Supporting Information

Rabeling et al. 10.1073/pnas.1105467108

SI Materials and Methods

Population-Genetic Analyses. Population sampling. The known distribution range of Mycocepurus smithii includes Latin America from northern Mexico to northern Argentina and many Caribbean islands (1-6). To test for asexuality in M. smithii, we sampled populations throughout the geographic range between 2003 and 2010 (Table S1). Previous studies demonstrated that *M. smithii* colonies could be either mono- or polygynous, meaning that a single colony could include either a single or multiple reproductively active queens (7-9). Preliminary genotyping of sampled individuals revealed that in some populations more than a single multilocus genotype was present; however, queen and offspring genotypes were genetically identical. Hence, our working hypothesis was that *M. smithii* queens produce workers and queens clonally, either via apomixis or automixis. We attempted to sample entire colonies of M. smithii through careful nest excavations, including whenever possible workers, brood, and a reproductively active queen(s). In addition to nest excavations, workers were collected from nest entrances. Scooping up nest entrances with a knife proved to be an efficient way to collect workers because foragers accumulate in a tiny circular chamber below the entrance (7, 10).

Microsatellite development. To characterize M. smithii colonies and populations genetically, we developed 12 highly variable short tandem repeat markers (microsatellites). For microsatellite development, genomic DNA was extracted from ~100 M. smithii workers collected from a single population in Rio Claro, Brazil, with a QIAamp DNA Micro Kit (QIAGEN) to obtain ~100 µg DNA. Genetic Identification Services enriched microsatellite libraries for four different motifs in parallel: CA, GA, AAC, and ATG. Pooled genomic DNA was partially restricted with the enzymes RsaI, HaeIII, BsrB1, PvuII, StuI, ScaI, and EcoRV. Size-selected fragments (300–750 bp) were linked to adapters containing a HindIII restriction site and then captured with magnetic beads. Fragments were ligated into the HindIII site of the plasmid pUC19. Plasmids were propagated in Escherichia coli DH5 α and stored in 20% glycerol at -80 °C. Cells from the glycerol stock were spread on X-gal/isopropyl-β-D-thiogalactoside/ ampicillin plates, picked after incubation, and heated to 100 °C for 10 min in 10 μ L PCR Master Mix (1× PCR buffer, 30 nmol MgCl₂, 3 nmol each dNTP, 15 pmol M-13 cloning-site primers). Five microliters of polymerase solution (0.075 µL, 5 U Taq DNA polymerase, 0.5 µL 10× PCR buffer, 4.425 µL ddsH₂O) were added to amplify the insert using a PTC-200 Cycler (MJ Research) (94 °C for 3 min; 35 cycles of 94 °C for 40 s, 55 °C for 40 s, 72 °C for 30 s; 72 °C for 4 min). Overall, 100 PCR products (25 for each of the CA, GA, AAC, and ATG libraries) were sequenced on an Applied Biosystems 3100 Genetic Analyzer using BigDye Terminator chemistry.

Twelve loci were chosen to represent a variety of variable repeat motifs, variable product sizes, and similar annealing temperatures, and were combined in four multiplex polymerase chain reactions (Table S7). Specific primers were designed with an optimal annealing temperature (T_m) of 56–58 °C, a GC content of ~50%, and at least one GC clamp using the Primer3 web site (11).

Genotyping. DNA of single workers, queens, and spermatheca contents was extracted using a 10% Chelex solution (Sigma-Aldrich). Spermatheca contents were extracted following the methodology outlined in Rabeling et al. (8). One microliter of DNA extract was used per 10 μ L PCR and amplified using the following conditions: 95 °C for 5 min; 35 cycles of 94 °C for 30 s, 55 °C for 90 s, 72 °C for 60 s; 72 °C for 10 min. Using the multiplex

PCR, we examined allelic variation within each locus by genotyping 1,930 *M. smithii* samples, yielding a total of 106 alleles across the 12 loci (range = 2-15 alleles per locus; Table S7). The number of alleles per locus per individual never exceeded two, indicating that *M. smithii* females are diploid. Representatives of each multilocus genotype were genotyped twice, using the same DNA extract, and scored blindly to minimize the possibility of erroneously assigning incorrect genotypes to the individuals.

For fragment analysis, 1 μ L of PCR product was mixed with 8 μ L of HiDi (Applied Biosystems) and 1.5 μ L of cheaply amplified size standards using the following primer/ladder sizes: ROX F1, ROX 104, ROX 150, ROX 200, ROX 253, ROX 305, and ROX 424 (12). PCR products were analyzed on an Applied Biosystems 3100 Genetic Analyzer and alleles were scored using GeneScan v3.5 (Applied Biosystems) and GeneMarker v1.5 (SoftGenetics).

