Supporting Information

Table of Contents

Supplementary Methods

Supplementary Tables

Table S1: Primers used in this study.

Supplementary Figures

Fig. S1: Inactivation of *pacB* in *S. coeruleorubidus*.

Fig. S2: SDS-PAGE analysis of the *E. coli* purified PacB.

Fig. S3: HR-MS and HR-MS/MS of 1 measured during LC-MS.

Fig. S4: HR-MS and HR-MS/MS of 2 measured during LC-MS.

Fig. S5: HR-MS and HR-MS/MS of 3 measured during LC-MS.

Fig. S6: HR-MS and HR-MS/MS of 4 measured during LC-MS.

Fig. S7: FTMS and Ppant ejection analysis of the *in vitro* reaction generating PacH-bound Ala₁-*m*Tyr₂-DABA₃-Ala₄-CO-*m*Tyr₅.

Fig. S8: FTMS and Ppant ejection analysis of the *in vitro* reaction generating Ala₁-*m*Tyr₂-DABA₃-*S*-PacH.

Fig. S9: MS/MS analysis of Ala₁-*m*Tyr₂-DABA₃-Pant ion in Ppant ejection assay.

Fig. S10: FTMS and Ppant ejection analysis of the *in vitro* reaction generating *m*Tyr₂-DABA₃-*S*-PacH without tRNA.

Fig. S11: Three-dimensional structural model of PacB in comparison to the reported structure of FemX.

Fig. S12: Sequence alignment of PacB and FemX of W. viridescens by ClustalW analysis.

References

Supplementary Methods

Pacidamycin production and isolation. For PacB gene deletion experiment, two mutants were selected for pacidamycin production analysis after PCR verification (primers listed in table S1). Wild-type *S. coeruleorubidus* was grown side by side as controls with all of the mutants. Starter cultures in TSB medium were inoculated with spores and incubated at 30 °C, 200 rpm for 24 h. Production medium (20 mL; 20.99 g/L MOPS, 10 g/L lactose, 4.41 g/L K₂HPO₄, 2.14 g/L NH₄Cl, 0.6 g/L MgSO₄, 10 mg/L FeSO₄·2H₂O, 10 mg/L MnCl₂·4H₂O, 10 mg/L ZnSO₄·7H₂O, 10 mg/L CaCl₂, pH 7.0) was inoculated with starter culture (0.5 mL) and incubated at 30 °C, 200 rpm for 5 d. Pacidamycins were extracted from the cell-free broth (10 mL) using XAD-16 resin (5% v/v). The resin was washed with water (20 mL) and the extract was eluted with methanol (5 mL). The solvent was removed by a rotary evaporator and the residue was redissolved in water/methanol 1:1 (500 µL) and subjected to LC-HRMS analysis (25 µL injection).

Cloning, Overexpression and Purification of Proteins. Cloning, expression, and purification of PacDHIJLNOPW have been reported previously (1). *pacB* was PCR amplified from genomic DNA and ligated to pET-30 Xa/LIC (Novagen) following the standard protocol and confirmed by DNA sequencing. The resulting expression construct was transformed into *E. coli* BL21 for protein expression. In 1 L of liquid culture, the cells were grown at 37 °C in LB medium with 50 μ g/mL kanamycin to an OD600 of 0.4. The cells were cooled on ice for 10 min and then induced with 0.1 mM isopropyl- β -D-thiogalactopyranoside (IPTG) for 16 h at 16 °C. The cells were harvested by centrifugation (6000 rpm, 6 min, 4 °C), resuspended in 30 mL lysis buffer (25 mM HEPES pH 8.0, 0.5 M NaCl, 5 mM imidazole) and lysed by sonication on ice. Cellular debris was removed by ultracentrifugation (35000 rpm, 35 min, 4 °C). Ni-NTA agarose resin was added to the supernatant (2 mL/L of culture) and the solution was nutated at 4 °C for 1 h. The protein resin mixture was loaded into a gravity flow column, and proteins were eluted with increasing concentrations of imidazole in Buffer A (50 mM HEPES, pH 8.0, 1 mM EDTA). Purified proteins were concentrated and buffer exchanged into Buffer A + 10% glycerol using Amicon Ultra filters. The final proteins were flash-frozen in liquid nitrogen and stored at -80 °C.

