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1. Finite Element Simulation of the Microsphere Indentation Experiment. 

Deformation of the gel substrate in the microsphere indentation experiments is 

simulated using a commercial software ABAQUS. Typical lateral dimensions of the gel 

layer in experiments are on the order of 10 mm, much larger than the gel layer thickness 

(~ 102 m) and the indenter radius (~ 102m). As a result, the gel substrate can always 

be regarded as infinitely wide compared with the size of the microsphere. Therefore, even 

if the indentation is not carried out in the center of the gel substrate, local gel substrate 

deformation is still axisymmetric about the vertical axis that goes through the center of 

the microsphere. This axisymmetry allows us to create a 2D geometry in the finite 

element simulation, as shown in Fig. S1.  

 

 

FIGURE S1  Schematic of geometry and boundary conditions in the finite element 

simulation.  
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The gel substrate is modeled as a layer of incompressible neo-Hookean solid, with 

a thickness of h (normalized to 1 in numerical simulation). The initial Young’s modulus 

of the neo-Hookean solid, defined by the modulus when the strain is small, is E (also 

normalized to be 1 in numerical simulation).  To model the infinite extent of the gel layer, 

its radius is set to be 20h. We have verified that further increasing the gel substrate radius 

does not affect the numerical results. The indenter is modeled as a rigid sphere of radius 

R. The outer surface of the indenter and the top surface of the gel substrate are defined to 

be a contact pair in ABAQUS. Interfacial friction can be controlled by defining the 

tangential behavior of the interface.  We considered two limits of the interfacial friction 

condition: no-slip condition (infinitely friction) and frictionless (slip) condition (zero 

friction).  It should be noted that the effect of interfacial friction becomes more important 

as the substrate thickness reduces. A downward vertical displacement   is imposed on 

the indenter. The indentation depth   is increased from 0 to 0.6h incrementally, with 

each increment being 0.06h. The force F acting on the indenter at every increment is 

obtained from the finite element results. As shown in Section 3.1, dimensional analysis 

reveals that  
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To find out the dependence of f on R/h, a series of simulations were carried out where the 

values of /R h  were taken to be  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.5,  and 12.7.  

We first use a mesh that typically consists of about 3000 elements. The mesh is 

finer near the indenter (element size ~0.05h) and is coarser far away from the indenter 

(element size ~0.3h), since deformation of the substrate material far from the indenter 

vanishes.  A representative mesh for R/h=2 is shown in Fig. S2A, and Fig. S2B shows 

the deformed shape of the substrate at an indentation depth of 0.6h  . Frictionless 

condition is used in Fig. S2B. 

 



 

(A) 

 

      (B) 

FIGURE S2 Representative finite element mesh ( / 2R h  ) that consists of about 3000 

elements. (A) The undeformed mesh before indentation. (B) The deformed mesh after 

indentation ( / 0.6h  ). Note that the right end of the substrate layer is not shown in (A) 

and (B) to better illustrate the mesh near the indenter. 

 

The validity of the finite element results was verified by a convergence test: the 

finite element results should converge as the mesh size is reduced. We performed the 

convergence test by using a refined mesh that typically consists of 11,000 elements. The 

element size is about 0.025h near the indenter and is about 0.3h far away from the 

indenter. An example of the convergence test results for / 2R h   with frictionless 

condition is shown in Fig. S3, where we plot the normalized applied force 2/F ER  versus 

the normalized indentation depth / R  for the coarse and refined meshes. Fig. S3 clearly 

shows the convergence of finite element results. We also plot the prediction of Hertz 

theory in Fig. S3. Hertz theory predicts a much smaller force F than the finite element 

results, demonstrating the limitations of Hertz theory for thin substrate and large 

indentation depth. 
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FIGURE S3 The normalized force 2/F ER  versus the normalized indentation depth / R  

for / 2R h   (frictionless). The finite element result using fine mesh (red solid line) 

perfectly agrees with that using coarse mesh (black square). The two meshes are 

described in the text above. The dashed line is the prediction of Hertz theory, which 

clearly deviates from the finite element results. 

 

2. Fitting Finite Element Results 

Finite element calculations allow us to determine the applied force F for every 

increment of indentation depth .  We are interested to determine the correction factor   

to the Hertz modulus (see Eq. 5 in the paper), where 
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For frictionless (slip) conditions, the finite element results of     using R/h from 2 to 

12.7 collapsed into a master curve (see Fig. 4A in paper).  The same situation occurs for 

no-slip conditions (see Fig.4B).  We first seek an analytical expression that can fit the 

master curves for both frictionless and no-slip conditions. 



0 0.5 1 1.5
0.5

0.6

0.7

0.8

0.9

1

1.1

a/h

R
/a

3

Numerical
Eq. S3

 

 

0 0.5 1 1.5
1

1.2

1.4

1.6

1.8

2

2.2

a/h

9
R

F
/(

1
6

E
a3

)

Numerical
Eq. S4

 

FIGURE S4 Finite element results for / 2R h   and frictionless condition. (A) 

Normalized indentation depth 2/R a  versus the normalized contact radius a/h. The 

symbols are finite element results and the solid line is given by Eq. S3. (B) Normalized 

applied force  39 / 16RF Ea  versus the normalized contact radius a/h. The symbols are 

finite element results and the solid line is given by Eq. S4.  