Statistical analyses. The goals of the population-genetic analyses were to determine (i) whether M. smithii is obligately or facultatively asexual, (ii) the cytogenetic mechanism underlying parthenogenesis in reproductive females, and (iii) the genetic structure and diversity within and among asexual and sexual colonies and populations. According to preliminary analyses performed on laboratory and field colonies, our hypothesis was that workers and queens of a single colony exhibited repeated multilocus genotypes (MLGs). The genotype-to-individual ratio (G:N ratio) is a simple measure for identifying clonality, with ratios ranging from 0 to 1 (13). A value close to 0 is characteristic of a strictly clonal colony/ population in which all individuals share the same genotype, whereas a value of 1 is characteristic of a population in which all individuals have distinct genotypes, as expected under sexual reproduction and genetic recombination (Table S1). Because ants are social insects and live in colonies, we devised a second, colonylevel measure of asexuality: the genotype-to-colony (G:C) ratio (the number of genotypes observed divided by the number of colonies screened). A value of 1 indicates that a single multilocus genotype was identified in each colony and all colonies were different from each other, as expected under clonal reproduction by a single queen; values between 0 and 1 indicate some sharing of genotypes between different colonies; and values greater than 1 indicate increased genetic diversity within colonies, suggesting either the presence of multiple genetically distinct reproductives in a colony or genetic recombination (Table S1).

Scoring repeated multilocus genotypes of multiple colonies per population revealed that MLGs could differ by only a single allele. These minor differences could either be due to "somatic" mutations or to scoring errors or, alternatively, slightly different MLGs could represent independent asexual lineages that originated separately from a sexually reproducing ancestral population (14) (Table S3). We therefore distinguished between slightly different MLGs belonging to the same asexual lineage, or clone, and slightly different MLGs that belong to the same clone and arose via mutations or scoring errors (13, 14). First, as recommended in Arnaud-Haond et al. (14), we identified MLG pairs in asexual populations with very low genetic distances, as indicated by a small peak in the frequency distribution of genetic distances. Then we calculated p_{sex} (equation 3 in ref. 14) using the software GENCLONE 2.0 (15) to estimate the probability that identical multilocus genotypes arose from independent sexual events or that they belonged to the same clone. If the probability was lower than the implemented threshold value ($\alpha = 0.01$), then identical MLGs were regarded as belonging to the same asexual lineage or clone. In our analysis, we first excluded all identical MLGs, resulting in a total of 57 unique MLGs. Of those 57 MLGs, 11 MLG pairs differed by only a single allele, reducing the number of independently derived asexual lineages to 46. Increasing the allele difference between MLG pairs to 2, 3, 4, 5, and 6 alleles further reduced the number of independently originated clones to 43, 41, 40, 39, and 38 clones, respectively.

Interestingly, seven MLG pairs, all of which came from colonies collected in the same population, differed only at a single locus in which one lineage was homozygous for a given locus and the other lineage was heterozygous (Table S3; Panchan B and C, Copan A and B, Remate A and B and Tikal A, Ocumare B and D, Ocumare B and C, Amigos A and C, Cuevas C and Simla B and C). Currently, we cannot distinguish whether this difference represents a transition from heterozygosity to homozygosity, which would be expected under automixis with central fusion and low recombination rates (16, 17), or whether it represents a case of gene conversion in an apomictic lineage.

We also measured the inbreeding coefficient of *M. smithii* colonies/populations, describing the maximum deviation from random mating and calculated as $F_{IS} = H[bar]_e - H[bar]_o/H$ [bar]_e (13, 14, 18, 19), using the software package Genetic Data Analysis (GDA) (20). Observed heterozygosity (H_o = number of heterozygosities/*N*) and expected heterozygosity [H_e = $1 - \Sigma p_i^2$] were calculated using the software GENALEX 6 (21). *F* statistics and heterozygosities were calculated for each MLG and for each recombinant population separately. To avoid resampling of identical MLGs in recombinant populations, we included only a single representative of each genotype. The analysis of molecular variance was calculated with GENALEX 6 (21). Clonal diversity was calculated as R = (G - 1)/(N - 1), with G representing the number of sampled multilocus genotypes (14).