Supplementary Table

Table S1. Primers used in this study.

Primer	Sequence	Note
mPacB_F	5'- AAAACCGCCCTTGCCCGCGG-3'	Used for $\Delta pacB$
mPacB_R	5'- AACCGGATCCGGTAGGACAG-3'	mutant construction;
mPacBap_F	5'-CTCGCTGGTTGGACACTAGATCATGAGGGCTGATACatgATT	mPacB_F is also
	CCGGGGATCCGTCGACC -3'	used for mutant
mPacBap_R	5'-CCCGGTGGCTGCCGGCGGGGTACCAGCCGCCTCCCTCttaTGT	verification
	AGGCTGGAGCTGCTTC-3'	
Apra_i	5'-AGTTGTCTCTGACACATTCT-3'	Internal primer for
		mutant verification
PacB_PET30F	5'- GGTATTGAGGGTCGCATGGCTATTGGTTTTACCTC-3'	Used for PacB
PacB_PET30R	5'- AGAGGAGAGTTAGAGCCTTATGATTCGCTACAGGCAA-3'	expression

Supplementary Figures

Fig. S1. Inactivation of *pacB* in *S. coeruleorubidus. pacB* was deleted in-frame by homologous recombination as illustrated above. The genomic DNA of wide-type and two $\Delta pacB$ mutant strains was extracted and used as templates for subsequent PCR verification of mutants. PCR was carried out using one internal primer from acc(3)IV-oriT cassette and one external primer (Table S1). The size of PCR products was consistent with the expected size of $\Delta pacB$ mutant.

Fig. S2. SDS-PAGE analysis of the *E. coli* purified PacB. Lane 1: Ladder; Lane 2: Elution; Lane 3: Wash; Lane 4: Flowthrough; Lane 5: insoluble pellet.

Fig. S3. HR-MS and HR-MS/MS of 1 measured during LC-MS.

Fig. S4. HR-MS and HR-MS/MS of 2 measured during LC-MS.

Fig. S5. HR-MS and HR-MS/MS of 3 measured during LC-MS.

Fig. S6. HR-MS and HR-MS/MS of 4 measured during LC-MS.

Fig. S7. FTMS and Ppant ejection analysis of the *in vitro* reaction generating PacH-bound Ala₁-*m*Tyr₂-DABA₃-Ala₄-CO-*m*Tyr₅. Enzymes and substrates: PacBDHJLNOPW, aatRS, tRNA, DABA, *m*-Tyr, Ala, ATP.

Fig. S8. FTMS and Ppant ejection analysis of the *in vitro* reaction generating Ala₁-*m*Tyr₂-DABA₃-*S*-PacH. Enzymes and substrates: PacBHPW, aatRS, tRNA, DABA, *m*-Tyr, Ala, ATP.

Fig. S9. MS/MS analysis of Ala₁-*m*Tyr₂-DABA₃-Pant ion in Ppant ejection assay.

Fig. S10. FTMS and Ppant ejection analysis of the *in vitro* reaction generating *m*Tyr₂-DABA₃-*S*-PacH without tRNA. Enzymes and substrates: PacBHPW, aatRS, DABA, *m*-Tyr, Ala, ATP.

Fig. S11. Three-dimensional structural model of PacB in comparison to the reported structure of FemX (PDB ID 3GKR). Domain 1 is represented in blue and domain 2 in red. FemX domain 1: residues 1-145 and 317-335, FemX domain 2: residues 146-316. PacB domain 1: residues 1-164 and 332-350, PacB domain 2: residues 165-331.

Fig. S12. Sequence alignment of PacB and FemX of W. viridescens by ClustalW analysis (2).

References

1. Zhang W, et al. (2011) Nine enzymes are required for assembly of the pacidamycin group of peptidyl nucleoside antibiotics. J Am Chem Soc 133:5240-5243.

2. Larkin MA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-2948.