Supporting Information

Rhodium(II)–Catalyzed Enantioselective C–H Functionalization of Indoles

Andrew DeAngelis, Valerie W. Shurtleff, Olga Dmitrenko, and Joseph M. Fox*

Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware,

Newark, DE 19716

Experimental Section	Page
General Considerations	S-4
Assignment of Absolute Configuration	S-5
Experimental Procedures	S-5
References	S-30
Spectral Data	
¹ H NMR spectrum of A	S-32
¹³ C NMR spectrum of A	S-33
¹ H NMR spectrum of B	S-34
13 C NMR spectrum of B	S-35
¹ H NMR spectrum of C	S-36
13 C NMR spectrum of C	S-37
¹ H NMR spectrum of D	S-38
13 C NMR spectrum of D	S-39
¹ H NMR spectrum of E	S-40
13 C NMR spectrum of E	S-41

¹ H NMR spectrum of F	S-42
13 C NMR spectrum of F	S-43
¹ H NMR spectrum of 1	S-44
¹³ C NMR spectrum of 1	S-45
HPLC Trace of 1	S-46
¹ H NMR spectrum of 2	S-47
¹³ C NMR spectrum of 2	S-48
HPLC Trace of 2	S-49
¹ H NMR spectrum of 3	S-50
¹³ C NMR spectrum of 3	S-51
HPLC Trace of 3	S-52
¹ H NMR spectrum of 4	S-53
¹³ C NMR spectrum of 4	S-54
HPLC Trace of 4	S–55
¹ H NMR spectrum of 5	S-56
¹³ C NMR spectrum of 5	S-57
HPLC Trace of 5	S–58
¹ H NMR spectrum of 6	S-59
¹³ C NMR spectrum of 6	S-60
HPLC Trace of 6	S-61
¹ H NMR spectrum of 7	S-62
¹³ C NMR spectrum of 7	S-63
HPLC Trace of 7	S-64
¹ H NMR spectrum of 8	S-65
¹³ C NMR spectrum of 8	S-66
HPLC Trace of 8	S-67
¹ H NMR spectrum of 9	S-68
¹³ C NMR spectrum of 9	S-69
HPLC Trace of 9	S-70
¹ H NMR spectrum of 10	S-71
¹³ C NMR spectrum of 10	S-72

HPLC Trace of 10	S-73
¹ H NMR spectrum of 11	S-74
¹³ C NMR spectrum of 11	S-75
HPLC Trace of 11	S-76
¹ H NMR spectrum of 12	S-77
¹³ C NMR spectrum of 12	S-78
HPLC Trace of 12	S-79
¹ H NMR spectrum of 13	S-80
¹³ C NMR spectrum of 13	S-81
HPLC Trace of 13	S-82
¹ H NMR spectrum of 14	S-83
¹³ C NMR spectrum of 14	S-84
HPLC Trace of 14	S-85
¹ H NMR spectrum of 15	S-86
¹³ C NMR spectrum of 15	S-87
HPLC Trace of 15	S-88
¹ H NMR spectrum of 16	S-89
¹³ C NMR spectrum of 16	S-90
HPLC Trace of 16	S-91
¹ H NMR spectrum of 17	S-92
¹³ C NMR spectrum of 17	S-93
HPLC Trace of 17	S-94
¹ H NMR spectrum of G	S-95
¹³ C NMR spectrum of G	S-96
HPLC Trace of G	S-97
Computational details	S-98

General Considerations

All reactions were carried out in glassware that was flame-dried under vacuum and cooled under nitrogen. Toluene, diethyl ether, hexanes, methylene chloride, and acetonitrile were dried with columns packed with activated neutral alumina and degassed with nitrogen prior to use. THF was distilled from sodium/benzophenone. Chromatography was performed on silica gel (silicycle 40-63D, 60Å). For ¹³C NMR, multiplicities were distinguished using an ATP pulse sequence: typical methylene and quaternary carbons appear 'up' (u); methine and methyl carbons appear 'down' (dn). NMR yields were determined by addition of 1 equivalent of methyl tertbutyl ether as an internal standard to the crude reaction mixture. Reagents were used directly as purchased from commercial sources without further purification. Ethyl 2-diazopropanoate, ethyl 2-diazobutanoate, ethyl 2-diazohexanoate, ethyl 2-diazooctanoate, ethyl 2-diazo-5methylhexanoate, methyl 2-diazobutanoate, and propyl 2-diazobutanoate were prepared from the corresponding β -ketoesters according to literature protocol.¹ 1-Phenylindole,² 2-methyl-1phenylindole,³ 1-benzyl-2-methylindole,³ 1-(4-bromophenyl)indole,⁴ dihydro-3H-pyrrolo[1,2- α]indole,⁵ 6,7,8,9-tetrahydropyrido[1,2- α]indole,⁶ and 1,2-dimethyl-5-methoxyindole,⁷ dirhodium tetrakis N-1,8-naphthoyl (S)-tert-leucinate,⁸ dirhodium tetrakis N-phthaloyl (S)-tertleucinate,⁹ dirhodium tetrakis *N*-tetrachlorophthaloyl (*S*)-*tert*-leucinate,¹⁰ dirhodium tetrapivalate,¹¹ 4-iodo-*N-tert*-butoxycarbonylamino-benzene,¹² and *tert*-butyl(4iodophenoxy)dimethylsilane¹³ were also prepared by literature methods. X-ray quality crystals of **G** were grown by slow diffusion of a solution of **G** in 1:1 benzene/hexanes into hexanes. Enantiomeric excesses were measured on materials directly after chromatography (i.e. the reported ee's have not been enhanced through crystallization).

Assignment of Absolute Configuration

For the indole functionalization reactions catalyzed by $Rh_2(S-NTTL)_4$, the absolute configuration was determined by x-ray diffraction of compound **G** which was prepared from indole **C** and methyl 2-diazobutanoate. From the x-ray data, it was determined that the absolute configuration of the product is *R*.

Experimental Procedures

1-Benzyl-2,5-dimethylindole (A)

To a dry round bottomed flask was added 1.55 g powdered KOH (27.6 mmol) and 13.5 mL DMSO. The mixture was stirred at ambient temperature for 5 minutes and then 1.00 g (6.89 mmol) of 2,5-dimethylindole was added and the mixture was stirred for an additional 45 minutes and then cooled by an ice bath (0 °C). Benzyl bromide (1.65 mL, 13.8 mmol) was then added

and the mixture was allowed to warm to ambient temperature and stir for 45 minutes. It was then diluted with 13.5 mL of water and extracted with three 50 mL portions of Et₂O. The combined organic extracts were then washed with three 50 mL portions of water, dried over anhydrous MgSO₄, decanted, and concentrated. The residue was chromatographed on silica gel eluting with pure hexanes to give 0.545 g (2.32 mmol, 34%) of the title compound as a white solid, m.p. 73 – 75 °C. ¹H NMR (C₆D₆, 400 MHz, δ): 7.48 (s, 1H), 7.01 – 6.88 (m, 5H), 6.72 – 6.67 (m, 2H), 6.30 (s, 1H), 4.70 (s, 2H), 2.43 (s, 3H), 1.94 (s, 3H); ¹³C NMR (C₆D₆, 100 MHz, δ): 138.6 (u), 136.4 (u) (2 carbons), 129.3 (dn), 128.9 (u), 128.8 (u), 127.3 (dn), 126.1 (dn), 122.8 (dn), 120.3 (dn), 100.7 (dn), 46.3 (u), 21.8 (dn), 12.5 (dn); IR (Thin film, cm⁻¹): 3029, 2920, 2861, 1604, 1580, 1555, 1485, 1453, 1440, 1354, 1329, 1298, 1175, 1161, 1029, 866, 789, 717; HRMS-CI (NH₃) m/z: [M+], calcd for C₁₇H₁₇N, 235.1361; found 235.1356.

1-Benzyl-5-fluoro-2-methylindole (B)

To a dry round bottomed flask was added 1.50 g powdered KOH (26.8 mmol) and 13.5 mL DMSO. The mixture was stirred at ambient temperature for 5 minutes and then 1.00 g (6.71 mmol) of 5-fluoro-2-methylindole was added and the mixture was stirred for an additional 45 minutes and then cooled by an ice bath (0 °C). Benzyl bromide (1.60 mL, 13.4 mmol) was then added and the mixture was allowed to warm to ambient temperature and stir for 45 minutes. It was then diluted with 13.5 mL of water and extracted with three 50 mL portions of Et₂O. The combined organic extracts were then washed with three 50 mL portions of water, dried over

anhydrous MgSO₄, decanted, and concentrated. The residue was chromatographed on silica gel eluting with pure hexanes to give 0.855 g (3.58 mmol, 53%) of the title compound as a white solid, m.p. 72 – 74 °C. ¹H NMR (C₆D₆, 400 MHz, δ): 7.36 – 7.32 (m, 1H), 6.96 – 6.90 (m, 3H), 6.90 – 6.85 (m, 1H), 6.71 – 6.67 (m, 1H), 6.64 – 6.58 (m, 2H), 6.13 (s, 1H), 4.57 (s, 2H), 1.86 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ): 158.0 (u) [d, ¹*J*(CF) = 232 Hz], 138.5 (u), 137.5 (u), 133.6 (u), 128.8 (dn), 128.4 (u) [d, ³*J*(CF) = 9.8 Hz], 127.4 (dn), 125.8 (dn), 109.7 (dn) [d, ³*J*(CF) = 10 Hz], 108.8 (dn) [d, ²*J*(CF) = 26 Hz], 104.6 (dn) [d, ²*J*(CF) = 23 Hz], 100.5 (dn) [d, ⁴*J*(CF) = 4.4 Hz], 46.6 (u), 12.9 (dn); IR (Thin film, cm⁻¹): 3064, 3032, 2921, 1620, 1587, 1483, 1451, 1402, 1355, 1334, 1181, 1144, 1123, 1104, 1029, 953, 859, 792; HRMS-CI (NH₃) m/z: [M+], calcd for C₁₆H₁₄NF, 239.1110; found 239.1107.

1-(3-Bromobenzyl)-2-methylindole (C)

To a dry round bottomed flask was added 8.55 g powdered KOH (152 mmol) and 76 mL DMSO. The mixture was stirred at ambient temperature for 5 minutes and then 5.00 g (38.1 mmol) of 2methylindole was added and the mixture was stirred for an additional 45 minutes and then cooled by an ice bath (0 °C). 3-Bromobenzyl bromide (19.0 g, 76.2 mmol) was then added and the mixture was allowed to warm to ambient temperature and stir for 45 minutes. It was then diluted with 76 mL of water and extracted with three 150 mL portions of Et₂O. The combined organic extracts were then washed with three 50 mL portions of water, dried over anhydrous MgSO₄, decanted, and concentrated. The residue was chromatographed on silica gel eluting with pure hexanes to give 5.64 g (18.8 mmol, 49%) of the title compound as a pale yellow oil. ¹H NMR (C₆D₆, 400 MHz, δ): 7.63 (d, *J* = 7.8 Hz, 1H), 7.19 – 7.08 (m, 2H), 7.03 – 6.96 (m, 2H), 6.90 (d, *J* = 8.2 Hz, 1H), 6.44 (app t, *J* = 8.0 Hz, 1H), 6.34 – 6.25 (m, 2H), 4.47 (s, 2H), 1.83 (s, 3H); ¹³C NMR (C₆D₆, 100 MHz, δ): 140.8 (u), 137.6 (u), 136.2 (u), 130.6 (dn), 130.5 (dn), 129.3 (dn), 128.9 (u), 124.5 (dn), 123.0 (u), 121.4 (dn), 120.4 (dn), 120.3 (dn), 109.3 (dn), 101.3 (dn), 45.4 (u), 12.4 (dn); IR (CHCl₃, cm⁻¹): 3053, 2937, 2861, 1596, 1571, 1555, 1476, 1463, 1427, 1398, 1336, 1310, 1257, 1166, 1071, 1009, 896, 776, 747; HRMS-CI (NH₃) m/z: [M+], calcd for C₁₆H₁₄N⁷⁹Br, 299.0310; found 299.0305.

Methyl 1-phenyl-1*H*-indole-6-carboxylate (D)

A literature procedure was followed.² Thus, a resealable Schlenk tube was charged with CuI (24 mg, 0.13 mmol), indole-6-methoxycarbonyl (0.525 g, 3.0 mmol), and K₃PO₄ (1.11 g, 5.3 mmol) and the vessel was evacuated and filled with N₂. Iodobenzene (0.28 mL, 2.5 mmol), *N*,*N*²-dimethylethylenediamine (54 μ L, 0.50 mmol), and toluene (2.5 mL) were then added and the vessel was sealed and heated to 110 °C for 20h. The reaction mixture was then allowed to cool to ambient temperature, diluted with 10 mL of ethyl acetate, filtered through a plug of silica eluting with 50 mL of additional ethyl acetate, concentrated, and chromatographed on silica gel eluting with a gradient of 0 – 10% ethyl acetate/hexanes to give 0.45 g (1.8 mmol, 72%) of **D** as a white

solid, m.p. 66 – 68 °C. The purity was measured to be > 95% by ¹H NMR. ¹H NMR (C₆D₆, 400 MHz, δ): 8.59 – 8.58 (m, 1H), 8.24 (dd, *J* = 8.6 Hz, 1.6 Hz, 1H), 7.60 (dd, *J* = 8.3 Hz, 0.68 Hz, 1H), 7.05 – 7.01 (m, 2H), 6.99 – 6.89 (m, 4H), 6.49 (dd, *J* = 3.3 Hz, 0.90 Hz, 1H), 3.52 (s, 3H); ¹³C NMR (C₆D₆, 100 MHz, δ): 167.7 (u), 139.3 (u), 135.9 (u), 133.4 (u), 131.1 (dn), 129.8 (dn), 126.9 (dn), 125.2 (u), 124.7 (dn), 122.2 (dn), 121.3 (dn), 113.2 (dn), 104.1 (dn), 51.5 (dn); IR (CHCl₃, cm⁻¹): 3012, 2953, 1710, 1599, 1507, 1449, 1345, 1289, 1249, 1216, 1143, 1086, 992, 696; HRMS-CI (NH₃) m/z: [M+H], calcd for C₁₆H₁₄NO₂, 252.1025; found 252.1021.

tert-Butyl 4-(2-methyl-1*H*-indol-1-yl)phenylcarbamate (E)

A literature procedure was followed.² Thus, a resealable Schlenk tube was charged with CuI (48 mg, 0.25 mmol), 2-methylindole (0.66 g, 5.0 mmol), and K₃PO₄ (2.23 g 10.5 mmol) and the vessel was evacuated and filled with N₂. *tert*-butyl 4-iodophenylcarbamate¹² (1.91 g, 6.00 mmol), *trans-N,N*²-dimethyl-1,2-cyclohexanediamine (0.16 mL, 1.0 mmol), and toluene (5 mL) were then added and the vessel was sealed and heated to 110 °C for 48h. The reaction mixture was then allowed to cool to ambient temperature, diluted with 20 mL of ethyl acetate, filtered through a plug of silica eluting with 100 mL of additional ethyl acetate, concentrated, and chromatographed on silica gel eluting with 50 % toluene/hexanes to give 0.23 g (0.71 mmol, 14%) of **E** as a white solid, m.p. 178 – 180 °C. The purity was measured to be > 95% by ¹H

NMR. ¹H NMR (CDCl₃, 400 MHz, δ): 7.58 – 7.51 (m, 3H), 7.30 – 7.26 (2H), 7.12 – 7.05 (m, 3H), 6.62 (s, 1H), 6.39 (s, 1H), 2.29 (d, *J* = 0.89 Hz, 3H), 1.56 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz, δ): 152.7 (u), 138.2 (u), 137.8 (u), 137.2 (u), 132.6 (u), 128.6 (dn), 128.0 (u), 120.9 (dn), 119.9 (dn), 119.5 (dn), 119.1 (dn), 109.9 (dn), 100.9 (dn), 80.9 (u), 28.3 (dn), 13.3 (dn); IR (CHCl₃, cm⁻¹): 3438, 3011, 2983, 1726, 1522, 1459, 1410, 1391, 1369, 1308, 1216, 1156, 1054; HRMS-ESI m/z: [M+H], calcd for C₂₀H₂₃N₂O₂, 323.1760; found 323.1753.