To reveal the underlying population-genetic structure of sexual and asexual populations, we used a number of multivariate statistical methods (22, 23). Nonmetric multidimensional scaling (NMDS) analyses were used to identify the presence of genetic clusters. In GDA (20), we transformed the genetic variability described by the microsatellite data into a matrix of pairwise Nei's 1972 standard genetic distances (20, 24). The distance matrix was then used to identify clusters that best describe the observed genetic variability in a few dimensions (22, 25-27) using the software PERMAP 11.6 (28). To find a global minimum mapping solution, we used nonmetric ratio and error bounds with a 5% error bound, set the convergence rate control to small step size, and set the convergence limit control to high precision. The analysis was carried out for three dimensions. The 3D distribution of object coordinates was visualized with the software SYSTAT (Systat Software). To determine whether visually identified genetic clusters were significantly different from one another, we used a discriminate analysis of principal components (DAPC) (23) using SYSTAT. In addition, a principal component analysis (PCA) was used to cluster genotypes by genetic similarity, which was 77.55% for the first three principal components (first PC: 45.57%; second PC: 19.48%; third PC: 12.5%).

Breeding experiment. To provide experimental evidence for the cytogenetic mechanism underlying parthenogenetic reproduction, we conducted a laboratory breeding experiment. Six generations of reproductively active queens (n = 93) collected in 2001 in Gamboa, Panama, were raised in laboratory nests over a period of ~1 y (see ref. 29 for a description of the nest setup). Initially, we selected 30 alate virgin queens (five individuals from six colonies) for the breeding experiment. The queens' wings were removed, a procedure known to stimulate reproductive behavior. Each queen was provided with a piece of fungus garden, which was carefully screened to exclude existing eggs and larvae, and 10 sterile workers were added to each colony. As soon as the experimental colonies started producing sexual offspring (i.e., the next generation of virgin queens), those new gynes were separated

to initiate the next generation of experimental colonies. After raising six generations of reproductive females from multiple maternal lineages, we genotyped all reproductive and alate queens using the microsatellites described above. All 93 individuals were genetically identical, representing the multilocus genotype Gamboa A (Tables S1, S2, and S3). Transitions from hetero- to homozygosity were not identified at any locus. Even though workers in laboratory and field colonies were never found to have functional ovaries (8), we dissected a subset of workers from the experimental colonies to determine whether workers contribute to colony reproduction. No worker reproduction was detected.

Phylogenetic Analyses. *Taxon sampling.* To test the monophyly of *M. smithii* and to infer intraspecific relationships between asexual and sexual populations, we conducted phylogenetic analyses of two distinct datasets. First, we analyzed a global dataset that included 84 *Mycocepurus* ingroup taxa, 32 of them *M. smithii* (Table S5), and 61 non-*Mycocepurus* attines, plus 26 nonattine myrmicine outgroups. The recently described social parasite *M. castrator* (30) was not included in this analysis. Second, we conducted a local ingroup-only analysis including 41 *M. smithii* taxa representing one individual from each of the genotyped populations (Table S5).

DNA sequencing. Given the small size of Mycocepurus workers, DNA was extracted from entire single specimens. For queens, only the mesosomas were extracted, using a QIAamp DNA Micro Kit (QIAGEN), diluting the extracted DNA in 40 µL ddH₂O. For the global dataset, we analyzed an alignment including a total of 2,319 bp, consisting of fragments from three single-copy nuclear genes-Elongation Factor 1-a F1 copy (EF1-a; 1,071 bp), Wingless (Wg; 405 bp), and Long Wavelength Rhodopsin (LW Rh; 456 bp)-and one mitochondrial gene-Cytochrome Oxidase I (COI; 387 bp). All data represent protein-coding (exon) sequences; introns of EF1- α , Wg, and LW Rh were excluded from the phylogenetic analysis because they could not be aligned confidently across ingroup and outgroup taxa. All ingroup sequence data were generated for this study; they do not contain missing fragments, except for the LW Rh sequence of M. goeldii 278, and were deposited in GenBank (Table S5). The outgroup sequences were acquired from published information (31) and lacked DNA sequence information for COI. The global alignment (including all in- and outgroup taxa) included 909 variable nucleotide positions of which 860 were parsimony-informative (Table S6).

For the local, M. smithii-only alignment, we obtained 1,515 bp of the 3' section of the mitochondrial COI gene (1,173 bp), the t-RNA leucine region (t-RNA Leu; 72 bp), and the 5' section of the Cytochrome Oxidase II gene (COII; 270 bp). The nontranscribed intergenic spacer, present in some other Attini (32), consists of the triplet TTA in M. smithii. All sequence data were translated into amino acid sequences to test for the presence of mitochondrial pseudogenes ("numts"), which have been reported in some Attini (33). The alignment contained 248 informative sites of which 169 were parsimony-informative (Table S6). Primers were modified from several sources and specifically designed for this study (Table S8). DNA sequences were aligned manually in MacClade v4.08 (34). The mitochondrial phylogram was studied both as an unrooted network and as a midpointrooted tree because a long branch separates the ingroup from the sister species of *M. smithii*, rendering the correct rooting of the M. smithii mitochondrial tree a difficult problem.