 

To motivate the fitting formula, we take the case with / 2R h   and frictionless 

condition as an example. The normalized indentation depth and normalized applied force 

are plotted as functions of the normalized contact radius a/h in Fig. S4A and Fig. S4B, 

respectively. We found that the numerical results can be well approximated by the 

following analytical expressions: 
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where a is the contact radius. Note that Hertz theory is recovered as /a h  in Eq. S3 

and S4.  Eq. S3 and S4 are very similar to the expressions given in Shull (Ref. 28 in 

paper) except some numerical constants are changed. We eliminate the contact radius a 

from Eq. S3 and S4 and find out that  
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where  3/ 22/R h  . Using Eq. S5, it is easy to show that  
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Based on the asymptotic behavior given in Eq. S6, we construct a fitting formula for the 

function    , i.e.,  
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where iC  (i=1 to 4) are numerical constants and can be determined by fitting the finite 

element results to Eq. S7.  The best fit we found for both no-slip and frictionless 

condition is: 1 2.3C  , 2 1.15C  , 3 9.5C  , and 4C   , where    is 9.288 for no-slip 

condition and is 4.212 for frictionless condition. Comparison of the analytical expression 

(Eq. 8) and the finite element results are shown in Fig. 4A and 4B in the paper. 

When R/h is less than 2, the correction factor   is a function of both /h and R/h, 

instead of solely depending on a single parameter  (see Fig. 3 in paper).  However, we 

found that Eq. S7 can still be used to fit finite element results for different R/h. 

Specifically, the following formula is used: 
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The numerical coefficients  and  are functions of R/h, and were obtained by fitting Eq. 

S8 to finite element results for different R/h from 0.5 to 12.7 (with / h  up to 0.6). For 

example, values of  and for frictionless (slip) condition are shown in Fig. S5A and 

S5B, respectively. The solid lines in Fig. S5A and S5B are obtained using Eq. 7a and Eq. 

7b in paper, which can well approximate numerical results of  and , as shown in the 

figure. Similarly, we found that, for no-slip condition,  and can be well approximated 

by Eq. 7c and Eq. 7d in paper. 
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FIGURE S5 (A) Numerical results of  in Eq. S8 for frictionless interface (circle). The 

solid line is obtained using Eq.8a in paper. (B) Numerical results of  in Eq. S8 for 

frictionless interface (square). The solid line is obtained using Eq.8b in paper. 

  

Although obtained by fitting finite element data for R/h from 0.5 to 12.7, the 

correction factor (Eq. 6 in paper) can be applied to smaller R/h. For example, for the case 

of frictionless condition (slip) and R/h = 0.3, the maximum error made by Eq. 6 relative 

to the finite element results is about 3% for / h  up to 0.3 (see Fig. S6). In other words, 

Eq. 6 applies to the regime of R/h = 0.3 and / 0.3h  . Therefore, the region of 

applicability of Eq. 6 is extended to  / min 0.6, /h R h   and 0.3 / 12.7R h  . 
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FIGURE S6 Percentage error (= 100 /FEM FEM    , where   is given by Eq. 6 and 

FEM  is the finite element result of correction factor) made by Eq. 6 for / 0.3R h   and 

/ h  up to 0.3. The maximum relative error is about 3%.  

 

3. Effect of adhesion 

The JKR theory has been used extensively to characterize the surface energy of 

soft materials (see Ref. 36 in paper).  Briefly, the JKR theory is an extension of Hertz 

theory, in that it accounts for adhesion by including the effect of attractive surface forces 

that act between two contacting surfaces.  These surface forces are modeled by adding a 

tensile stress distribution to the usual compressive stress of the Hertz theory.  The 

magnitude of this tensile stress distribution is determined by the work of adhesion, W, of 

the materials in contact. To summarize, a correction term due to adhesion is subtracted 

from the Hertz force and displacement, resulting in  

 3/ 22 8 / 3H JKRF F a E W            (S9) 
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where ,H HF   are the force and indentation depth predicted by Hertz theory, and a is the 

radius of the contact region in the presence of adhesion. JKRE  is the Young's modulus of 

the substrate which is infinitely thick, similar to that in Hertz theory. The subscript "JKR" 



is used to distinguish from the modulus E in the paper that accounts for finite thickness 

effect but neglects the adhesion. Eq. S9 states that a smaller compressive force 

(indentation depth) is needed to bring two adhering spheres into the same amount of 

contact. The Young’s modulus JKRE  can be obtained by eliminating the contact radius in 

Eq. S9 and Eq. S10 using  316 / 9H JKRF E a R  and 2 /H a R  , i.e., 
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where  3/ 29 / 16HE F R  is the modulus obtained using Hertz theory.  The left hand 

side of Eq. S11 is the correction factor for adhesion.  The accuracy of modulus 

determined using Hertz theory can be quantified by plotting /JKR HE E against / pull offF F   

(see Fig.S7),   where pull offF  =3 / 2RW  is the pull-off force in JKR theory (Ref. 36 in 

paper). As shown in Fig. S7, /JKR HE E  can be much greater than 1 for small / pull offF F   

or small indentation.  This result shows that the actual modulus can be many times larger 

than the modulus determined using Hertz theory, as pointed out by Frey et al. (Ref.22 in 

paper).   
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FIGURE S7 Log-Log plot of /JKR HE E  versus the dimensionless force  2 / 3F RW . 

The dashed lines serves as a reference where the value of /JKR HE E  is exactly 1. 

 