1-(4-(*tert*-Butyldimethylsilyloxy)phenyl)-2-methyl-1*H*-indole (F)

A literature procedure was followed.² Thus, a resealable Schlenk tube was charged with CuI (48 mg, 0.25 mmol), 2-methylindole (0.78 g, 6.0 mmol), and K₃PO₄ (2.23 g 10.5 mmol) and the vessel was evacuated and filled with N₂. *tert*-butyl(4-iodophenoxy)dimethylsilane¹³ (1.67 g, 5.00 mmol), *N*,*N*²-dimethylethylenediamine (0.11 mL, 1.0 mmol), and toluene (5 mL) were then added and the vessel was sealed and heated to 110 °C for 48h. The reaction mixture was then allowed to cool to ambient temperature, diluted with 20 mL of ethyl acetate, filtered through a plug of silica eluting with 100 mL of additional ethyl acetate, concentrated, and chromatographed on silica gel eluting with hexanes to give 1.15 g (3.41 mmol, 68%) of **F** as a pale yellow oil. The purity was measured to be > 95% by ¹H NMR. ¹H NMR (CDCl₃, 400 MHz, δ): 7.59 – 7.54 (m, 1H), 7.23 – 7.18 (m, 2H), 7.13 – 7.06 (m, 3H), 7.01 – 6.96 (m, 2H), 6.39 (s,

1H), 2.31 (d, J = 1.0 Hz, 3H), 1.04 (s, 9H), 0.29 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz, δ): 155.2 (u), 138.4 (u), 137.3 (u), 131.1 (u), 129.1 (dn), 128.0 (u), 120.8 (dn), 120.7 (dn), 119.8 (dn), 119.4 (dn), 110.0 (dn), 100.6 (dn), 25.6 (dn), 18.2 (u), 13.3 (dn), -4.39 (dn); IR (CHCl₃, cm⁻¹): 3008, 2957, 2932, 2860, 1609, 1511, 1460, 1391, 1323, 1265, 1163, 913.

General procedure for the preparation of racemic samples

In a dry round bottomed flask, Rh_2Piv_4 (1 mg, 0.002 mmol) and 0.40 mmol of indole were dissolved in anhydrous toluene (2.0 mL) and cooled by a bath of dry ice/acetone (-78 °C) under a nitrogen atmosphere. The appropriate diazoester (0.80 mmol) was dissolved in anhydrous toluene (1.2 mL) and added to the reaction mixture via syringe pump at a rate of 1 mL/h. After the addition was complete, the mixture was allowed to warm to ambient temperature. The solvent was subsequently removed and the residue was chromatographed on silica gel.

General Procedure for Enantioselective Indole Functionalization

A dry round bottomed flask was charged with 3 mg (0.002 mmol) of $Rh_2(S-NTTL)_4$ and 0.40 mmol of indole, and the flask was evacuated and filled with nitrogen. Anhydrous toluene (2.0 mL) was added, and the flask was cooled by a bath of dry ice/acetone (-78 °C). The appropriate diazoester (0.80 mmol) was dissolved in anhydrous toluene (1.2 mL) and added to the reaction mixture via syringe pump at a rate of 1 mL/h. After the addition was complete, the mixture was allowed to warm to ambient temperature. The solvent was subsequently removed and the residue was chromatographed on silica gel.

(R) -(-)-Ethyl 2-(1,2-dimethyl-1*H*-indol-3-yl)hexanoate (1)

The general procedure for enantioselective indole functionalization was followed on $1.5 \times$ scale: 87 mg (0.60 mmol) of 1,2-dimethylindole and 204 mg (1.20 mmol) of ethyl 2-diazohexanoate gave 167 mg (0.58 mmol, 97%) of **1** as a pale yellow oil. The purity was measured to be $\ge 95\%$ by ¹H NMR. The enantiomeric excess was measured to be 94% by HPLC analysis. A similar experiment starting with 58 mg (0.40 mmol) of 1,2-dimethylindole and 136 mg (0.80 mmol) of ethyl 2-diazohexanoate gave 108 mg (0.38 mmol, 95%) of **1**. The enantiomeric excess was measured to be 95% by HPLC analysis. $[\alpha]^{18}{}_{D} = -52.6^{\circ}$ (*c*. 1.01 CHCl₃); ¹H NMR (C₆D₆, 400 MHz, δ): 8.10 (app d, J = 8.3 Hz, 1H), 7.24 – 7.16 (m, 2H), 7.01 – 6.96 (m, 1H), 4.06 – 3.98 (m, 1H), 3.97 – 3.86 (m, 2H), 2.78 (s, 3H), 2.50 – 2.39 (m, 1H), 2.22 – 2.10 (m, 1H), 2.06 (s, 3H), 1.42 – 1.18 (m, 4H), 0.88 (t, J = 7.2 Hz, 3H), 0.80 (t, J = 7.1 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz, δ): 174.3 (u), 137.3 (u), 133.5 (u), 127.3 (u), 121.1 (dn), 119.9 (dn), 119.6 (dn), 109.3 (u), 109.0 (dn), 60.4 (u), 43.5 (dn), 32.1 (u), 30.4 (u), 28.8 (dn), 23.0 (u), 14.3 (dn) (2 carbons), 10.4 (dn); IR (CHCl₃, cm⁻¹): 3007, 2958, 2933, 2872, 1724, 1612, 1562, 1471, 1369, 1335, 1216, 1173, 1116, 1039, 757; HRMS-CI (NH₃) m/z: [M+], calcd for C₁₈H₂₅NO₂, 287.1885; found 287.1883.

(*R*)-(–)-Ethyl 2-(1,2-dimethyl-1*H*-indol-3-yl)butanoate (2)

The general procedure for enantioselective indole functionalization was followed with 58 mg (0.40 mmol) of 1,2-dimethylindole and 114 mg (0.80 mmol) of ethyl 2-diazobutanoate to give 94 mg (0.36 mmol, 90%) of **2** as a pale yellow oil. The purity was measured to be $\geq 95\%$ by ¹H NMR. The enantiomeric excess was measured to be 89% by HPLC analysis. An identical experiment gave 93 mg (0.36 mmol, 90%) of **2**. The enantiomeric excess was measured to be 91% by HPLC analysis. [α]¹⁸_D = -46.1° (*c*. 1.01 CHCl₃); ¹H NMR (C₆D₆, 400 MHz, δ): 8.08 –

7.99 (m, 1H), 7.22 – 7.16 (m, 2H), 7.01 – 6.94 (m, 1H), 4.03 – 3.95 (m, 1H), 3.94 – 3.86 (m, 1H), 3.78 – 3.69 (app t, J = 7.7 Hz, 1H), 2.80 (s, 3H), 2.48 – 2.36 (m, 1H), 2.15 – 2.05 (m, 1H), 2.00 (s, 3H), 0.94 – 0.84 (m, 6H); ¹³C NMR (C₆D₆, 100 MHz, δ): 174.2 (u), 137.3 (u), 133.6 (u), 127.2 (u), 121.1 (dn), 119.8 (dn), 119.6 (dn), 109.0 (u), 109.0 (dn), 60.3 (u), 45.2 (dn), 28.8 (dn), 25.4 (u), 14.3 (dn), 12.6 (dn), 10.3 (dn); IR (CHCl₃, cm⁻¹): 3006, 2969, 2935, 2875, 1723, 1612, 1561, 1472, 1369, 1336, 1251, 1191, 1114, 1022, 754; HRMS-CI (NH₃) m/z: [M+], calcd for C₁₆H₂₁NO₂, 259.1572; found 259.1560.

(*R*) -(-)-Ethyl 5-methyl-2-(1-benzyl-1*H*-indol-3-yl)hexanoate (3)

The general procedure for enantioselective indole functionalization was followed starting with 83 mg (0.40 mmol) of 1-benzylindole and 147 mg (0.80 mmol) of ethyl 2-diazo-5methylhexanoate to give 133 mg (0.37 mmol, 93%) of **3** as a pale yellow oil. The purity was measured to be \geq 95% by ¹H NMR. The enantiomeric excess was measured to be 84% by HPLC analysis. A similar experiment starting with 84 mg (0.41 mmol) of 1-benzylindole and 149 mg (0.80 mmol) of ethyl 2-diazo-5-methylhexanoate gave 141 mg (0.39 mmol, 95%) of **3**. The enantiomeric excess was measured to be 84% by HPLC analysis. [α]¹⁹_D = -25.5° (*c*. 1.00 CHCl₃); ¹H NMR (C₆D₆, 400 MHz, δ): 8.00 (d, *J* = 7.7 Hz, 1H), 7.22 - 7.12 (m, 2H), 7.03 (d, *J* = 8.6 Hz, 1H), 6.99 - 6.91 (m, 4H), 6.78 - 6.70 (m, 2H), 4.67 - 4.58 (m, 2H),^a 4.07 - 3.89 (m, 3H), 2.40 - 2.29 (m, 1H), 2.08 - 1.97 (m, 1H), 1.53 - 1.45 (m, 1H), 1.40 - 1.20 (m, 2H), 0.90 (t, J = 7.0 Hz, 3H), 0.84 (d, J = 6.6 Hz, 3H), 0.82 (d, J = 6.5 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz, δ): 174.4 (u), 138.1 (u), 137.3 (u), 128.8 (dn), 128.2 (u), 127.6 (dn), 126.8 (dn), 126.4 (dn), 122.4 (dn), 120.2 (dn), 119.9 (dn), 114.3 (u), 110.3 (dn), 60.5 (u), 49.8 (u), 43.8 (dn), 37.5 (u), 31.6 (u), 28.3 (dn), 22.8 (dn), 22.7 (dn), 14.3 (dn); IR (CHCl₃, cm⁻¹): 3019, 2958, 2871, 1724, 1468, 1369, 1335, 1224, 1208, 1176, 1030, 789, 669; HRMS-ESI m/z: [M+H], calcd for C₂₄H₃₀NO₂, 364.2277; found 364.2271.

^aAB-spinsystem: δ_A =4.63 ppm, δ_B =4.61 ppm, *J*(AB)=17 Hz

(R) -(-)-Ethyl 2-(1-benzyl-2-methyl-1*H*-indol-3-yl)hexanoate (4)

The general procedure for enantioselective indole functionalization was followed on $0.5 \times$ scale: 44 mg (0.20 mmol) of 1-benzyl-2-methylindole³ and 68 mg (0.40 mmol) of ethyl 2diazohexanoate gave 70 mg (0.19 mmol, 95%) of **4** as a yellow oil. The purity was measured to be \geq 95% by ¹H NMR. The enantiomeric excess was measured to be 96% by HPLC analysis. A similar experiment starting with 88 mg (0.40 mmol) of 1-benzyl-2-methylindole and 136 mg (0.80 mmol) of ethyl 2-diazohexanoate gave 136 mg (0.37 mmol, 94%) of **4**. The enantiomeric excess was measured to be 95% by HPLC analysis. [α]¹⁸_D = -44.3° (*c*. 1.06 CHCl₃); ¹H NMR (C₆D₆, 400 MHz, δ): 8.15 (d, *J* = 8.3 Hz, 1H), 7.19 (t, *J* = 7.6 Hz, 1H), 7.14 – 7.09 (m, 1H), 7.00

(t, J = 8.0 Hz, 1H), 6.98 – 6.90 (m, 3H), 6.68 – 6.62 (m, 2H), 4.76 – 4.63 (m, 2H),^a 4.03 – 3.85 (m, 3H), 2.52 – 2.40 (m, 1H), 2.25 – 2.13 (m, 1H), 2.08 (s, 3H), 1.40 – 1.18 (m, 4H), 0.87 (t, J = 7.3 Hz, 3H), 0.78 (t, J = 7.3 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz, δ): 174.2 (u), 138.4 (u), 137.3 (u), 133.6 (u), 128.9 (dn), 127.5 (u), 127.3 (dn), 126.1 (dn), 121.6 (dn), 120.1 (dn), 120.0 (dn), 110.2 (u), 109.4 (dn), 60.4 (u), 46.3 (u), 43.5 (dn), 32.0 (u), 30.5 (u), 23.0 (u), 14.3 (dn) (2 carbons), 10.4 (dn); IR (CHCl₃, cm⁻¹): 3008, 2958, 2931, 2871, 1723, 1607, 1564, 1468, 1369, 1171, 1116, 1027, 740; HRMS-CI (NH₃) m/z: [M+], calcd for C₂₄H₂₉NO₂, 363.2198; found 363.2203.