Data partitioning. Based on genes and on the variability of codonposition sites within each gene, following the recommended methodology outlined in Ward et al. (35), we partitioned the global dataset into 10 partitions: (*i*) first and second codon position of EF1- α , (*ii*) third position of EF1- α ; (*iii–v*) first, second, and third positions of Wg; (*vi–viii*) first, second, and third positions of LW Rh; (*ix*) first and second position of COI, and (*x*) third position of COI (Table S6). Best-fit models of sequence evolution were selected for each partition under the Akaike information criterion (AIC) (36) and hierarchical likelihood ratio tests (hLRTs) as calculated in MODELTEST v3.7 (37) (Table S6). When different models of sequence evolution were chosen by AIC and hLRT, the more complex model was implemented.

The local, *M. smithii*-only alignment was divided into two partitions. The first partition included the first and second positions of COI and COII and the tRNA leucine region; the second partition included the third positions of COI and COII (Table S6).

Bayesian phylogenetic inference. We conducted partitioned Bayesian analyses using MrBayes v3.1.2 (38) with nucmodel = 4by4 and samplefreq = 500. All parameters, including branch-length rate multipliers, were unlinked across partitions except branch lengths and topology. All analyses were carried out using parallel processing (one chain per central processing unit) with eight chains per run and two runs per analysis (nruns = 2).

To address known problems with branch-length estimation in MrBayes (for example, 35, 39–42), we reduced the branch-length priors. In the global analyses, we used brlenspr = unconstrained: Exp(133.6081222) based on the procedure suggested in Brown et al. (39); in the local analyses, we set brlenspr = unconstrained:Exp (100). For the global analyses, moderately informative Dirichlet priors were specified for branch-length rate multipliers to reflect differences in evolutionary rates between first and second codon positions versus third codon position and between nuclear and mitochondrial genes. In local analyses, which used only two partitions, we set *prset ratepr* = *variable*. In both sets of analyses, we used the *props* command to increase the proposal rate from 1,000 to 10,000 and to decrease the Dirichlet alpha parameter from 500 to 250 for the rate multipliers (proposal mechanism 26 in MrBayes).

Burn-in and convergence were assessed using Tracer v1.5 (43) by examining potential scale reduction factor values in the MrBayes.stat output files, and by using Bayes factor comparisons of marginal likelihoods of pairs of runs in Tracer, which employs the weighted likelihood bootstrap estimator of Newton and Raftery (44) as modified by Suchard et al. (45), with SE estimated using 1,000 bootstrap pseudoreplicates.

Maximum likelihood analyses. Partitioned maximum likelihood (ML) analyses were carried out in GARLI 0.97.r737 (46) using parallel processing.

ML bootstrap analyses: For the global dataset, ML bootstrap analyses consisted of 1,000 pseudoreplicates; for the local dataset 1,500 pseudoreplicates, both deviating from default settings as follows: genthreshfortopoterm = 5000; scorethreshforterm = 0.10; startoptprec = 0.5; minoptprec = 0.01; numberofprecreductions = 1; treerejectionthreshold = 20.0; topoweight = 0.01; brlenweight = 0.002.

ML "best-tree" analyses: For both the global and local datasets, ML best-tree analyses consisted of 100 searches, deviating from the default settings as follows: topoweight = 0.01; brlenweight = 0.002. The best tree for the global analysis had a score of $\ln L = -22,005.643$; for the local analysis, $\ln L = -5,141.168$.

In all analyses, the value for modweight was calculated as $0.0005 \times$ (number of subsets + 1) (46).

Constraint analyses. To test for single versus multiple independent origins of asexuality, sexual and asexual populations were topologically constrained to occupy the opposite sides of a single branch in constrained ML and Bayesian analyses of the ingroup-only mitochondrial data. The marginal likelihoods of the resulting phylogenies were compared with those obtained in unconstrained analyses using Bayes factors (47–50). Bayes factors (BF) were calculated as the ratio of marginal likelihoods from constrained versus unconstrained analyses (i.e., the differences in –lnL) to

produce the test statistic 2ln(BF). In the case of the ML analysis comparison, the marginal likelihoods used were point estimates from best-tree analyses as described above; for Bayesian analyses, they were post-burn-in harmonic means of the sampled likelihoods (48, 49, 51) estimated in Tracer v1.5 (43), which employs the weighted likelihood bootstrap estimator of Newton and Raftery (44) as modified by Suchard et al. (45), with SE estimated using 1,000 bootstrap pseudoreplicates. Within the Bayesian statistical framework (47), the resulting test statistics, 137.82 (ML) and 124.1 (Bayesian), indicate that the constrained topologies are significantly worse fitting to the data than the unconstrained topologies, thus providing additional support to a hypothesis of multiple origins of asexuality in *M. smithii*.

