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Supplementary Discussion 

Population vector approximation to Bayesian estimator 

Here we show that as the size of a neural population grows, the population-vector 
estimate of direction will converge to the Bayesian estimate if the tuning curves are 
proportional to the likelihood function and the preferred directions are drawn 
independently from the prior distribution.  A similar analysis of the center-of-mass 
estimator was developed previously1. 

The inference problem 

The structure of the inference problem faced by the neural system can be described by the 
Markov chain 

θ - Y - R 

where θ is the unknown direction (e.g., direction of a sound source), Y is the received 
sensory information (e.g., ITD), and R is a vector of neural responses. 

We propose that the population vector decoding method should produce an estimate of θ 
from the neural response R that matches a Bayesian estimate of θ obtained from the 
posterior distribution 

! 

p(" | y) .  

Definition of population vector: The estimate of θ from the neural response R is taken 
to be the direction of the population vector, which is defined as  
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where 
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u(") is a unit vector pointing in direction 

! 
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rn (y) is the response of the nth neuron 
to the input y, and the vector of neural responses is given by 
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Definition of neural tuning curves: We define the neural tuning curves to be the 
expected value of the neural response, taken over the distribution of neural noise: 
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an (y) = E[rn (y)],  

where E[] represents the expected value.   

Definition of Bayes vector: The Bayesian estimate of stimulus direction 
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"  from the 
sensory input Y is given by the mean of θ under the posterior distribution 
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p(" | y) . The 
mean direction is found as the direction of the Bayes vector, which is defined as 
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Proposition: Consider the neural inference problem defined above with neural tuning 

curves that have the form 
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If the preferred directions  
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  are independent and identically distributed 

according to the prior
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p("), and the neural tuning curves are proportional to the likelihood 
function, then the expected value of the population vector, taken over the distribution of 
neural noise, will converge almost surely to a vector that points in the same direction as 
the Bayes vector as the number of neurons grows to infinity. 

Proof:  

The expected value of the population vector, taken over the distribution of neural noise, is 
given by 
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Since for each y, 
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If the neural tuning curves are proportional to the likelihood function, then  
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Note that this result does not depend on the structure of the correlated variability of the 
neural noise. 



Alternative neural decoders: place code and probabilistic population code  

The results indicate that a strict place-code estimate will not reproduce the owl's 
behavior.  The shape of the tuning curves of neurons in the owl's OT are well described 
by the likelihood function (Fig. 6, main text).  Therefore, estimating the sound source 
direction by the location in the auditory space map with maximal activity would be 
equivalent to performing a maximum likelihood estimate.  The maximum likelihood 
estimate fails to capture the owl's behavior (Fig. 4a, main text), indicating that the 
maximally activated region of the network alone does not describe the owl's localization 
behavior. 

To test decoding systems other than a population vector, we used a probabilistic 
population code2. The Bayesian estimate of stimulus direction 

! 

"  from the population 
neural response r is given by the mean of θ under the posterior distribution

! 

p(" | r) . The 
estimate is computed as described for the Bayesian estimate from the posterior 
distribution conditioned on ITD.  Specifically, the estimate from the probabilistic 
population code is given by the direction of the vector that points in the mean direction: 
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Estimates of sound source direction using this decoder did not reproduce the owl's 
behavior when using a network matching the experimental measurements.  We examined 
the direction estimates obtained by computing the mean of the posterior probability 
conditioned on the neural response vector 

! 

p(" | r) .  This estimator utilizes the full 
probability distribution of neural responses, unlike the population vector.  Using the same 
network model described for the population vector (Fig. 6, main text), the Bayesian 
estimate from 

! 

p(" | r)  greatly underestimated the source direction (Supplementary Fig. 
2a,b). For this estimator to match the owl's behavior, the distribution of preferred 
directions must be wider than the distribution of preferred directions measured in OT and 
the tuning curves must be much sharper than the measured tuning curves 
(Supplementary Fig. 2c-f).  Specifically, the Bayesian estimate from 

! 

p(" | r)  will match 
the Bayesian estimate from 

! 

p(" | ITD)  when the likelihood  function based on the neural 
response vector

! 

p(r |") = p(r | ITD)p(ITD |")dITD#  approximates the likelihood 
function 

! 

p(ITD |") .  The likelihoods will be similar when the probability 

! 

p(r | ITD)  is 
sharply peaked around the ITD that the neurons encode, i.e, when the encoded ITD is 
uniquely determined from the neural response.  We found that this occurs only when the 
distribution of preferred directions is wide and the tuning curves are narrow.  Even after 
reducing the standard deviation of the ITD-based likelihood 

! 

p(ITD |")  from 41.2 µs to 5 
µs, the tuning-curve widths required to match the owl’s behavior were sharper than the 
lower bound of the observed curve widths (not shown). 

 



Supplementary Figures  
 
 
 
 
 

 
 
 

Supplementary Figure 1: Direction-dependence of ITD. (a) Measured relationship 
between direction and interaural time difference (ITD) (solid blue) under normal 
conditions3, along with the measured relationship between direction and ITD under ruff-
removed conditions (dashed orange).  Note that ruff removal causes a decrease in the 
range of ITD and an increase in the frequency of the sinusoidal relationship between 
direction and ITD. (b) The difference between the normal and ruff-removed relationships 
between direction and ITD. 

 
 
 

 

 

 



 

Supplementary Figure 2: Performance of the probabilistic population code (PPC).  (a,b) 
Owl’s behavior (bold black) and the estimate from the PPC, i.e., the Bayesian estimate 
from the neural response-conditioned posterior distribution 

! 

p(" | r)  (gray) in the normal 
(a) and ruff removed conditions (b) using the network described in Figure 6, main text. 
The thin black line is the identity.  (c,d) Owl’s behavior (bold black) and Bayesian 
estimate from 

! 

p(" | r)  using sharper tuning curves and a broader range of preferred 
directions (gray) in the normal (c) and ruff removed conditions (d).  (e) RMS error 
between the owl’s normal behavior and the Bayesian estimate from 

! 

p(" | r)  as a function 
of the standard deviation of the Gaussian-shaped distribution from which preferred 
directions were drawn. (f) RMS error between the owl’s normal behavior and the 
Bayesian estimate from 

! 

p(" | r)  as a function of the width of the neural tuning curve of a 
neuron with preferred direction 0 deg. 
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