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SUPPLEMENTARY MATERIAL

Legend to Supplementary Movie 1

Time-lapse animation corresponding to Fig. 1a. The white contour in Fig. 1a is shown
in blue in the movie. It corresponds to a fluorescence-intensity threshold which is
taken at a fixed value throughout the duration of the movie. Note the transient nature
of protrusions outside the blue contour.

Modelling and numerical technique

Modelling live cells is a formidable entreprise which is still far out of reach. However,
in situations such as the initial spreading of cells, experimental results give some hope
that only a few of the features of the living cell are setting the dynamics, which may
allow for a simple model to explain them. Thus we proceed by introducing the sim-
plest possible model for this precise situation and gradually introducing features until
a behaviour similar to the one observed in cells is obtained, and is robust to parameter
variations.

Cells in suspension are very much spherical but they are strongly inhomogeneous
in their composition. The central part (around 10% to 20% volume, or 50% radius) is
occupied by a nucleus. Around the nucleus is the cytoplasm, a porous medium com-
posed of polymerised, reticulated proteins (the cytoskeleton), membrane-bound com-
partments of sub-micrometric size (organelles) and a fluid (the cytosol). The mechani-
cal properties of the cytoplasm are expected to arise from the fluid (incompressibility,
viscosity) and the cytoskeleton (elasticity or viscoelasticity, active remodelling fuelled
by chemical energy). Mechanical response is dominated by a viscous-type response at
shear rates lower than 0.1 s−1 (1) this can be understood because of the short lifetime
of the reticulations and of the protein filaments themselves (order 1 s, see e.g. 2). The
cytoskeleton is far from having a homogeneous distribution in the cell. Microtubules
are highly rigid filaments arranged in a star-like manner from the centre of the cell to its
periphery. For geometric reasons, they are not expected to sustain much stress during
initial spreading. Actin filaments are concentrated in a cortex in the periphery of the
cell (thickness of order 1 µm, (1)). Thus one can expect a higher viscosity in this outer
region. The cell is enclosed by a membrane, which is bound to the actin cortex. The
membrane is a lipid bilayer which prevents large molecules to enter the cell and creates
osmotic effects. It is fluid (in-plane shear viscosity is low) and (nearly) inextensible.
This inextensibility constraint is modulated by the presence of membrane “reservoirs”
(either ruffles or invaginations). From frustrated spreading experiments by (3), where
spreading is limited because only a small circular patch is functionalized and thus per-
mits adhesion, we know that this readily accessible area is sufficient for the spread area
to reach at least 700 µm2. This is large compared to the range of spread area consid-
ered in initial spreading, however the recruitment of these extra area reservoirs, located
everywhere around the cell, may affect the spreading dynamics. Membrane area is
then modulated by coalescence (and decoalescence) of small vesicles. This is an active
biological process called exocytosis/endocytosis, happening on the time scale of 100
s (4). We do not directly consider this in our model, however as long as one assumes

1



that this process is not geometrically directed, its effects are similar to the presence of
excess area.

Given the experimental observations, Stokes equations are expected to be a fair
first-order approximation of the dissipative mechanisms in the dynamical process. As-
suming that a lubrication layer thick of order 0.1µm remains between cell and sub-
strate, the shear rate is of order 1 s−1 initially and decreases, and the Reynolds number
is vanishingly small. In the cell, a typical distance is 1 µm (the thickness of the shell
of actin around the cell), so the shear rate is one order of magnitude lower. This means
also that viscoelastic properties of the proteins in the cell cytoplasm will be dominated
by viscous response. Buoyancy effects are sufficient to make cells sediment, however
they are too weak to deform cells and, when cells are close enough to the substrate, they
become negligible with respect to the adhesion force which then provides the only first
order driving force. This adhesion force, in our case, may result either from specific
or nonspecific interactions, without modifying the scaling laws of spreading. Thus we
choose the simplest model we can think of, that is, a van der Waals-type potential of
magnitude w, as proposed by (5) for nonspecific adhesion :

W (z) = w

((
d2

0

z2
− 1

)2

− 1

)
. (1)

We take the equilibrium distance of the potential d0 = 0.05R0 in this model for simu-
lations, the invariance of the spreading profile (up to a scaling factor in time) has been
checked with d0 = 0.01R0 in some cases.

We consider a cylindrical flow domain of symmetry axis (O, ez), and denoted
Ω × [0, 2π] (using cylindrical coordinates, Fig. S1). This domain contains an incom-
pressible Newtonian fluid of homogeneous viscosity η = ηs except in the drop or
vesicle, which occupies a subdomain Ωd(t) × [0, 2π] which is advected by the fluid
velocity u, and where viscosity η is equal to some function ηd(x, t), also advected by
the fluid velocity. This writes as:

Ωd(t) = {X(x0, t),x0 ∈ Ωd(t0)} ηd(X(x0, t), t) = ηd(x0, t0) (2)

with t 7→ X(x0, t) the trajectory of a material point occupying x0 at time t0, defined
by the Cauchy problem:{

∂X

∂t
(x0, t) = u ◦X(x0, t), t ∈ [0, T ],

X(x0, t0) = x0,
(3)

where u ◦X(x0, t) is understood as u(X(x0, t), t).
The structure of the problem should reflect our objective of describing a balance

between adhesion force and viscous friction and be scale-invariant to a change in nu-
merical value of any of the parameters. This is made clear by non-dimensionalising
the problem by length R0 (initial radius of the drop or vesicle), viscosity η0 (largest
viscosity in the problem), time T = R0η0/w and pressure P = w/R0, which does not
introduce any nondimensional group in the governing equations:

−div (2ηD(u)) + ∇p = 0 in Ω (4)
divu = 0 in Ω (5)
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with boundary conditions (see Fig. S1):

u = 0 on Γwall,

ur = 0,
∂uz
∂r

= 0 on Γaxis,

−pnout + 2ηD(u)nout = 0 on Γout,[
−p I + 2ηD(u)

]
int nint = −∇W + f int on Γint(t),

where [φ]int denotes the jump of φ accross the interface Γint(t), and f int are interfacial
forces other than the adhesion force ∇W .

For fluid drops suspended in a fluid in which they are immiscible, this force is
equal to the capillary force. Since the dynamic balance we are looking for is between
adhesion and viscous friction, we consider the limit of vanishing capillary tension (infi-
nite capillary number), thus suppressing any competition between driving forces. This
limit is relevant only in the first stages of drop spreading, which is the domain in which
analogies between drop and cell spreading are investigated. At later stages, the be-
haviour of cells is driven by the complex machinery of its cytoskeleton (6), while for
drops surface tension takes a leading order importance. Viscosity differs between the
drop inside and medium, and is either supposed uniform within the cell or space de-
pendent. Such models are called composite or compound drop models (7).

In some simulations it was desireable to explore the case of vanishing viscosity of
the suspending medium (infinite viscosity contrast). The equations of the suspending
fluid are then trivially reduced to a homogeneous pressure p = 0, and only the drop or
vesicle is actually simulated.

Numerical simulations of membrane-bound drops (vesicles)

The cell membrane is a lipid bilayer, which is impermeable to large molecules but
permeable to water. Although no accurate quantitative validation exist, it is gener-
ally assumed that at the time scale of a few hours permeability can be neglected; thus
the membrane normal displacement is equal to the fluid normal displacement. Lipid
bilayers are two-dimensional fluids, their in-plane shear viscosity is relatively small
(8), but they are nearly incompressible (in their plane). This translates as an inexten-
sible surface in the three-dimensional problem, inextensibility is enforced through a
tension force, which has a tangential component equal to the gradient of tension (two-
dimensional analogue of pressure). Bending this surface results in two distinct normal
forces: bending rigidity, which originates from the dissymmetry of lipid layers intro-
duced by curvature, and a normal component of the inextensibility force, which corre-
sponds to the floppiness of the surface with respect to curvature reduction. In cells, the
cytoskeleton underlying the plasmic membrane is bound to it at intervals (submicron
scale) by transmembrane proteins and more densely by weaker lipid bonds (9). Thus
the hydrodynamic boundary condition that applies on the flow of the cytoplasm is, to
the first order, a no-slip condition on the membrane.

The interfacial forces correspond to the forces exerted by the membrane on the
fluids. They originate from the bending rigidity, shear viscosity and inextensibility of

3



the membrane. For the same reason as for drops, we consider the limit of zero bending
rigidity. Lipid bilayers have a low in-plane shear viscosity and, even for spectrin-lined
membranes, has a negligible contribution to dynamics compared to bulk-viscosity in
cells. (From the value of in-plane shear viscosity found by (8) for red blood cells, we
expect dissipation in the eukaryotic cell membrane to be about 3 orders of magnitude
smaller than in the bulk.) Inextensibility, however, is a constraint imposed to membrane
flow and thus to fluid flow in its vicinity. It can be expressed in terms of the surface
divergence of the (tangential) velocity along the membrane:

divs u = 0 on Γ(t), (6)

Incompressibility and inextensibility constraints are much alike. We offer to treat
them in the same framework of constrained minimisation. The Stokes problem above
can be rewritten in terms of its energy. The solution u is such that{

J(u) ≤ J(v) ∀v, divv = 0 in Ω(t) and divs v = 0 on Γ(t)
divu = 0 in Ω(t) and divs u = 0 on Γ(t)

(7)

(Surface divergence condition only applies to the case of membrane-bound vesicles.)
Lagrange multipliers (pressure p and tension ζ) do not appear explicitely in this formu-
lation. If we introduce them as test functions of the constraints,

L(v; q, ξ) = J(v) +

∫
Ω(t)

q divv dx +

∫
Γ(t)

ξ divs v ds, (8)

then we can characterise the solution u in terms of an unconstrained minimisation
problem:

L(u; p, ζ) = min
v

max
q,ξ
L(v; q, ξ) (9)

The Lagrange multiplier ζ is also completely characterised by this procedure as soon as
the curvature is not everywhere zero. Pressure is defined up to a constant (so is tension
if curvature is everywhere zero).

The energy landscape to be minimised is schematised in Fig. S2. Different methods
can be used for this. Penalty methods consist in minimising the functional

J(v) + r

∫
Ω(t)

(divv)2 dx + r′
∫

Γ(t)

(divs v)2 ds

where r and r′ are penalty parameters : in order for the method to be exact, they need to
be made to tend to the infinity, thus the minimum, initially located outside of the space
such that |divv| + |divs v| = 0, converges to u. It is however not practical to have
r, r′ too large. Projection methods minimise J(v) globally and then project the result
onto the space such that |divv|+ |divs v| = 0, which introduces errors with respect to
boundary conditions. Saddle-point methods, finally, consider the full problem in Eq. 9.
One observes (sketch in Fig. S2) that the minimum of maxq L(v; q) is exactly the point
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described in Eq. 7. The augmented Lagrangian method (10) consists in adding to the
Lagrange functional a penalty term:

Lr(v; q, ξ) = L(v; q, ξ) + r

∫
Ω(t)

(divv)2 dx + r′
∫

Γ(t)

(divs v)2 ds

One checks easily that saddle-points of L and Lr coincide for any choice of r, r′,
the latter however allows a faster convergence of iterative algorithms because non-
divergence free velocity fields are penalised in minimisation steps (with respect to v).

In order to represent the excess membrane area available prior to cell spreading (3),
the numerical simulations of vesicles start from an initial condition where wrinkles are
superimposed to the initial spherical shape (Fig. 5a).

In practice, the numerical simulations allow only for a limited scale separation
between vesicle size and wrinkle size, since computational cost will grow with the
number times the depth of wrinkles (and the depth of wrinkles roughly scales with
their number for a given excess area). Therefore, we used 20 wrinkles of depth 0.05R0,
rather than try to reproduce the very small scale membrane folds observed on real cells.

As the vesicle spreads, this geometry induces a step-like growth of aligned area,
as bulges align very quickly with the substrate whereas dimples take some time to do
so. For comparison with experiments, the growth of aligned area should not take these
steps into account. In order to reduce the influence of these steps on the linear fits, we
average first the spreading profile obtained in two calculations with wrinkles in spatial
phase opposition (see Fig. S3).

Determination of the transition between linear and slow spreading regimes

The area of the aligned area is found to incur a growth close to linear in time until a
time t∗ (phase P1). For t > t∗, the growth is much slower in time (phase P2).

In order to determine automatically t∗, we calculate for each spreading experiment
the least-square deviationDA(t) =

∑
ti<t

wi(A(ti)−Cti)2 ofA(t) with a linear curve
Ct over the time lapse [0, t], where wi is a weight corresponding to the length of the
interval, wi = 1

2 (ti+1− ti−1), and C is an adjustable parameter minimizing DA(t) for
A(t) ≤ 80µm2, that is, before transition occurs in any spreading experiment. DA(t) is
an increasing function of t, with a left-right inverted L-shape. t∗ is then defined as the
instant when DA(t∗) reaches 40 000µm2·s, meaning that A(t) deviates strongly from
linear increase for t > t∗. We define the transition area A∗ = A(t∗).

Numerical simulations

A finite element technique is employed to calculate an approximate solution of Eq. 7
for a sequence of times tn, and Ωd(tn+1) is obtained by advecting Ωd(tn) with the
approximation of velocity u(tn). This Lagrangian tracking of the interface is such
that meshes of both the bulk and the interface coincide. Compared to methods where
the bulk is meshed independently of the interface (such as level-set, phase-field and
immersed boundary methods), the advantage is a greater accuracy due to the possi-
bility of localising interfacial forces on the interface. Compared to boundary integral
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methods, the advantage is versatility with respect to bulk-flow governing equations and
geometry.

Lagrange multipliers and the velocity are calculated using a saddle-point approach
(10, 11) with Uzawa algorithm. The residual was 10−12. The method is implemented
in the C++ open-source, free software rheolef (12).

The numerical method has been tested and validated with O(h1.5) convergence
against the analytical solution for drop oscillation modes of (13) (for the case of drops
or composite drops) and the Stokes solution of the free fall of a spherical vesicle (11).

Determination of the aligned area in numerical simulations

The quantity of interest in simulations is the distance r from the symmetry axis over
which interface Γint(t) is close to z = 0 in some sense, which corresponds to the
aligned area. We define the contact time as the instant from which the object starts to
deform. We measure the aligned area by tracking from then the radial position of the
point from which the interface Γint(t) is 10−6 space units farther from the substrate than
the closest point of the interface at the same instant. This procedure is relevant only
to high viscosity contrasts, when the drainage of the lubrication film below the object
is quick. For lower viscosity contrasts, we track the point from which the interface is
above z = d0 + 0.02R0. At intermediate viscosity contrasts, these two definitions of
the aligned area yield parallel curves with a small time lag.

In order to compare spreading profiles with power-laws A = Ctk, best fit is cal-
culated by least squares over the range A = 1.6 · 10−3A0 to A = 0.64A0. The upper
bound corresponds to a lower estimate of the transition from phase P1 to phase P2 in
experiments. The lower bound is a numerical cut-off. This cut-off is several times
larger than the mesh size at the aligned area, because aligned area is not a primitive
variable of the problem and needs to be evaluated by geometrical post-treatment. Error
for the least squares ranges from 10−3 to 3 · 10−2. These best-fit results for model
objects and cells in experiments are shown in Fig. 6a as a function of the contrast of
viscosity between the object and the suspending fluid.

Distribution of dissipation

In simulations, the only source of energy is the adhesion energy gained by spreading.
Because there is no inertia or elasticity, all this energy is instantaneously dissipated by
friction. Therefore, tracking dissipation and spread area is equivalent, and we obtain
the same slopes in figures S5b, S6b and S7b as in figures 3d, 4d and 5d.
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Figure S1: Computational domain and example of part of a finite element mesh used in numeri-
cal simulations.
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Figure S2: Sketch of the energy landscape of a constrained minimisation problem: functional
J(v) must be minimised under the condition that |divv| + |divs v| = 0. Exact
solution is u, which is the minimum of maxq L(v; q).
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Figure S3: Growth of contact area of two vesicles with area reservoirs, viscosity contrast 100.
Empty symbols represent vesicles, with wrinkle patterns in phase opposition. They
exhibit step-like growth of aligned area due to their geometry. The instantaneous
average of these values and their approximation with a Bézier curve partially smear
out these steps and are easier to compare to power-laws.
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Figure S5: Dissipation as a function of time during initial drop spreading, for different viscosity
ratios. (a), ratio of dissipation occuring inside the drop compared to total dissipation
(medium included). (b), total dissipation incurred since the beginning of spreading.
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Figure S6: Dissipation as a function of time during initial spreading of a composite drop, for
different viscosity ratios. (a), ratio of dissipation occuring inside the cortex com-
pared to total dissipation (central, low-viscosity part and medium included). (b), total
dissipation incurred since the beginning of spreading.
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Figure S7: Dissipation as a function of time during initial spreading of a vesicle, for different
viscosity ratios. (a), ratio of dissipation occuring inside the vesicle compared to total
dissipation (medium included). (b), total dissipation incurred since the beginning of
spreading.
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