Divergence-dating analysis. We used a Bayesian relaxed clock uncorrelated lognormal approach implemented in the program BEAST v1.4.8 with a Yule process as the tree prior (52–54). As the model of sequence evolution, we used $GTR+I+\Gamma$ with three partitions (codons 1, 2, and 3). To provide identical gene sampling for in- and outgroup taxa, the mitochondrial DNA sequence data were excluded from the divergence-dating analysis and only the nuclear DNA data were retained. Substitution model, rate heterogeneity, and base frequencies were unlinked across codon positions. The root node was assigned to the so-called core myrmicines, a well-supported clade identified in Brady et al. (55), and three taxa, one Hylomyrma (note: Hylomyrma was erroneously named Pogonomymex in ref. 31) and two Myrmica species, were used to root the tree. According to the estimates obtained by Brady et al. (55), the root node was given a normal age prior distribution (mean = 73.5, SD = 4.5). Lognormal age prior distributions were assigned to three internal nodes, the Apterostigma *pilosum*-complex stem group (mean = 2.7, SD = 0.3, zero offset 15.0), the Cyphomyrmex rimosus stem group (mean = 2.2, SD = 0.5, zero offset 15.0), and the *Trachymyrmex* stem group (mean = 1.5, SD = 0.5, zero offset 15.0), taking into account fungusgrowing ant fossils and following the methodology outlined in Schultz and Brady (31). Two fossils, Trachymyrmex primaevus and a putative leafcutter ant fossil depicted in Grimaldi and Engel (56), were not included in our analysis because the placement of these fossils within the tribe Attini is uncertain (31). Markov chain Monte Carlo runs were run for 10 million generations, and the first 1 million generations were discarded as burn-in. Searches achieved sufficient mixing, as indicated by high effective sample size values for all parameters, by plateaus in divergence time estimates over generations after burn-in, and by repeatability of results over 10 independent runs. The results from all independent runs were combined in Tracer v1.5 and reported as mean values \pm 95% upper and lower boundaries (43).

To use consistent in- and outgroup taxon sampling and to prevent estimating disproportionally old root nodes for the ingroup clades, only a single representative of each Mycocepurus species was used during the divergence-dating analysis, except for M. smithii, for which two genetically divergent individuals were included to estimate the crown-group age (i.e., most recent possible origin) for the species. In addition, to test whether the mitochondrial sequence data (present for the Mycocepurus ingroup but not for the outgroup taxa) had an effect on the outcome of the divergence-dating analyses, 10 parallel runs were executed, including and excluding COI sequences. The divergence estimates of the root node and internal nodes were significantly older for the dataset including mitochondrial sequence data. Hence, the mitochondrial data were discarded for our final divergence-dating analysis, and only the sequence information for single-copy nuclear genes was retained, providing identical gene sampling for inand outgroup taxa.

- 1. Wheeler WM (1907) The fungus-growing ants of North America. *Bull Am Mus Nat Hist* 23:669–807.
- 2. Kempf W (1963) A review of the ant genus *Mycocepurus* Forel, 1893 (Hymenoptera: Formicidae). *Stud Entomol* 6:417–432.
- Kempf WW (1972) Catálogo abreviado das formigas da região Neotropical. Stud Entomol 15:3–344.
- 4. Weber NA (1972) *Gardening Ants. The Attines* (Memoirs Am Philos Soc, Philadelphia).
- Brandão CRF (1991) Adendos ao catálogo abreviado das formigas da região Neotropical (Hymenoptera: Formicidae). *Rev Bras Entomol* 35:319–412.
- Mackay WP, Maes JM, Rojas Fernández P, Luna G (2004) The ants of North and Central America: The genus Mycocepurus (Hymenoptera: Formicidae). J Insect Sci 4:27.
- Rabeling C, Verhaagh M, Engels W (2007) Comparative study of nest architecture and colony structure of the fungus-growing ants, *Mycocepurus goeldii* and *M. smithii*. *J Insect Sci* 7:40.
- Rabeling C, et al. (2009) Thelytokous parthenogenesis in the fungus-gardening ant Mycocepurus smithii (Hymenoptera: Formicidae). PLoS One 4:e6781.
- 9. Eidmann H (1936) