, is more complicated because additional parameters,
namely λe and/or λi are no longer anymore constrained theoretically. Thus
it is harder to obtain a posteriori justification for the other scenarios.

9.2 Power expansion solution

We note that N−order better approximated analytical solutions Me(x) ∼=
∑N

n≥0
1
τn
0

Mn
e (x) of the differential equation (23) can be found iteratively in-

troducing the power expansion

αeMe(x)
αe

κbi

Me(x)
τ0

+ 1
= αeMe(x)

∑

n≥0

(

αeMe(x)

κbiτ0

)n

.

The lower expansion order solution M0
e (x) is, as expected, the solution (11)

of the linear problem. The first order solution reads

M1
e (x) =

α2
e

κbi

∫

R

dy Ge(x− y)
[

M0
e (y)

]2
.

In Fig. 17 we compare the analytical solutions M0
e (x) and M0

e (x) +
1
τ0
M1

e (x)
to the numerical solution of the non-linear problem for τ0 = 2. We note that
the first order solution is already very accurate. Therefore, higher order ana-
lytical solutions allow to optimize the search of optimal parameter values: for
a fixed value of τ0 and a, an analytical relationship αe(τ0, a, λe) is obtained
from the integral Ie. As κbi = s0/(1− a), the unique remaining free parame-
ter, namely λe, can be found imposing an exponential fitting procedure with
decay length λfit = 0.2L for x > 10%L. Assuming τ0 = 2 and a = 0.7, we
obtain λe

∼= 0.192, κbi =
10s0
3

and αe
∼= 1.697.

To conclude, we point out that our approach is not anymore valid for very
small values of τ0 because (i) we always assume T (x) > 0 and (ii) the asymp-
totic expansion may not be valid for small τ0 values.
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Figure 16: Comparison between the limit case τ0 = 2 (dotted lines) and
asymptotic case τ0 = 100 (solid lines) for the wt, LOF and GOF profiles
((a), (b) and (c) respectively). The black lines represent the total Dpp,
the red lines the external components and the green lines the non-diffusing
components. The source width has been set to x0 = 0.15L (vertical lines)
and clone position is x1 = 0.05L, x2 = 0.15L. The other parameters are
λe = 0.2L, κbi =

10s0
3

and αe(2) ∼= 1.71s0, αe(100) ∼= 10s0
7
.
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Figure 17: Comparison of the zero and first order solutionsM0
e (x) (black dot-

ted line) and M0
e (x)+

1
τ0
M1

e (x) (black dashed line) to the numerical solution
of the non-linear problem (red line) for τ0 = 2, λe = 0.2L, κbi =

s0
1−a

= s0
0.3

and αe(2) ∼= 1.71s0.

10 Conclusion

In this supplementary information, we first proposed a model describing the
steady state of the total Dpp profile in wt tissues (1D linearized model).
We identified three components for the total Dpp: external, bound to the
Tkv receptors and internalized. The external Dpp diffuses from a finite-
size production region and can bind to the Tkv receptors. The bound Dpp
can unbind or be internalized. The internalized Dpp can be degraded or
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transported by transcytosis. Within the approximation of a large number of
receptors, we obtained an analytical solution for each component (cf. Section
2).
In tkv clone experiments, the number of free receptors inside the clonal re-
gion is affected leading to an increase or decrease of the effective binding rate.
Transcytosis is also affected by the clones because we assume that cell by cell
transport is receptor-mediated. In Section 4 we presented explicit analytical
expressions for the three Dpp components in the presence of clones.
Our model involves six free parameters. Since it is very hard to determine
experimentally the value of these parameters, we studied three limit scenarios
corresponding to a total Dpp profile that is mostly external, Tkv-bound or
internalized (cf. Section 3). Comparing qualitatively LOF experimental data
to our three limit scenarios (cf. Sections 5 and 6), we conclude that transcy-
tosis cannot play a major role in the Dpp gradient formation and that most
of the Dpp should be external. Therefore, we proposed a simplified model
(cf. Section 7) which only involves diffusing (external) and non-diffusing
(Tkv-bound and internalized) Dpp components. GOF experimental data
show a peak of Dpp inside the clonal regions. Data extraction (cf. Section
8) based on the quantification of the peak amplitude confirms, according to
our model, that most of the Dpp should be external and unbound (60− 80%
for a ten-fold increase in receptor levels). In Section 9, we finally give a a

posteriori justification of our assumption of a large number of free receptors
(linearization of the problem) by studying the initial non-linear problem with
the explicit set of parameters figured out in the previous sections.
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