^aAB-spinsystem: δ_A =4.72 ppm, δ_B =4.67 ppm, *J*(AB)=18 Hz

(R) -(-)-Ethyl 2-(1,2-dimethyl-1H-indol-3-yl)octanoate (5)

The general procedure for enantioselective indole functionalization was followed with 58 mg (0.40 mmol) of 1,2-dimethylindole and 238 mg (1.20 mmol) of ethyl 2-diazooctanoate to give 105 mg (0.33 mmol, 83%) of **5** as a yellow oil. The purity was measured to be $\ge 95\%$ by ¹H NMR. The enantiomeric excess was measured to be 95% by HPLC analysis. An identical experiment gave 100 mg (0.32 mmol, 80%) of **5**. The enantiomeric excess was measured to be 96% by HPLC analysis. [α]¹⁸_D = -52.6° (*c*. 1.06 CHCl₃); ¹H NMR (C₆D₆, 400 MHz, δ): 8.10 – 8.04 (m, 1H), 7.22 – 7.15 (m, 2H), 6.98 – 6.94 (m, 1H), 4.06 – 3.97 (m, 1H), 3.96 – 3.86 (m,

2H), 2.80 (s, 3H), 2.49 – 2.37 (m, 1H), 2.22 – 2.11 (m, 1H), 2.09 (s, 3H), 1.40 – 1.10 (m, 8H), 0.89 (t, J = 7.0 Hz, 3H), 0.81 (t, J = 6.6 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz, δ): 174.3 (u), 137.3 (u), 133.5 (u), 127.3 (u), 121.1 (dn), 119.9 (dn), 119.6 (dn), 109.3 (u), 109.0 (dn), 60.4 (u), 43.6 (dn), 32.4 (u), 32.2 (u), 29.7 (u), 28.8 (dn), 28.3 (u), 23.1 (u), 14.3 (dn) (2 carbons), 10.4 (dn); IR (CHCl₃, cm⁻¹): 3030, 3006, 2959, 2930, 2858, 1723, 1613, 1562, 1471, 1409, 1370, 1336, 1251, 1172, 1118, 1040; HRMS-CI (NH₃) m/z: [M+], calcd for C₂₀H₂₉NO₂, 315.2198; found 315.2187.

(*R*) -(-)-Ethyl 5-methyl-2-(1-benzyl-2,5-dimethyl-1*H*-indol-3-yl)hexanoate (6)

The general procedure for enantioselective indole functionalization was followed with 94 mg (0.40 mmol) of 1-benzyl-2,5-dimethylindole and 147 mg (0.80 mmol) of ethyl 2-diazo-5methylhexanoate to give 148 mg (0.38 mmol, 95%) of **6** as a yellow oil. The purity was measured to be \geq 95% by ¹H NMR. The enantiomeric excess was measured to be 97% by HPLC analysis. An identical experiment gave 139 mg (0.36 mmol, 90%) of **6**. The enantiomeric excess was measured to be 96% by HPLC analysis. [α]¹⁸_D = -40.2° (*c*. 1.00 CHCl₃); ¹H NMR (C₆D₆, 400 MHz, δ): 7.95 (s, 1H), 7.00 – 6.88 (m, 5H), 6.65 (d, *J* = 7.0 Hz, 2H), 4.78 – 4.65 (m, 2H), ^a 4.06 – 3.82 (m, 3H), 2.58 – 2.40 (m, 1H), 2.40 (s, 3H), 2.28 – 2.15 (m, 1H), 2.09 (s, 3H), 1.53 – 1.41 (m, 1H), 1.33 – 1.15 (m, 2H), 0.88 (t, *J* = 7.0 Hz, 3H), 0.84 (d, *J* = 6.6 Hz, 3H), 0.79

(d, J = 6.7 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz, δ): 174.2 (u), 138.6 (u), 135.8 (u), 133.7 (u), 128.9 (dn), 128.8 (u), 127.7 (dn), 127.3 (dn), 126.0 (dn), 123.1 (dn), 119.8 (dn), 109.7 (u), 109.2 (dn), 60.4 (u), 46.3 (u), 43.7 (dn), 37.5 (u), 30.1 (u), 28.3 (dn), 22.9 (dn), 22.8 (dn), 21.9 (dn), 14.4 (dn), 10.5 (dn); IR (CHCl₃, cm⁻¹): 3030, 3006, 2956, 2870, 1723, 1581, 1454, 1416, 1370, 1301, 1254, 1178, 1030, 913, 865, 793, 724; HRMS-CI (NH₃) m/z: [M+], calcd for C₂₆H₃₃NO₂, 391.2511; found 391.2505.

^aAB-spinsystem: δ_A =4.74 ppm, δ_B =4.68 ppm, *J*(AB)=17 Hz

(*R*) -(-)-Ethyl 5-methyl-2-(1-benzyl-5-fluoro-2-methyl-1*H*-indol-3-yl)hexanoate (7)

The general procedure for enantioselective indole functionalization was followed with 96 mg (0.40 mmol) of 1-benzyl-5-fluoro-2-methylindole and 147 mg (0.80 mmol) of ethyl 2-diazo-5-methylhexanoate to give 149 mg (0.38 mmol, 95%) of **7** as a yellow oil. The purity was measured to be \geq 95% by ¹H NMR. The enantiomeric excess was measured to be 98% by HPLC analysis. An identical experiment gave 149 mg (0.38 mmol, 95%) of **7**. The enantiomeric excess was measured to be 97% by HPLC analysis. [α]¹⁸_D = -37° (*c*. 0.95 CHCl₃); ¹H NMR (C₆D₆, 400 MHz, δ): 7.95 (dd, *J* = 9.9 Hz, 2.2 Hz, 1H), 6.98 - 6.90 (m, 3H), 6.89 - 6.83 (m, 1H), 6.68 (dd, *J* = 8.8 Hz, 4.2 Hz, 1H), 6.61 - 6.57 (m, 2H), 4.64 - 4.53 (m, 2H), ^a 4.00 - 3.86 (m, 2H), 3.78 (app t, *J* = 7.7 Hz, 1H), 2.45 - 2.35 (m, 1H), 2.14 - 2.03 (m, 1H), 2.00 (s, 3H), 1.49 -

1.41 (m, 1H), 1.27 – 1.08 (m, 2H), 0.87 (t, J = 7.1 Hz, 3H), 0.81 (d, J = 6.6 Hz, 3H), 0.77 (d, J = 6.6 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz, δ): 173.9 (u), 158.6 (u) [d, ¹*J*(CF) = 233 Hz], 138.1 (u), 135.7 (u), 133.8 (u), 129.0 (dn), 127.7 (u) [d, ³*J*(CF) = 10 Hz], 127.5 (dn), 125.9 (dn), 110.2 (u) [d, ⁴*J* (CF) = 4.3 Hz], 110.1 (dn) [d, ³*J*(CF) = 9.7 Hz], 109.6 (dn) [d, ²*J*(CF) = 26 Hz], 105.3 (dn) [d, ²*J*(CF) = 24 Hz], 60.5 (u), 46.5 (u), 43.7 (dn), 37.3 (u), 29.9 (u), 28.2 (dn), 22.8 (dn), 22.7 (dn), 14.3 (dn), 10.5 (dn); IR (CHCl₃, cm⁻¹): 3030, 2957, 2871, 1723, 1623, 1582, 1482, 1370, 1255, 1216, 1179, 1142, 1031, 915, 860, 768; HRMS-CI (NH₃) m/z: [M+], calcd for C₂₅H₃₀NO₂F, 395.2261; found 395.2260.

^aAB-spinsystem: δ_A =4.61 ppm, δ_B =4.57 ppm, *J*(AB)=17 Hz

(R) -(-)-Ethyl 2-(1-benzyl-5-methoxy-2-methyl-1H-indol-3-yl)hexanoate (8)

The general procedure for enantioselective indole functionalization was followed with 70 mg (0.40 mmol) of 1-benzyl-5-methoxy-2-methylindole⁷ and 136 mg (0.80 mmol) of ethyl 2-diazohexanoate to give 117 mg (0.37 mmol, 93%) of **8** as a pale yellow oil. The purity was measured to be $\geq 95\%$ by ¹H NMR. The enantiomeric excess was measured to be 84% by HPLC analysis. An identical experiment gave 118 mg (0.37 mmol, 93%) of **8**. The enantiomeric excess was measured to be 83% by HPLC analysis. [α]¹⁹_D = -38.5° (*c*. 1.00 CHCl₃); ¹H NMR (C₆D₆, 400 MHz, δ): 7.63 (d, *J* = 2.7 Hz, 1H), 7.07 (dd, *J* = 8.9 Hz, 2.7 Hz, 1H), 6.85 (d, *J* = 8.9

Hz, 1H), 4.06 - 3.98 (m, 1H), 3.97 - 3.85 (m, 2H), 3.65 (s, 3H), 2.73 (s, 3H), 2.48 - 2.38 (m, 1H), 2.23 - 2.12 (m, 1H), 2.05 (s, 3H), 1.39 - 1.21 (m, 4H), 0.89 (t, J = 7.2 Hz, 3H), 0.79 (t, J = 7.2 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz, δ): 174.3 (u), 154.8 (u), 134.0 (u), 132.5 (u), 127.5 (u), 111.3 (dn), 109.6 (dn), 108.9 (u), 101.9 (dn), 60.4 (u), 55.4 (dn), 43.6 (dn), 31.9 (u), 30.4 (u), 28.9 (dn), 23.1 (u), 14.4 (dn), 14.3 (dn), 10.5 (dn); IR (CHCl₃, cm⁻¹): 3018, 2958, 1722, 1488, 1456, 1411, 1371, 1216, 1179, 1155, 1031, 759, 668; HRMS-ESI m/z: [M+H], calcd for C₁₉H₂₈NO₃, 318.2056; found 318.2062.

(R) -(-)-Ethyl 2-(2-methyl-1-phenyl-1*H*-indol-3-yl)propanoate (9)

The general procedure for enantioselective indole functionalization was followed with 81 mg (0.39 mmol) of 2-methyl-1-phenylindole³ and 272 mg (2.13 mmol) of ethyl 2-diazopropanoate to give 94 mg (0.31 mmol, 79%) of **9** as a colorless oil. The purity was measured to be 94% by ¹H NMR. The enantiomeric excess was measured to be 79% by HPLC analysis. A similar experiment starting with 88 mg (0.43 mmol) of 2-methyl-1-phenylindole and 272 mg (2.13 mmol) of ethyl 2-diazopropanoate gave 111 mg (0.36 mmol, 84%) of **9**. The enantiomeric excess was measured to be 79% by HPLC analysis. [α]¹⁹_D = -61° (*c*. 0.87 CHCl₃); ¹H NMR (C₆D₆, 400 MHz, δ): 8.05 (d, *J* = 8.0 Hz, 1H), 7.20 (app t, *J* = 7.0 Hz, 1H), 7.13 – 7.00 (m, 2H), 7.00 – 6.93 (m, 3H), 6.88 – 6.73 (m, 2H), 4.06 – 3.97 (m, 2H), 3.97 – 3.87 (m, 1H), 2.07 (s, 3H), 1.74 (d, *J* = 7.4 Hz, 3H), 0.88 (t, *J* = 7.7 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz, δ): 174.6 (u),

138.3 (u) (2 carbons), 133.1 (u), 129.5 (dn), 128.5 (dn), 127.6 (dn), 127.3 (u), 121.9 (dn), 120.5 (dn), 119.6 (dn), 112.6 (u), 110.5 (dn), 60.6 (u), 37.4 (dn), 17.9 (dn), 14.3 (dn), 11.1 (dn); IR (CHCl₃, cm⁻¹): 3019, 2983, 1723, 1598, 1501, 1461, 1370, 1325, 1216, 1093, 774, 700, 669; HRMS-ESI m/z: [M+H], calcd for $C_{20}H_{22}NO_2$, 308.1651; found 308.1644.

(R) -(-)-Ethyl 2-(2-methyl-1-phenyl-1*H*-indol-3-yl)hexanoate (10)

The general procedure for enantioselective indole functionalization was followed with 82 mg (0.40 mmol) of 2-methyl-1-phenylindole³ and 135 mg (0.80 mmol) of ethyl 2-diazohexanoate to give 134 mg (0.38 mmol, 95%) of **10** as a colorless oil. The purity was measured to be \geq 95% by ¹H NMR. The enantiomeric excess was measured to be 98% by HPLC analysis. A similar experiment starting with 84 mg (0.41 mmol) of 2-methyl-1-phenylindole and 138 mg (0.81 mmol) of ethyl 2-diazohexanoate gave 136 mg (0.39 mmol, 95%) of **10**. The enantiomeric excess was measured to be 99% by HPLC analysis. [α]¹⁹_D = -64.2° (*c*. 1.00 CHCl₃); ¹H NMR (C₆D₆, 400 MHz, δ): 8.18 (d, *J* = 8.0 Hz, 1H), 7.23 - 7.18 (m, 1H), 7.15 - 7.03 (m, 2H), 7.02 - 6.93 (m, 3H), 6.90 - 6.75 (m, 2H), 4.10 - 4.00 (m, 1H), 3.99 - 3.87 (m, 2H), 2.57 - 2.45 (m, 1H), 2.26 - 2.15 (m, 1H), 2.15 (s, 3H), 1.42 - 1.22 (m, 4H), 0.89 (t, *J* = 7.2 Hz, 3H), 0.81 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz, δ): 174.1 (u), 138.4 (u), 133.8 (u), 129.5 (dn), 128.5 (dn), 128.4 (u), 127.7 (u), 127.6 (dn), 121.9 (dn), 120.6 (dn), 120.1 (dn), 111.1 (u), 110.5 (dn), 60.5 (u), 43.7 (dn), 32.1 (u), 30.6 (u), 23.1 (u), 14.4 (dn), 14.3 (dn), 11.4 (dn); IR (CHCl₃, cm⁻¹):

3019, 2960, 1723, 1501, 1461, 1370, 1216, 1180, 762, 700, 669; HRMS-ESI m/z: [M+Na], calcd for C₂₃H₂₇NO₂Na, 372.1939; found 372.1935.

(*R*) -(-)-Ethyl 5-methyl-2-(1-phenyl-1*H*-indol-3-yl)hexanoate (11)

The general procedure for enantioselective indole functionalization was followed with 74 mg (0.38 mmol) of 1-phenylindole² and 141 mg (0.77 mmol) of ethyl 2-diazo-5-methylhexanoate to give 112 mg (0.32 mmol, 84%) of **11** which contained < 5% of the product of cyclopropanation as a colorless oil. The purity was measured to be \geq 95% by ¹H NMR. The enantiomeric excess was measured to be 97% by HPLC analysis. A similar experiment starting with 81 mg (0.42 mmol) of 1-phenylindole and 155 mg (0.84 mmol) of ethyl 2-diazo-5-methylhexanoate gave 121 mg (0.37 mmol, 88%) of **11**. The enantiomeric excess was measured to be 98% by HPLC analysis. [α]¹⁹_D = -25° (*c*. 0.92 CHCl₃); ¹H NMR (C₆D₆, 400 MHz, δ): 8.02 (d, *J* = 7.8 Hz, 1H), 7.44 (d, *J* = 8.9 Hz, 1H), 7.26 - 7.20 (m, 2H), 7.18 - 7.15 (m, 1H), 7.08 - 6.97 (m, 4H), 6.95 - 6.89 (m, 1H), 4.07 - 3.90 (m, 3H), 2.46 - 2.36 (m, 1H), 2.11 - 2.00 (m, 1H), 1.58 - 1.47 (m, 1H), 1.42 - 1.28 (m, 2H), 0.91 (t, *J* = 7.6 Hz, 3H), 0.86 (d, *J* = 6.5 Hz, 3H), 0.84 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz, δ): 174.2 (u), 140.0 (u), 136.7 (u), 129.7 (dn), 128.9 (u), 126.3 (dn), 126.0 (dn), 124.5 (dn), 123.1 (dn), 120.8 (dn), 22.7 (dn), 14.3 (dn); IR (CHCl₃, cm⁻¹): 3019,

2958, 1725, 1598, 1502, 1458, 1379, 1216, 1179, 1138, 748, 669; HRMS-ESI m/z: [M+H], calcd for C₂₃H₂₈NO₂, 350.2120; found 350.2111.

(*R*) -(-)-Ethyl 2-(1-(4-bromophenyl)-1*H*-indol-3-yl)hexanoate (12)

The general procedure for enantioselective indole functionalization was followed with 106 mg (0.39 mmol) of 1-(4-bromophenyl)indole⁴ and 133 mg (0.78 mmol) of ethyl 2-diazohexanoate to give 157 mg (0.38 mmol, 97%) of **12** as a colorless oil. The purity was measured to be 95% by ¹H NMR. The enantiomeric excess was measured to be 91% by HPLC analysis. A similar experiment starting with 107 mg (0.39 mmol) of 1-(4-bromophenyl)indole and 134 mg (0.78 mmol) of ethyl 2-diazohexanoate gave 148 mg (0.36 mmol, 92%) of **12**. The enantiomeric excess was measured to be 89% by HPLC analysis. [α]¹⁹_D = -13.7° (*c*. 1.00 CHCl₃); ¹H NMR (C₆D₆, 400 MHz, δ): 7.98 (d, *J* = 8.2 Hz, 1H), 7.26 (d, *J* = 7.6 Hz, 1H), 7.25 – 7.19 (m, 1H), 7.16 – 7.08 (m, 4H), 6.64 (d, *J* = 9.4 Hz, 2H), 4.10 – 3.97 (m, 2H), 3.97 – 3.89 (m, 1H), 2.42 – 2.28 (m, 1H), 2.07 – 1.96 (m, 1H), 1.46 – 1.23 (m, 4H), 0.93 (t, *J* = 7.6 Hz, 3H), 0.82 (t, *J* = 7.6 Hz, 3H) (minor impurities detected at 7.33 ppm, 6.91 ppm, 6.86 ppm, 4.22 ppm, 3.23 ppm, 1.08 ppm, 0.70 ppm, and 0.60 ppm); ¹³C NMR (C₆D₆, 100 MHz, δ): 174.1 (u), 138.8 (u), 136.4 (u), 132.7 (dn), 128.9 (u), 125.9 (dn), 125.6 (dn), 123.3 (dn), 121.0 (dn), 120.4 (dn), 119.6 (u), 116.6

(u), 110.9 (dn), 60.7 (u), 43.4 (dn), 33.4 (u), 30.5 (u), 23.0 (u), 14.3 (dn), 14.1 (dn); IR (CHCl₃, cm⁻¹): 3019, 2960, 2932, 1725, 1591, 1494, 1458, 1380, 1215, 1178, 1072, 1012, 832, 760, 669; HRMS-ESI m/z: [M+H], calcd for C₂₂H₂₅NO₂⁷⁹Br, 414.1069; found 414.1061.

(*R*)-(–)-Methyl 3-(1-ethoxy-1-oxobutan-2-yl)-1-phenyl-1*H*-indole-6-carboxylate (13)

The general procedure for enantioselective indole functionalization was followed with 126 mg (0.50 mmol) of methyl 1-phenyl-1*H*-indole-6-carboxylate and 142 mg (1.00 mmol) of ethyl 2-diazobutanoate to give 158 mg (0.43 mmol, 86%) of **13** as a yellow oil. The purity was measured to be > 95% by ¹H NMR. The enantiomeric excess was measured to be 87% by HPLC analysis. An identical experiment gave 155 mg (0.42 mmol, 84%) of **13**. The enantiomeric excess was measured to be 88% by HPLC analysis. [α]²²_D = -20.8° (*c*. 1.00 CHCl₃); ¹H NMR (C₆D₆, 400 MHz, δ): 8.56 (s, 1H), 8.28 (dd, *J* = 8.4 Hz, 1.5 Hz, 1H), 7.89 (dd, *J* = 8.41 Hz, 0.39 Hz, 1H), 7.28 (s, 1H), 7.02 – 6.87 (m, 5H), 4.03 – 3.88 (m, 2H), 3.84 (dd, *J* = 8.5 Hz, 6.8 Hz, 1H), 3.52 (s, 3H), 2.32 – 2.20 (m, 1H), 1.98 – 1.86 (m, 1H), 0.96 (t, *J* = 7.3 Hz, 3H), 0.90 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz, δ): 173.8 (u), 167.6 (u), 139.2 (u), 136.1 (u), 132.1 (u), 129.8 (dn), 129.2 (dn), 126.8 (dn), 125.4 (u), 124.6 (dn), 121.9 (dn), 120.0 (dn), 116.1 (u), 113.4 (dn), 60.7 (u), 51.6 (dn), 44.9 (dn), 26.7 (u), 14.3 (dn), 12.5 (dn); IR (CHCl₃, cm⁻¹): 3028, 2967, 2876, 1724, 1713, 1599, 1502, 1448, 1384, 1301, 1248, 1216, 1180, 1022, 697; HRMS-ESI m/z: [M+Na], calcd for C₂₂H₂₃NO₄Na, 388.1525; found 388.1507.

(R)-(-)-Ethyl 2-(1-(4-(tert-butoxycarbonyl)phenyl)-2-methyl-1H-indol-3-yl)-5-

methylhexanoate (14)

The general procedure for enantioselective indole functionalization was followed with 63 mg (0.20 mmol) of *tert*-butyl 4-(2-methyl-1*H*-indol-1-yl)phenylcarbamate and 180 mg (1.0 mmol) of ethyl 2-diazo-5-methylhexanoate to give 80 mg (0.17 mmol, 85%) of 14 as a white solid, m.p. 63 -67 °C. The purity was measured to be > 95% by ¹H NMR. The enantiomeric excess was measured to be 97% by HPLC analysis. A similar experiment starting with 62 mg (0.19 mmol) of tert-butyl 4-(2-methyl-1H-indol-1-yl)phenylcarbamate and 177 mg (0.96 mmol) of ethyl 2diazo-5-methylhexanoate gave 80 mg (0.17 mmol, 89%) of 14. The enantiomeric excess was measured to be 96% by HPLC analysis. $[\alpha]^{22}_{D} = -49.3^{\circ}$ (c. 1.00 CHCl₃); ¹H NMR (CD₂Cl₂, 400 MHz, δ): 7.73 – 7.69 (m, 1H), 7.57 – 7.53 (m, 2H), 7.28 – 7.23 (m, 2H), 7.08 – 7.01 (m, 3H), 6.80 (s, 1H), 4.20 - 4.11 (m, 1H), 4.10 - 4.01 (m, 1H), 3.80 (app t, J = 7.6 Hz, 1H), 2.33 - 1002.23 (m, 1H), 2.24 (s, 3H), 2.02 – 1.90 (m, 1H), 1.61 – 1.53 (m, 1H), 1.54 (s, 9H), 1.28 – 1.12 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H), 0.89 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 6.5 Hz, 3H); ¹³C NMR (CD₂Cl₂, 100 MHz, δ): 174.6 (u), 152.9 (u), 138.6 (u), 138.1 (u), 134.7 (u), 132.7 (u), 129.1 (dn), 127.1 (u), 121.3 (dn), 119.8 (dn), 119.6 (dn), 119.3 (dn), 110.2 (u), 110.1 (dn), 81.0 (u), 60.8 (u), 43.7 (dn), 37.3 (u), 29.8 (u), 28.4 (dn), 22.8 (dn, 2 carbons [signals resolved in C₆D₆]), 22.6 (dn),

14.4 (dn), 11.3 (dn); IR (CHCl₃, cm⁻¹): 3437, 3349 (br), 3009, 2958, 2871, 1724, 1594, 1522, 1462, 1410, 1369, 1309, 1230, 1157, 1054, 1018; HRMS-ESI m/z: [M+Na], calcd for C₂₉H₃₈N₂O₄Na, 501.2729; found 501.2723.

(R)-(-)-Ethyl 2-(1-(4-(*tert*-butyldimethylsilyloxy)phenyl)-2-methyl-1*H*-indol-3-yl)hexanoate (15)

The general procedure for enantioselective indole functionalization was followed with 134 mg (0.40 mmol) of 1-(4-(*tert*-butyldimethylsilyloxy)phenyl)-2-methyl-1*H*-indole and 135 mg (0.80 mmol) of ethyl 2-diazohexanoate to give 172 mg (0.36 mmol, 90%) of **15** as a pale yellow oil. The purity was measured to be 90% by ¹H NMR. The enantiomeric excess was measured to be 87% by HPLC analysis. A similar experiment starting with 127 mg (0.38 mmol) of 1-(4-(*tert*-butyldimethylsilyloxy)phenyl)-2-methyl-1*H*-indole and 128 mg (0.76 mmol) of ethyl 2-diazohexanoate gave 170 mg (0.35 mmol, 92%) of **15**. The enantiomeric excess was measured to be 85% by HPLC analysis. [α]²²_D = -40.0° (*c*. 1.00 CHCl₃); ¹H NMR (CDCl₃, 400 MHz, δ): 7.79 – 7.76 (m, 1H), 7.19 (app d, *J* = 8.6 Hz, 2H), 7.12 – 7.01 (m, 3H), 6.97 (app d, *J* = 8.9 Hz, 2H), 4.23 – 4.15 (m, 1H), 4.13 – 4.04 (m, 1H), 3.82 (app t, *J* = 8.0 Hz, 1H), 2.35 – 2.25 (m, 1H), 2.26 (s, 3H), 2.05 – 1.92 (m, 1H), 1.40 – 1.26 (m, 4H), 1.23 (t, *J* = 7.2 Hz, 3H), 1.04 (s, 9H), 0.88

(t, J = 7.0 Hz, 3H), 0.28 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz, δ): 174.5 (u), 155.2 (u), 137.8 (u), 134.4 (u), 131.1 (u), 129.4 (dn), 126.7 (u), 120.8 (dn), 120.6 (dn), 119.4 (dn), 119.3 (dn), 109.9 (dn), 109.7 (u), 60.4 (u), 43.3 (dn), 31.4 (u), 30.1 (u), 25.6 (dn), 22.6 (u), 18.2 (u), 14.3 (dn), 14.0 (dn), 11.2 (dn), -4.39 (dn); IR (CHCl₃, cm⁻¹): 3008, 2959, 2932, 2861, 1723, 1609, 1512, 1463, 1179, 1163, 1117, 1098, 1022, 914, 844; HRMS-ESI m/z: [M+H], calcd for C₂₉H₄₂NO₃Si, 480.2934; found 480.2929.

(*R*) -(-)-Ethyl 2-(2,3-dihydropyrrolo[1,2-a]indol-9-yl)hexanoate (16)

A dry round bottomed flask was charged with 3 mg (0.002 mmol) of Rh₂(*S*-NTTL)₄ and 63 mg (0.40 mmol) of dihydro-3H-pyrrolo[1,2- α]indole,⁵ and the flask was evacuated and filled with nitrogen. Anhydrous toluene (2.0 mL) was added and the flask was cooled by a bath of dry ice/acetone (-78 °C). Ethyl 2-diazohexanoate (68 mg, 0.40 mmol) was dissolved in anhydrous toluene (1.2 mL) and added to the reaction mixture via syringe pump at a rate of 1 mL/h. After the addition was complete, the mixture was allowed to warm to ambient temperature. The solvent was subsequently evaporated and the residue was chromatographed on silica gel to give 97 mg (0.32 mmol, 80%) of **16** as a yellow oil. The purity was measured to be \geq 95% by ¹H NMR. The enantiomeric excess was measured to be 95% by HPLC analysis. A similar experiment starting with 65 mg (0.41 mmol) of dihydro-3H-pyrrolo[1,2- α]indole and 70 mg (0.41 mmol) of ethyl 2-diazohexanoate gave 105 mg (0.35 mmol, 85%) of **16**. The enantiomeric

excess was measured to be 94% by HPLC analysis. $[\alpha]^{19}{}_{D} = -43^{\circ}$ (*c*. 0.98 CHCl₃); ¹H NMR (C₆D₆, 400 MHz, δ): 7.97 (app d, J = 7.3 Hz, 1H), 7.28 – 7.18 (m, 2H), 7.03 (app d, J = 8.0 Hz, 1H), 4.08 – 3.99 (m, 2H), 3.97 – 3.88 (m, 1H), 3.21 – 3.12 (m, 2H), 2.90 – 2.80 (m, 1H), 2.75 – 2.65 (m, 1H), 2.43 – 2.32 (m, 1H), 2.11 – 2.00 (m, 1H), 1.80 – 1.72 (m, 2H), 1.48 – 1.22 (m, 4H), 0.90 (t, J = 7.3 Hz, 3H), 0.85 (t, J = 7.2 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz, δ): 174.4 (u), 141.7 (u), 133.1 (u), 132.7 (u), 120.8 (dn), 119.6 (dn), 119.5 (dn), 109.7 (dn), 104.1 (u), 60.3 (u), 43.2 (dn), 43.0 (u), 32.4 (u), 30.5 (u), 27.4 (u), 24.4 (u), 23.1 (u), 14.4 (dn), 14.3 (dn); IR (CHCl₃, cm⁻¹): 3019, 2959, 2874, 1722, 1479, 1461, 1376, 1299, 1216, 1180, 1033, 740, 669; HRMS-CI (NH₃) m/z; [M+H], calcd for C₁₉H₂₆NO₂, 300.1964; found 300.1959.

(*R*) -(-)-Ethyl 5-methyl-2-(6,7,8,9-tetrahydropyrido[1,2-a]indol-10-yl)hexanoate (17)

A dry round bottomed flask was charged with 3 mg Rh₂(*S*-NTTL)₄ and 73 mg (0.43 mmol) of 6,7,8,9-tetrahydropyrido[1,2- α]indole,⁶ and the flask was evacuated and filled with nitrogen. Anhydrous toluene (2.0 mL) was added and the flask was cooled by a bath of dry ice/acetone (-78 °C). Ethyl 2-diazo-5-methylhexanoate (73 mg, 0.43 mmol) was dissolved in 1.2 mL of anhydrous toluene and the solution was added to the reaction mixture at a rate of 1 mL/hr. After addition was complete the reaction mixture was allowed to warm to ambient temperature. The solvent was subsequently evaporated and the residue was chromatographed on silica gel to give 94 mg (0.29 mmol, 67%) of **17** as a pale yellow oil. The purity was measured to be \geq 95% by ¹H NMR. The enantiomeric excess was measured to be 95% by HPLC analysis. A similar experiment starting with 74 mg (0.43 mmol) of 6,7,8,9-tetrahydropyrido[1,2- α]indole and 80 mg (0.43 mmol) of ethyl 2-diazo-5-methylhexanoate gave 100 mg (0.31 mmol, 72%) of **17**. The enantiomeric excess was measured to be 95% by HPLC analysis. [α]¹⁹_D = -50° (*c*. 0.71 CHCl₃); ¹H NMR (C₆D₆, 400 MHz, δ): 8.16 (app d, *J* = 7.8 Hz, 1H), 7.30 – 7.20 (m, 2H), 7.05 (app d, *J* = 7.5 Hz, 1H), 4.08 – 3.97 (m, 1H), 3.95 – 3.84 (m, 2H), 3.32 – 3.20 (m, 2H), 2.85 – 2.72 (m, 2H), 2.53 – 2.44 (m, 1H), 2.23 – 2.14 (m, 1H), 1.57 – 1.45 (m, 1H), 1.39 – 1.20 (m, 6H), 1.97 – 1.82 (m, 6H), 0.79 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz, δ): 174.2 (u), 136.8 (u), 133.7 (u), 127.5 (u), 120.8 (dn), 120.0 (dn), 119.9 (dn), 109.0 (dn), 107.8 (u), 60.4 (u), 43.4 (dn), 41.9 (u), 37.5 (u), 30.1 (u), 28.4 (dn), 23.1 (u), 23.0 (u), 22.9 (dn), 22.7 (dn), 21.1 (u), 14.4 (dn); IR (CHCl₃, cm⁻¹): 3019, 2956, 2871, 1722, 1462, 1422, 1367, 1330, 1317, 1216, 1175, 1163, 1117, 1034, 750, 669; HRMS-CI (NH₃) m/z: [M+H], calcd for C₂₁H₃₀NO₂, 328.2277; found 328.2274.

(R) -(-)-Methyl 2-(1-(3-bromobenzyl)-2-methyl-1H-indol-3-yl)butanoate (G)

General procedure I was followed with 120 mg (0.40 mmol) of 1-(3-bromobenzyl)-2methylindole and 96 mg (0.75 mmol) of methyl 2-diazobutanoate to give 141 mg (0.35 mmol, 88%) of **G** as a white solid, m.p. 102 - 103 °C. The purity was measured to be $\ge 95\%$ by ¹H NMR. The enantiomeric excess was measured to be 88% by HPLC analysis. $[\alpha]^{18}_{D} = -49^{\circ}$ (*c*. 0.98 CHCl₃); ¹H NMR (C₆D₆, 400 MHz, δ): 8.03 (d, *J* = 8.1 Hz, 1H), 7.20 – 7.04 (m, 2H), 7.00 (d, *J* = 8.1 Hz, 1H), 6.94 (s, 1H), 6.89 (d, *J* = 8.5 Hz, 1H), 6.44 (t, *J* = 8.1 Hz, 1H), 6.28 (d, *J* = 7.6 Hz, 1H), 4.53 – 4.41 (m, 2H),^a 3.69 (dd, *J* = 9.0 Hz, 7.2 Hz, 1H), 3.30 (s, 3H), 2.44 – 2.33 (m, 1H), 2.18 – 2.06 (m, 1H), 1.91 (s, 3H), 0.84 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (C₆D₆, 100 MHz, δ): 174.4 (u), 140.8 (u), 137.1 (u), 133.5 (u), 130.6 (dn), 130.5 (dn), 129.3 (dn), 127.4 (u), 124.4 (dn), 123.1 (u), 121.8 (dn), 120.3 (dn), 120.1 (dn), 110.0 (u), 109.2 (dn), 51.3 (dn), 45.6 (u), 44.8 (dn), 25.3 (u), 12.5 (dn), 10.2 (dn); IR (Thin film, cm⁻¹): 3050, 2964, 2873, 1732, 1596, 1571, 1468, 1429, 1337, 1197, 1167, 1003, 772, 742; HRMS-ESI m/z: [M+H], calcd for C₂₁H₂₃NO₂⁷⁹Br, 400.0912; found 400.0907.

^aAB-spinsystem: δ_A =4.49 ppm, δ_B =4.45 ppm, *J*(AB)=18 Hz

References

- 1 Taber, D. F.; Sheth, R. B. Joshi, P. V. J. Org. Chem. 2005, 70, 2851.
- 2 Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684.
- 3 Roy, S.; Gribble, G. W. *Heterocycles* **2006**, *70*, 51.
- 4 Tao, C. Z.; Li, J.; Cui, X.; Fu, Y.; Guo, Q. X. Chin. Chem. Lett. 2007, 18, 1199.
- 5 Jones, G. B.; Guzel, M.; Mathews, J. E. Tetrahedron Lett. 2000, 41, 1123.
- 6 Caddick, S.; Aboutayab, K.; Jenkins, K.; West, R. I. J. Chem. Soc., Perkin Trans. 1 1996, 675.
- 7 Ferrer, S.; Naughton, D. P.; Threadgill, M. D. Tetrahedron 2003, 59, 3445.
- 8 Müller, P.; Allenbach, Y.; Robert, E. Tetrahedron: Asymmetry 2003, 14, 779.
- 9 Watanabe, N.; Ogawa, T.; Ohtake, S.; Ikegami, S.; Hashimoto, S. Synlett 1996, 85.
- 10 Yamawaki, M.; Tsutsui, H.; Kitagaki, S.; Anada, M.; Hashimoto, S. Tetrahedron Lett. 2002, 42, 9561.

- 11 Cotton, F. A., Felthouse, T. R., Inorg. Chem. 1980, 19, 323-328.
- 12 Hu, L.,-Y.; Ryder, T. R.; Rafferty, M. F.; Taylor, C. P.; Feng, M. R.; Kuo, B.,-S.; Lotarski, S. M.; Miljanich, G. P.; Millerman, E.; Siebers, K. M.; Szoke, B. G. *Bioorg. Med. Chem.* **2000**, 1203.
- 13 Figadere, B.; Norman, A. W.; Henry, H. L.; Koeffler, H. P.; Zhou, J. Y.; Okamura, W. H. *J. Med. Chem.* **1991**, *34*, 2452.

¹³C NMR spectrum of A (100 MHz, C₆D₆)

¹H NMR of B (400 MHz, C₆D₆)

¹³C NMR spectrum of B (100 MHz, CDCl₃)

¹H NMR of C (400 MHz, C₆D₆)

¹³C NMR spectrum of C (100 MHz, C₆D₆)

¹H NMR of D (400 MHz, C₆D₆)

MeO₂C

¹³C NMR of D (400 MHz, C₆D₆)

¹H NMR of E (400 MHz, CDCl₃)

¹³C NMR of E (400 MHz, CDCl₃)

¹H NMR of F (400 MHz, CDCl₃)

¹³C NMR of F (400 MHz, CDCl₃)

¹H NMR of 1 (400 MHz, C₆D₆)

¹³C NMR spectrum of 1 (100 MHz, C₆D₆)

HPLC resolution of racemic **1** (Chiracel OD column, 99:1 hexanes:isopropanol – 97.5:2.5 hexanes isopropanol over 30 min, 1 mL/min, 220 nm)

Enantiomeric excess of 1 (Chiracel OD column, 99:1 hexanes:isopropanol - 97.5:2.5 hexanes

isopropanol over 30 min, 1 mL/min, 220 nm)

Signal 2: DAD1 B,	Sig=220,	,4 Ref=450,8	0	
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height (mAU)	Area 8
1 8.840 MM 2 14.004 MM	0.2825 0.5361	6233.46729 158.06422	367.79446 4.91373	97.5270 2.4730
Totals :		6391.53151	372.70820	

¹H NMR of 2 (400 MHz, C₆D₆)

¹³C NMR spectrum of 2 (100 MHz, C₆D₆)

Et

HPLC resolution of racemic **2** (Chiracel OD column, 99:1 hexanes:isopropanol – 97.5:2.5 hexanes isopropanol over 30 min, 1 mL/min, 220 nm)

Enantiomeric excess of 2 (Chiracel OD column, 99:1 hexanes:isopropanol - 97.5:2.5 hexanes

isopropanol over 30 min, 1 mL/min, 220 nm)

Signal 2: DAD1 B,	Sig=220,4	Ref=450,8	0	
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 9.471 MM	0.2835 1	L.26087e4	741.28253	95.7026
2 15.563 MM		566.17084	19.91690	4.2974
Totals :	1	L.31749e4	761.19943	

¹H NMR Spectrum of **3** (400 MHz, C_6D_6)

¹³C NMR Spectrum of **3** (100 MHz, C_6D_6)

HPLC resolution of racemic **3** (Chiracel OD column, 99:1 hexanes:isopropanol – 97.5:2.5 hexanes isopropanol over 30 min, 1 mL/min, 220 nm)

Enantiomeric excess of **3** (Chiracel OD column, 99:1 hexanes:isopropanol – 97.5:2.5 hexanes

isopropanol over 30 min, 1 mL/min, 220 nm)

Peak RetTime # [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	-				
1 14.447	MM	0.4411	6095.04443	230.31833	91.8814
2 27.838	MM	0.7484	538.55341	11.99318	8.1186
Totals :			6633.59784	242.31151	

¹H NMR of 4 (400 MHz, C₆D₆)

¹³C NMR spectrum of 4 (100 MHz, C₆D₆)

HPLC resolution of racemic **4** (Chiracel OD column, 99:1 hexanes:isopropanol – 97.5:2.5 hexanes isopropanol over 30 min, 1 mL/min, 220 nm)

Enantiomeric excess of 4 (Chiracel OD column, 99:1 hexanes:isopropanol - 97.5:2.5 hexanes

isopropanol over 30 min, 1 mL/min, 220 nm)

Signal 2: DAD1 B, S	Sig=220,	4 Ref=450,8	0	
 Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area १
1 11.828 MM 2 14.074 MM	0.3896	7956.31396 195.26753	340.40134 6.56409	97.6045 2.3955
Totals :		8151.58150	346.96543	

¹H NMR of 5 (400 MHz, C₆D₆)

¹³C NMR spectrum of 5 (100 MHz, C₆D₆)

HPLC resolution of racemic **5** (Chiracel OD column, 99:1 hexanes:isopropanol – 97.5:2.5 hexanes isopropanol over 30 min, 1 mL/min, 220 nm)

NOTE: "Racemic" material was prepared using a mechanical mixture of $Rh_2(S-PTTL)_4$ and $Rh_2(R-PTTL)_4$ which accounts for the inequivalent integration of the racemate.

Enantiomeric excess of **5** (Chiracel OD column, 99:1 hexanes:isopropanol – 97.5:2.5 hexanes isopropanol over 30 min, 1 mL/min, 220 nm)

¹H NMR of 6 (400 MHz, C₆D₆)

¹³C NMR spectrum of 6 (100 MHz, C₆D₆)

HPLC resolution of racemic **6** (Chiracel OD column, 99:1 hexanes:isopropanol – 97.5:2.5 hexanes isopropanol over 30 min, 1 mL/min, 220 nm)

Enantiomeric excess of 6 (Chiracel OD column, 99:1 hexanes:isopropanol - 97.5:2.5 hexanes

isopropanol over 30 min, 1 mL/min, 220 nm)

Signal 2: DAD1 B,	Sig=220,	,4 Ref=450,8	30	
Peak RetTime Type	Width	Area	Height	Area
# [min]	(min]	[mAU*s]	[mAU]	%
1 9.283 MM	0.3335	8207.82324	410.12985	98.1842
2 15.587 MM	0.5357	151.79230	4.72264	1.8158
Totals :		8359.61554	414.85249	

¹H NMR of 7 (400 MHz, C₆D₆)

HPLC resolution of racemic **7** (Chiracel OD column, 99:1 hexanes:isopropanol – 97.5:2.5 hexanes isopropanol over 30 min, 1 mL/min, 220 nm)

Enantiomeric excess of 7 (Chiracel OD column, 99:1 hexanes:isopropanol – 97.5:2.5 hexanes

isopropanol over 30 min, 1 mL/min, 220 nm)

-Signal 2: DAD1 B,	Sig=220,4	Ref=450,8	30	
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min] [1	mAU*s]	[mAU]	%
1 10.843 MM	0.3768 44 0.3965	51.98877	196.94476	98.7384
2 13.234 MM		56.88493	2.39118	1.2616
Totals :	45	08.87370	199.33594	

¹H NMR of 8 (400 MHz, C₆D₆)

¹³C NMR spectrum of 8 (100 MHz, C₆D₆)

HPLC resolution of racemic 8 (Chiracel OD column, 99:1 hexanes:isopropanol, 1 mL/min, 275 nm)

Enantiomeric excess of 8 (Chiracel OD column, 99:1 hexanes:isopropanol, 1 mL/min, 275 nm)

Signal 3: DAD1 C,	Sig=275,	,4 Ref=450,80)	
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 15.440 MM	0.7346	4077.27930	92.50456	91.5857
2 37.880 MM	1.2845	374.59406	4.86045	8.4143
Totals :		4451.87335	97.36501	

¹H NMR of 9 (400 MHz, C₆D₆) (94%purity)

¹³C NMR spectrum of 9 (100 MHz, C₆D₆) (94%purity)

HPLC resolution of racemic 9 (Chiracel OD column, 99:1 hexanes:isopropanol, 1 mL/min, 275

nm)

Enantiomeric excess of 9 (Chiracel OD column, 99:1 hexanes:isopropanol, 1 mL/min, 275 nm)

Signal 3: DAD1 C, Sig=275,4 Ref=450,80					
Peak RetTime Type	Width	Area	Height	Area	
# [min]	[min]	[mAU*s]	[mAU]	%	
1 6.476 MF	0.2209	9753.73047	736.05188	89.6172	
2 7.205 FM	0.2591	1130.04529	72.68864	10.3828	
Totals :		1.08838e4	808.74052		

¹H NMR of 10 (400 MHz, C₆D₆)

¹³C NMR spectrum of 10 (100 MHz, C₆D₆)
HPLC resolution of racemic 10 (Chiracel OD column, 99.5:0.5 hexanes:isopropanol, 1 mL/min,

220 nm)

Enantiomeric excess of 10 (Chiracel OD column, 99.5:0.5 hexanes:isopropanol, 1 mL/min, 220

nm)

Signa	al 2: DAD1 B,	Sig=220,	4 Ref=450,8	30	
Peak #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	6.479 MM 7.175 MM	0.2403 0.1988	5176.70264 26.80336	359.05667 2.24681	99.4849 0.5151
Total	LS :		5203.50599	361.30348	

¹H NMR of 11 (400 MHz, C₆D₆)

¹³C NMR spectrum of 11 (100 MHz, C₆D₆)

HPLC resolution of racemic **11** (Chiracel OD column, 99:1 hexanes:isopropanol, 1 mL/min, 275 nm)

NOTE: Preparation of racemic $\mathbf{11}$ using Rh_2Piv_4 gave the indole C-H functionalization product

Enantiomeric excess of **11** (Chiracel OD column, 99:1 hexanes:isopropanol, 1 mL/min, 275 nm)

Signal 3: DAD1 C,	Sig=275,	.4 Ref=450,8	30	
Peak RetTime Type # [min] 1 5.382 MM 2 5.943 MM 3 7.090 MM	Width [min] 0.1792 0.1815 0.1791	Area [mAU*s] 2982.02515 61.10906 5.92954	Height [mAU] 277.29205 5.61121 5.51896e-1	Area % 96.7363 1.9824 0.1924
4 8.747 MM	0.2943	33.57003	1.90101	1.0890
Totals :		3082.63377	285.35616	

¹H NMR of 12 (400 MHz, C₆D₆) (95% purity)

¹³C NMR spectrum of 12 (100 MHz, C₆D₆) (95% purity)

HPLC resolution of racemic **12** (Chiracel OD column, 99:1 hexanes:isopropanol, 1 mL/min, 275 nm)

Enantiomeric excess of 12 (Chiracel OD column, 99:1 hexanes: isopropanol, 1 mL/min, 275 nm)

¹H NMR of 13 (400 MHz, C₆D₆)

¹³C NMR of 13 (100 MHz, C₆D₆)

HPLC resolution of racemic **13** (Chiracel IA column, 99:1 hexanes:isopropanol, 1 mL/min, 220 nm)

Enantiomeric excess of 13 (Chiracel IA column, 99:1 hexanes:isopropanol, 1 mL/min, 220 nm)

mAU 250 200 150 50 0	 	· · · · · · · · · · · · ·	5000 100 100 100 100 100 100 100 100 100	T T T T T T T
0 2.5 5	7.5	10 1	2.5 15	17.5 min
Signal 2: DAD1 B,	Sig=220,	4 Ref=450,8	30	
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 12.616 MM 2 14.271 MM	0.3276 0.3407	6186.17871 411.96527	314.73395 20.15228	93.7563 6.2437
Totals :		6598.14398	334.88623	

¹H NMR of 14 (400 MHz, CD₂Cl₂)

¹³C NMR of 14 (100 MHz, CD₂Cl₂)

HPLC resolution of racemic **14** (Chiracel IA column, 99.5:0.5 hexanes:isopropanol, 1 mL/min, 254 nm)

Enantiomeric excess of 14 (Chiracel IA column, 99.5:0.5 hexanes:isopropanol, 1 mL/min, 254

nm)

mAU 125 100 75 50 25 0 0 5 10	15	20 25	800 1400 50 160 160 160 160 160 160 160 160 160 16	40 min
Signal 1: DAD1 A, S	Sig=254,	4 Ref=450,8	0	
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 31.358 MF 2 36.941 FM	1.7554 1.6238	1.41635e4 242.05911	134.47302 2.48448	98.3197 1.6803
Totals :		1.44056e4	136.95750	

¹H NMR of 15 (400 MHz, CDCl₃) (90% purity)

¹³C NMR of 15 (100 MHz, CDCl₃) (90% purity)

HPLC resolution of racemic **15** (Chiracel IB column, 99.9:0.1 hexanes:isopropanol, 1 mL/min, 220 nm)

Enantiomeric excess of 15 (Chiracel IB column, 99.9:0.1 hexanes:isopropanol, 1 mL/min, 220

nm)

¹H NMR of 16 (400 MHz, C₆D₆)

¹³C NMR spectrum of 16 (100 MHz, C₆D₆)

HPLC resolution of racemic **16** (Chiracel OD column, 99:1 hexanes:isopropanol, 1 mL/min, 275 nm)

Enantiomeric excess of 16 (Chiracel OD column, 99:1 hexanes:isopropanol, 1 mL/min, 275 nm)

Signal 3: DAD1 C,	Sig=275	,4 Ref=450,8	30	
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 10.007 MM	0.3649	1485.65308	67.86433	97.4014
2 13.534 MM	0.4672	39.63686	1.41397	2.5986
Totals :	4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1525.28994	69.27830	1

¹H NMR of 17 (400 MHz, C₆D₆)

¹³C NMR spectrum of 17 (100 MHz, C₆D₆)

HPLC resolution of racemic **17** (Chiracel OD column, 99:1 hexanes:isopropanol, 1 mL/min, 220 nm)

Enantiomeric excess of 17 (Chiracel OD column, 99:1 hexanes:isopropanol, 1 mL/min, 220 nm)

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
	de en					
1	7.156	MM	0.2638	3791.44629	239.56104	97.3771
2	22.201	MM	0.7685	102.12646	2.21475	2.6229
Tota	ls :	• • •		3893.57275	241.77578	

¹H NMR of G (400 MHz, C₆D₆)

¹³C NMR spectrum of G (100 MHz, C₆D₆)

N

HPLC resolution of racemic **G** (Chiracel OD column, 99:1 hexanes:isopropanol – 97.5:2.5 hexanes isopropanol over 30 min, 1 mL/min, 220 nm)

Enantiomeric excess of **G** (Chiracel OD column, 99:1 hexanes:isopropanol – 97.5:2.5 hexanes isopropanol over 30 min, 1 mL/min, 220 nm)

"Signal 2: DAD1 B,	Sig=220,	,4 Ref=450,8	0	
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 18.482 MM	0.6136	1.31411e4	356.95868	94.2054
2 24.955 MM	0.8283	808.31226	16.26467	5.7946
Totals :		1.39495e4	373,22335	

Computational Details

Cartesian coordinates and total energies of the optimized structures:

Full g09 reference:

Gaussian 09, Revision A.02,

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
- M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
- G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
- A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
- M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
- Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
- J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
- K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand,
- K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
- M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
- V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
- O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
- R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
- P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
- O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
- and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

Cartesian coordinates of the optimized pre-reaction complex (B3LYP/gen [lanl2dz&6-311+G(d,p)])

Charge = 0 Multiplicity = 1

E+ZPVE= -1764.074547 a.u.

- O 1.847172,1.465463,-1.056003
- C 0.394803,1.023919,0.717757
- C 1.033916,1.915944,-0.272513
- O 0.621732,3.171333,-0.204607
- C 1.109676,4.092146,-1.231751
- C 0.980736,0.892099,2.056104
- C 2.398595,1.405776,2.322548
- Rh -1.312758,0.110556,0.265426
- C 0.467766,5.4369,-0.971484
- O -1.894659,1.600685,-1.075055
- C -3.039257,1.51399,-1.618778
- O -3.911794,0.629533,-1.459428
- Rh -3.51144,-0.967288,-0.171183
- O -4.261138,0.136123,1.438955
- C -3.485244,0.893674,2.062651
- O -2.251171,1.107585,1.843292
- Н 0.835411,3.681417,-2.204578
- Н 2.198475,4.130962,-1.165987
- Н 0.232038,1.464958,2.646234
- Н 0.822765,-0.133267,2.411581
- Н 2.627918,1.315785,3.386279

- Н 2.508944,2.456796,2.045162
- Н 3.139754,0.824033,1.77201
- Н -0.620178,5.366095,-1.024588
- Н 0.805316,6.151371,-1.726823
- Н 0.74522,5.82184,0.012033
- Н -3.283393,2.327187,-2.3163
- Н -3.907522,1.451776,2.909374
- C 5.106635,-0.448159,-0.336061
- C 5.640666,0.804813,-0.026629
- C 6.885209,0.842088,0.592304
- C 7.583317,-0.342678,0.893139
- C 7.05164,-1.5868,0.580369
- C 5.795801,-1.657557,-0.042649
- N 3.913581,-0.791071,-0.939791
- C 3.821743,-2.169636,-1.034507
- C 4.955519,-2.728902,-0.498499
- C 2.63427,-2.815853,-1.668766
- Н 5.107985,1.717456,-0.270348
- Н 7.328376,1.799716,0.842052
- Н 8.553321,-0.278547,1.373533
- Н 7.60064,-2.492959,0.813785
- Н 3.181321,-0.139073,-1.19128
- Н 5.164596,-3.786548,-0.443849
- Н 2.672939,-3.896434,-1.523932
- Н 2.605057,-2.620487,-2.746841
- Н 1.698409,-2.440437,-1.244609
- O -0.9089,-1.476854,1.556106
- C -1.786657,-2.386025,1.698287
- O -2.910488,-2.467893,1.152932
- Н -1.509716,-3.193912,2.389027

- O -0.58966,-1.008324,-1.339032
- C -1.383869,-1.774489,-1.967038
- O -2.600214,-1.980582,-1.747818
- Н -0.932466,-2.321332,-2.805971

Cartesian coordinates of the optimized transition state (**D**) for the reaction between 2-methylindole and $Et(EtO_2C)C=Rh_2(O_2CH)_4$ shown in Fig. 1(b)

E+ZPVE=-1764.060456 a.u. Im. Freq, v_i =141.6i cm⁻¹

- O -2.7871287772,2.0465441828,0.7079838337
- C -1.4507278179,0.3645431501,-0.4738207676
- C -2.1648596072,1.6669272194,-0.2562805657
- O -1.9624020064,2.4190195645,-1.3565717636
- C -2.3837166849,3.8058474178,-1.2837707111
- C -1.9158084687,-0.4366599175,-1.640123864
- C -3.3909224768,-0.3843732866,-2.0575762985
- Rh 0.6167813627,0.3961521369,-0.170738224
- C -2.028024499,4.457367882,-2.6038818179
- O 0.7000662369,2.4714910566,0.0824335824
- C 1.8344029077,3.0216322915,0.2151823551
- O 2.969692188,2.4876822723,0.2078585504
- Rh 3.1114281097,0.41736582,-0.0389025433
- O 3.1361560153,0.6645006859,-2.110590325
- C 2.0407943202,0.7005422113,-2.7176900809
- O 0.870846014,0.6140492835,-2.2349909571
- Н -1.8690699282,4.2733892991,-0.442154138
- H -3.457779758,3.8343553739,-1.0863271493
- Н -1.2963293725,-0.0074346494,-2.4475859342
- H -1.5512237908,-1.4617173349,-1.5489804319

Η	-3.5374440446,-0.9891371314,-2.9563225073
Н	-3.7001558718,0.636479556,-2.2912211518
Н	-4.0498695453,-0.7781596413,-1.2839044575
Н	-0.9530262356,4.4042639376,-2.7866338205
Н	-2.3245943136,5.5097541596,-2.5845088795
Н	-2.5450568378,3.9713850461,-3.4344398042
Н	1.8098459612,4.1120886816,0.3550649487
Н	2.0860304555,0.8221416022,-3.8091748102
С	-4.3217627138,-1.7578808924,1.3085636402
С	-5.4781102727,-2.4480339828,0.9650259857
С	-5.3345737015,-3.5559555888,0.1302465252
С	-4.0718820618,-3.9535888042,-0.3337944569
С	-2.9228961696,-3.2422160196,0.0037708553
С	-3.0432797359,-2.1149509576,0.8219985927
N	-4.1390407188,-0.6656478626,2.1564333772
С	-2.8238550778,-0.3243248163,2.2253361978
С	-2.0996010959,-1.1487551876,1.3496087545
С	-2.3423040112,0.6749693247,3.2169715565
Н	-6.4518772676,-2.1522664611,1.3392016146
Н	-6.2121155466,-4.1252492147,-0.1531574146
Н	-3.9917158224,-4.8314662818,-0.9646245022
Н	-1.9507680588,-3.5578490993,-0.356389415
Н	-4.8783268631,-0.1554060573,2.6146958523
Н	-1.0361875085,-1.2885318756,1.4210567814
Н	-1.3384806542,1.0017179181,2.9595666082
Н	-2.3144988892,0.2134936262,4.2118674059
Н	-2.9989030836,1.5454695894,3.2547367078
0	0.7393913767,-1.6788145727,-0.3800991245
С	1.8906991395,-2.2164924242,-0.3949475886
0	3.0089122491,-1.6629027284,-0.2901072706

- Н 1.892995276,-3.3093321166,-0.5154432905
- O 0.649082132,0.1828974267,1.9160683154
- C 1.7661524593,0.1236885945,2.5177437638
- O 2.9162688399,0.1764163095,2.0265515209
- Н 1.703223291,0.0115896789,3.6097697776

Another transition state (D*), which does not possess oxocarbenium character for the reaction between 2-methylindole and $Et(EtO_2C)C=Rh_2(O_2CH)_4$:

E+ZPVE= -1764.057585 a.u. Im. Freq, v_i =128.7i cm⁻¹

- C 2.8386494867,3.083775627,3.0901562796
- C 1.9968734608,3.8211310199,3.9378090645
- O 2.0379347154,0.2893013806,0.0339617807
- N -0.8224956905,1.3958255282,3.9199835821
- C -0.7733695089,0.2197453933,3.2333265418
- C 0.3447601779,2.1301094085,3.724114905
- C 1.1578388145,1.3816842952,2.8420979381
- C -0.3917108392,0.2346318728,0.1460218273
- C 0.9562111993,0.5665588183,-0.4220975615
- O 0.7664699752,1.1456505114,-1.629611622
- C 1.9263801766,1.2710664924,-2.4952540797
- C -1.456151137,1.2730146145,0.141217131
- C -1.1085277281,2.7394843325,0.4226533182
- Rh -0.9837797637,-1.6890251291,-0.3958592384
- C 2.5925105431,2.6263679011,-2.3286360304
- C 0.412653591,0.1808601741,2.4873503997
- C 0.7304935606,3.3497985871,4.271102167
- C 2.4350103124,1.8714103517,2.5392159923
- H 1.5236959404,1.1431802369,-3.5005087454

Η	2.613580001,0.4553529017,-2.2721743192
Η	-1.8217707613,1.1805674825,-0.8981352323
Н	-2.2991765654,0.9322544549,0.7472920647
Η	-2.0023005128,3.3566607155,0.2948280767
Η	-0.347773271,3.1076079217,-0.2670785417
Η	-0.7430326896,2.883377879,1.4389478523
Η	1.8869220417,3.4369253048,-2.5265835589
Η	3.4207156481,2.7156992748,-3.0380814176
Н	2.9925285209,2.7441694137,-1.3200530635
Н	0.8281749957,-0.728550978,2.0846425264
0	0.8112430993,-2.0649398297,-1.3939516445
С	0.9564356177,-3.1576262034,-2.0184508443
0	0.1380733726,-4.1003050137,-2.1433451262
Н	1.9306535186,-3.2857804565,-2.5110400379
Rh	-1.7402084731,-3.9106201265,-1.2544289377
0	-2.434872506,-2.9138315774,-2.9523909946
С	-2.3045425571,-1.668911625,-3.0102794747
0	-1.7769593687,-0.8920262314,-2.1577823723
Н	-2.6935874057,-1.1741637239,-3.9113889037
0	-2.8861321519,-1.5128550935,0.4752410947
С	-3.7212555307,-2.4552147585,0.3107969229
0	-3.566203323,-3.5346207726,-0.304454146
Η	-4.7050267138,-2.2940477737,0.7754712514
0	-0.2676269683,-2.7232549665,1.2771986387
С	-0.4113587609,-3.9840289662,1.3323353132
0	-0.9732000578,-4.7375611611,0.5056413622
Н	0.0100680658,-4.4629592938,2.2277518345
Η	3.0864928569,1.3146402118,1.8805952633
Η	3.8261894125,3.4685748094,2.8620270975
Н	2.3400838705,4.7640494794,4.3474446893

- Н 0.0816710745,3.9049997838,4.9394884567
- C -1.8608948547,-0.784184481,3.3852333969
- Н -2.6749103309,-0.5986185009,2.6791611175
- Н -1.4786379194,-1.7796127304,3.1698244787
- Н -2.2661462235,-0.7637930971,4.400995106
- Н -1.586467917,1.6717981313,4.5174828516

Cartesian coordinates of optimized structure of ylide (E) for the reaction between 2-methylindole and $Et(EtO_2C)C=Rh_2(O_2CH)_4$ shown in Fig. 1(c)

E+ZPVE= -1764.100099 a.u.

- O -1.9632097101,1.6134372422,1.2279263099
- C -1.482849425,0.2719964541,-0.6008297544
- C -1.4924157701,1.5341690406,-0.0024886249
- O -1.0968778011,2.6410459868,-0.5787589628
- C -0.9730451155,3.8545592593,0.2220846426
- C -1.5521085366,0.1358093554,-2.1155292285
- C -2.7806854422,0.7970264409,-2.7687284543
- Rh 0.8564960226,-0.1281889394,-0.1402207235
- C -0.4569323801,4.9406785924,-0.6960707531
- O 1.100316766,1.323895947,1.3552696845
- C 2.2416471535,1.4553431488,1.8903851328
- O 3.2943955556,0.8205512644,1.640913868
- Rh 3.2545520951,-0.6528178686,0.1618719362
- O 3.6583952804,0.7933205846,-1.2829284731
- C 2.6923874824,1.3935066942,-1.8182498215
- O 1.4569741662,1.2556505735,-1.5831691908
- Н -0.285441329,3.6426484632,1.0412460677
- Н -1.9547388723,4.0963845807,0.6339949694
- Н -0.6517600224,0.5736496337,-2.5488870859
- Н -1.5149548394,-0.9255079039,-2.3677830432
- H -2.760467435,0.631148209,-3.850346852
- Н -2.777766407,1.8771960452,-2.6015821164
- H -3.7201223055,0.3945113165,-2.3868065214
- H 0.5137401423,4.6671319627,-1.11331448
- Н -0.3430285202,5.8692692668,-0.1304576084
- Н -1.1516971979,5.1224540514,-1.5187301001
- H 2.312080326,2.2245243416,2.6729901597
- H 2.9477682958,2.1342045645,-2.5890737677
- C -4.6133165636,-0.4308918364,0.7254508345
- C -5.9738510652,-0.6768949075,0.5709876513
- C -6.3661198681,-1.6152466072,-0.3878222067
- C -5.4228617054,-2.2892207849,-1.1629492187
- C -4.0578182661,-2.0271124089,-0.9942656974
- C -3.6571784522,-1.0855446767,-0.0588944566
- N -3.9959734591,0.4434821246,1.6321568973
- C -2.5674179909,0.2904322664,1.598920063
- C -2.2708582104,-0.6371837401,0.3640325406
- C -1.9614240258,-0.0810777178,2.9370033716
- Н -6.7102243525,-0.1613897408,1.177553418
- H -7.4214488359,-1.8243081442,-0.5228958134
- Н -5.7462423112,-3.021521835,-1.8930887885
- H -3.3236009033,-2.5615360258,-1.5868006617
- H -4.4308452015,0.6065062151,2.5284505088
- H -1.6690493049,-1.4952636859,0.664770089
- Н -0.8761327238,-0.1151630107,2.8680868908
- H -2.3271824034,-1.0647500011,3.2408752299
- Н -2.247617982,0.6537567759,3.6953869544
- O 0.8337765655,-1.6406724676,-1.5842397479

- C 1.9091990346,-2.2534051936,-1.8448902743
- O 3.0451367757,-2.086813151,-1.331577859
- Н 1.8361182047,-3.0301354029,-2.6189792283
- O 0.4851330478,-1.5870973298,1.3261732336
- C 1.4650553912,-2.2140302226,1.829608045
- O 2.6869770373,-2.0680577058,1.5844755529
- Н 1.206180392,-2.9789920933,2.5752664633

Calculations on the stepwise conversion of E to F. These computations suggest that an intramolecular 1,2-hydride shift for the conversion of **E** to **F** is not plausible $(\Delta E(ZPE)^{\ddagger} = 30.2 \text{ kcal/mol})$ at -78 °C.

IRCreverse (Reactant)

IRCforward (ending point)

Reaction barrier (kcal/mol):

 ΔE^{\neq} =34.3; $\Delta (E+ZPVE)^{\neq}$ =30.2; ΔH^{\neq} =30.7; ΔG^{\neq} =29.1

This reactant complex is 25.7 kcal/mol lower in energy than isolated carbene, indole and Rh-catalyst. The TS itself is higher in energy by 8.7 kcal/mol with respect to isolated reactants

ΤS

Reactant

File: 1SModIndProd_Gen.log

E=-1764.5149405 a.u.

0.414842 (Hartree/Particle) Zero-point correction=

Thermal correction to Energy= 0.447697

Thermal correction to Enthalpy= 0.448641

Thermal correction to Gibbs Free Energy= 0.352047

Sum of electronic and zero-point Energies= -1764.100099

Sum of electronic and thermal Energies= -1764.067243Sum of electronic and thermal Enthalpies= -1764.066299 Sum of electronic and thermal Free Energies= -1764.162894 0,0,-1.9632097101,1.6134372422,1.2279263099 C,0,-1.482849425,0.2719964541,-0.6008297544 C,0,-1.4924157701,1.5341690406,-0.0024886249 0,0,-1.0968778011,2.6410459868,-0.5787589628 C,0,-0.9730451155,3.8545592593,0.2220846426 C,0,-1.5521085366,0.1358093554,-2.1155292285 C,0,-2.7806854422,0.7970264409,-2.7687284543 Rh,0,0.8564960226,-0.1281889394,-0.1402207235 C,0,-0.4569323801,4.9406785924,-0.6960707531 0,0,1.100316766,1.323895947,1.3552696845 C,0,2.2416471535,1.4553431488,1.8903851328 0,0,3.2943955556,0.8205512644,1.640913868 Rh,0,3.2545520951,-0.6528178686,0.1618719362 0,0,3.6583952804,0.7933205846,-1.2829284731 C,0,2.6923874824,1.3935066942,-1.8182498215 0,0,1.4569741662,1.2556505735,-1.5831691908 H,0,-0.285441329,3.6426484632,1.0412460677 H,0,-1.9547388723,4.0963845807,0.6339949694 H,0,-0.6517600224,0.5736496337,-2.5488870859 H,0,-1.5149548394,-0.9255079039,-2.3677830432 H,0,-2.760467435,0.631148209,-3.850346852 H,0,-2.777766407,1.8771960452,-2.6015821164 H,0,-3.7201223055,0.3945113165,-2.3868065214 H,0,0.5137401423,4.6671319627,-1.11331448 H,0,-0.3430285202,5.8692692668,-0.1304576084

H,0,-1.1516971979,5.1224540514,-1.5187301001 H,0,2.312080326,2.2245243416,2.6729901597 H,0,2.9477682958,2.1342045645,-2.5890737677 C,0,-4.6133165636,-0.4308918364,0.7254508345 C,0,-5.9738510652,-0.6768949075,0.5709876513 C,0,-6.3661198681,-1.6152466072,-0.3878222067 C,0,-5.4228617054,-2.2892207849,-1.1629492187 C,0,-4.0578182661,-2.0271124089,-0.9942656974 C,0,-3.6571784522,-1.0855446767,-0.0588944566 N,0,-3.9959734591,0.4434821246,1.6321568973 C,0,-2.5674179909,0.2904322664,1.598920063 C,0,-2.2708582104,-0.6371837401,0.3640325406 C,0,-1.9614240258,-0.0810777178,2.9370033716 H,0,-6.7102243525,-0.1613897408,1.177553418 H,0,-7.4214488359,-1.8243081442,-0.5228958134 H,0,-5.7462423112,-3.021521835,-1.8930887885 H,0,-3.3236009033,-2.5615360258,-1.5868006617 H,0,-4.4308452015,0.6065062151,2.5284505088 H,0,-1.6690493049,-1.4952636859,0.664770089 H,0,-0.8761327238,-0.1151630107,2.8680868908 H,0,-2.3271824034,-1.0647500011,3.2408752299 H,0,-2.247617982,0.6537567759,3.6953869544 0,0,0.8337765655,-1.6406724676,-1.5842397479 C,0,1.9091990346,-2.2534051936,-1.8448902743 0,0,3.0451367757,-2.086813151,-1.331577859 H,0,1.8361182047,-3.0301354029,-2.6189792283 0,0,0.4851330478,-1.5870973298,1.3261732336 C,0,1.4650553912,-2.2140302226,1.829608045

0,0,2.6869770373,-2.0680577058,1.5844755529

H,0,1.206180392,-2.9789920933,2.5752664633

TS E= -1764.4602321 a.u. Im. Freq=1261.3346i cm⁻¹

File: 1SIndHmigTS_Gen.log

Zero-point correction=	0.408258 (Hartree/Particle)
Thermal correction to Energy=	0.441852
Thermal correction to Enthalpy=	0.442797
Thermal correction to Gibbs Free En	ergy= 0.343763
Sum of electronic and zero-point En	ergies= -1764.051974
Sum of electronic and thermal Energ	gies= -1764.018380
Sum of electronic and thermal Entha	alpies= -1764.017435
Sum of electronic and thermal Free	Energies= -1764.116469
0,0,-1.7846672064,2.643169457,1.5	131562955
C,0,-1.4304563345,1.0598197515,-0	0.2810432747
C,0,-1.2286722063,2.3353403898,0.	4779471498
0,0,-0.3798261584,3.1594797054,-().162270857
C,0,-0.0956159933,4.4180989228,0.	4894797645
C,0,-1.5259909467,1.2368442917,-1	7955527957
C,0,-2.6623393769,2.1731814838,-2	.2457707315
Rh,0,0.7335208399,-0.0928675238,	-0.0914125142
C,0,0.861500341,5.1875614438,-0.3	980430772
0,0,1.4018616291,1.1089595942,1.	4845935991
C,0,2.5784742875,0.9327601006,1.9	9205283866
0,0,3.4365000954,0.1013108387,1.	5337320046
Rh,0,2.9455873645,-1.2062629824,-	-0.0211532062
0,0,3.6119786109,0.1941157766,-1	.4026393527
C,0,2.7969376137,1.0593297372,-1	8125820222

0,0,1.5863280196,1.2130898343,-1.4840155128 H,0,0.3352053298,4.2086079793,1.4711800733 H,0,-1.033869654,4.9568965609,0.6435731401 H,0,-0.5787013731,1.6479697387,-2.1404890616 H,0,-1.6087557162,0.257351703,-2.2667594626 H,0,-2.7172081194,2.1970419945,-3.3385877729 H,0,-2.4778498418,3.1950348116,-1.9058138176 H,0,-3.6399724046,1.8671812222,-1.8680524671 H,0,1.791067735,4.6334241903,-0.5421105793 H,0,1.0997551959,6.1488410649,0.0657261555 H,0,0.4192061488,5.3802120098,-1.378197818 H,0,2.8805907521,1.5955026649,2.7438568158 H,0,3.1814604008,1.7766015236,-2.5512638186 C,0,-4.4105440424,-1.1240058693,0.7586256561 C,0,-5.5591945009,-1.8826962384,0.5528218078 C,0,-5.9504675804,-2.1030601898,-0.7610281994 C,0,-5.199368907,-1.5777481185,-1.8221447507 C,0,-4.0532520319,-0.822508706,-1.5992083318 C,0,-3.6375428536,-0.5709879348,-0.2839342327 N,0,-3.7956279607,-0.7909180904,1.9592032144 C,0,-2.6671191805,-0.0714350321,1.7617288056 C,0,-2.5040217943,0.1306430805,0.3588621215 C,0,-1.8189678523,0.2781796887,2.9345995498 H,0,-6.1224476229,-2.2888382605,1.3855029894 H,0,-6.8384111314,-2.6889909004,-0.9666309062 H,0,-5.5160697021,-1.7658882522,-2.8413825361 H,0,-3.4988962646,-0.4479441365,-2.4456324632 H,0,-4.0863333402,-1.1268557878,2.8648991723

H,0,-1.354792508,-0.3053647719,0.1706774161 H,0,-0.7904292227,0.4657706329,2.6400778303 H,0,-1.8330531718,-0.5420499147,3.6588968773 H,0,-2.1917364348,1.1888737261,3.4086761529 O,0,0.2375303832,-1.4025404535,-1.6436174597 C,0,1.102544086,-2.2473710068,-2.022380967 O,0,2.2661017224,-2.4197931437,-1.5830196829 H,0,0.7870128765,-2.9099821961,-2.8404264596 O,0,0.1064258675,-1.5460394568,1.298935267 C,0,0.9347993463,-2.4263148106,1.6843968083 O,0,2.1367279446,-2.5544168975,1.3574977478 H,0,0.5395898439,-3.1634012447,2.3978943298 Cartesian coordinates of the optimized transition state for the reaction between 2-methylindole and $Et(EtO_2C)C=Rh_2$ Rh₂(S-NTTL)₄ shown in Fig. 2(b)

In this case atoms C, O, N, H where treated at smaller basis set, 6-31G(d).

E+ZPVE -5210.852522 a.u. Im. Freq, v_i=150.6i cm⁻¹

- Rh -0.1751738743,0.1429509477,-0.5694891752 Rh -0.3242714622,0.3219545075,-3.0328448264 С -0.6960398836, 2.8296687312, -1.5918199282С -1.0170158719, 4.3278704277, -1.4048357954С -1.2004019622,5.2165599287,-2.684941436 С 0.0147754747,5.2314671366,-3.6329121637 С -1.4958654052,6.6666479716,-2.2402317056 С -2.44232953,4.698022408,-3.4466283755 С -0.7096283667, 5.5328965576, 0.7260354044С 0.1919172218,6.1694906045,1.7186686959 С -0.3531718779,6.885066271,2.7710622175 С 0.4848693936,7.5005128965,3.7243362872 С 1.8574557541,7.3897383074,3.6237995775 С 2.4516642185,6.6576580682,2.5626459468 С 1.5971878436,6.045962304,1.59516023
- C 2.1570250352,5.3042616521,0.5258969805

С	3.5306432465,5.1576741786,0.4272864828
С	4.3803844849,5.7584842137,1.3811220465
С	3.8557238242,6.4966376596,2.4225186921
С	1.2758094664,4.677174173,-0.4916219979
С	2.347684996,0.7265494322,-1.9733802895
С	3.8449824511,1.0944490793,-2.0172523421
С	4.5220208288,1.2541189679,-3.4267316651
С	4.4203169748,0.0068443693,-4.3268475729
С	6.0170424551,1.5910429739,-3.2265384249
С	3.8668958627,2.4599396998,-4.1406936479
С	5.4191587388,0.8861351274,-0.1286413387
С	6.210856128,0.0302491128,0.7887954186
С	7.1092036853,0.618993896,1.6635542515
С	7.8596074953,-0.174465216,2.555478632
С	7.6971232543,-1.5458400836,2.5762403139
С	6.7808961574,-2.1831546663,1.6998350463
С	6.0385212248,-1.3754827458,0.7857885687
С	5.1208686189,-1.9816301774,-0.1074274283
С	4.9212630477,-3.3518224252,-0.0749292133
С	5.643846718,-4.1530535967,0.8348925202
С	6.5600590652,-3.5861109436,1.6966235325
С	4.3713886638,-1.1543700451,-1.0828419318
С	0.2781438937,-2.3512203055,-2.0288541291
С	0.7186354262,-3.8263999206,-2.1153483258
С	0.6549362344,-4.5451297719,-3.5110088072
С	1.6894884242,-3.8688852815,-4.4411484574
С	1.0850737199,-6.0177441561,-3.3281164818
С	-0.7313798793,-4.5190723306,-4.1838695084
С	-1.2776237689,-4.44806012,-0.7667764917
С	-1.8560751369,-5.1745011908,0.3896884513

С	-3.2085567459,-5.0572690948,0.6640378747
С	-3.7757079336,-5.7664180042,1.7452354166
С	-2.9964781189,-6.585243088,2.5366213945
С	-1.6032650964,-6.716625585,2.2931653468
С	-1.0319322521,-5.9890811579,1.2050126326
С	0.3599966862,-6.0714438085,0.9571156986
С	1.1633915135,-6.8675914711,1.7568998788
С	0.6024823313,-7.6039377945,2.8212847549
С	-0.7511489968,-7.5283294319,3.0861771212
С	0.9735639502,-5.2927319175,-0.1477105161
С	-2.8202698709,-0.3855872208,-1.755236228
С	-4.2354707099,-0.9923387299,-1.6758305459
С	-5.0762815646,-1.1050396187,-2.9978516585
С	-4.3549788091,-2.1042788837,-3.9326576095
С	-5.2909573224,0.2269703097,-3.7436957905
С	-6.4580932713,-1.7042849831,-2.6520675863
С	-5.028967875,0.9966517064,-0.4153066091
С	-5.8354656697,1.5577743817,0.6982899745
С	-6.018288823,2.927327183,0.7871495693
С	-6.7754792498,3.4773039508,1.844029707
С	-7.3375040139,2.6586307967,2.8031188591
С	-7.170418558,1.2497036698,2.7438602751
С	-6.4098952568,0.6996675507,1.6669141581
С	-6.2292206095,-0.7020954796,1.5736196969
С	-6.7813110646,-1.5368865408,2.5297113368
С	-7.5285126368,-1.0008746151,3.5998319655
С	-7.7217675084,0.3620157405,3.7050145419
С	-5.463946033,-1.2899895358,0.4443103606
Ν	-0.1065088464,4.9063232956,-0.3807819376
Ν	4.5992763428,0.2356197217,-1.0663454712

Ν	0.1048720595,-4.5867190658,-0.9952207448
N	-4.969575663,-0.4039509672,-0.5266106002
0	-0.5445354791,2.1927166179,-0.4969699779
0	-0.6951560059,2.3458446248,-2.7562667296
0	-1.9286617194,5.5701412361,0.8520964213
0	1.7230959662,3.995837263,-1.4052324436
0	1.8633640562,0.5626223628,-0.8012803344
0	1.7073263728,0.7050762562,-3.0556619881
0	5.4837591427,2.1116964697,-0.077470353
0	3.5814452928,-1.64129181,-1.8810382587
0	0.2527172929,-1.8748385689,-0.8438666091
0	0.072704112,-1.7205651593,-3.1000669301
0	-1.9602066561,-3.7542636031,-1.5083349158
0	2.1894075814,-5.2793247587,-0.3195938663
0	-2.2181275104,-0.3047483539,-0.6332984637
0	-2.3352311631,-0.1242435053,-2.8881616858
0	-4.4524605382,1.7119372582,-1.2216215181
0	-5.2950107337,-2.5018041991,0.3524985214
Н	-1.987082704,4.3270340374,-0.9006115435
Н	-0.2322080497,5.8270772449,-4.520996633
Н	0.2838171613,4.2239639698,-3.9537166178
Н	0.8932013602,5.6844994187,-3.1640650238
Н	-1.7163012588,7.2792593094,-3.1221012154
Н	-0.6376442657,7.1220265247,-1.7328362717
Н	-2.3572704009,6.7194413411,-1.5658984779
Н	-2.6596268624,5.3656549127,-4.2890566236
Н	-3.3280405358,4.6791948853,-2.7990355942
Н	-2.284169696,3.6910718026,-3.8356598768
Н	-1.4328474613,6.961820403,2.8426559261
Н	0.0426888401,8.062868202,4.5415582634

Η	2.5023090336,7.8618721097,4.3611516437
Н	3.9449471054,4.5657283076,-0.3809103938
Н	5.4544744519,5.6297250392,1.2881624416
Η	4.5128312533,6.9601192027,3.154616002
Η	3.880578843,2.0829277322,-1.5525562021
Η	4.9522919117,-0.8489695294,-3.901251968
Η	4.8754386545,0.2316638627,-5.2999519345
Η	3.3820583357,-0.2864527118,-4.4890826324
Η	6.5670796372,0.7631686179,-2.764670151
Η	6.1561624212,2.4811336898,-2.604714782
Η	6.4765285428,1.7818516069,-4.2032268198
Η	2.8237710628,2.2622183121,-4.3905863802
Η	4.4119020855,2.6734623101,-5.0681820464
Η	3.9008815255,3.3610332981,-3.5163431624
Η	7.2201121948,1.6979897008,1.6454356487
Η	8.5650743634,0.3005290206,3.2310088009
Η	8.269721803,-2.1559962554,3.2706219331
Η	4.1945583687,-3.8033542545,-0.7399191444
Η	5.4662509319,-5.2239494712,0.8494465417
Η	7.1188242915,-4.2065315929,2.3931699096
Η	1.7778272083,-3.7886337731,-1.8489027401
Η	1.749076806,-4.4238471003,-5.3852322768
Η	2.6893711854,-3.8653251169,-3.9902906274
Η	1.4144268036,-2.8368659584,-4.6631279207
Η	1.1260350139,-6.5072986619,-4.3080375854
Η	0.3731400438,-6.5795358137,-2.7125413915
Η	2.0743830981,-6.0996609218,-2.8660068342
Η	-0.6545674033,-4.982568414,-5.1757416251
Η	-1.0976561073,-3.4984996878,-4.3066384075
Η	-1.4749426605,-5.0800888438,-3.6108282399

Η	-3.82333148,-4.4045808095,0.0550615956
Н	-4.8371883197,-5.6590499913,1.9468043275
Н	-3.4385018406,-7.1348904915,3.3642428124
Н	2.2264630404,-6.9105401249,1.5455341204
Н	1.2429891173,-8.231158118,3.434480763
Н	-1.1809994898,-8.0905891567,3.9116545632
Н	-4.0438784793,-2.0201251503,-1.3571581794
Н	-4.9767478179,-2.2906716872,-4.8166712848
Н	-4.181995342,-3.0648621739,-3.4329800137
Н	-3.39075929,-1.7167363838,-4.265221511
Н	-5.8273458955,0.0280423313,-4.680392489
Н	-4.3413932886,0.7081171862,-3.9837925499
Н	-5.890862846,0.9319841881,-3.1613439493
Н	-7.0189551908,-1.8813450468,-3.5770096857
Н	-7.0561860467,-1.0255808824,-2.0330832348
Н	-6.3680145484,-2.6586427901,-2.1224159639
Н	-5.5655359504,3.563876029,0.0341873612
Н	-6.9109397722,4.553344063,1.8991432592
Η	-7.9170384944,3.084833165,3.6184074432
Н	-6.6297774121,-2.6066116084,2.4343951042
Η	-7.9554993929,-1.669541681,4.3415327674
Η	-8.3007513633,0.7730845295,4.5284248313
0	-0.0252509009,1.8624203232,2.9823641219
С	-0.2883039032,-0.0848954828,1.5014098387
С	-0.7039024223,1.1261696125,2.2917357724
0	-2.027860463,1.3109943792,2.0930021069
С	-2.5979107978,2.5403091428,2.6115206482
С	-0.9029111842,-1.3735345555,1.9615893881
С	-1.2814538988,-1.5431685002,3.4402773752
С	-3.103432436,2.3544614284,4.0342393613

- Н -3.4095478292,2.7720721495,1.9214903887
- Н -1.8479196252,3.3291575285,2.553825211
- Н -1.820107886,-1.4148320603,1.3472007192
- Н -0.3002775172,-2.2114865158,1.5991396
- H -2.0208565453,-0.7954364632,3.7439648541
- Н -0.4139132981,-1.4609824446,4.0997026329
- Н -1.7258175407,-2.5331955366,3.5936689953
- H -3.8377443695,1.5434840888,4.086890287
- Н -3.5885179133,3.2765013644,4.3764621666
- Н -2.2759296933,2.1280292088,4.7131894399
- C 2.3841635507,-0.8876654979,4.3247481988
- C 2.4639202329,-1.5494237558,5.5474110675
- C 2.2844403531,-2.9346074662,5.5367820066
- C 2.0467508074,-3.6253475632,4.3364118537
- C 1.9563456141,-2.9490869652,3.1195975383
- C 2.1007744154,-1.5559347123,3.1072057733
- N 2.5750701131,0.4562862489,4.0110928592
- C 2.4015514313,0.6705001079,2.6760081838
- C 2.0392123761,-0.5439149098,2.0699079493
- C 2.6956355806,1.9970326961,2.066732122
- H 2.6704114159,-1.0164081007,6.4718386624
- H 2.3429886016,-3.4856884728,6.4713488185
- H 1.9298990519,-4.7054459176,4.3557955773
- Н 1.7915540217,-3.4945196602,2.1954512907
- H 2.6808448851,1.200491418,4.6855995278
- H 2.1064161596,-0.7204881203,1.0084453514
- H 2.2021790603,2.084057358,1.099422082
- H 3.7746985012,2.1096031779,1.9017804126
- H 2.3568274731,2.8115162832,2.7120913193

Complete ref 1f:

(1) (f) Black, W. C.; Bayly, C.; Belley, M.; Chan, C. C.; Charleson, S.; Denis, D.; Gauthier, J. Y.; Gordon, R.; Guay, D.; Kargman, S.; Lau, C. K.; Leblanc, Y.; Mancini, J.; Ouellet, M.; Percival, D.; Roy, P.; Skorey, K.; Tagari, P.; Vickers, P.; Wong, E.; Xu, L.; Prasit, P. *Biorg. Med. Chem. Lett.* **1996**, *6*, 725.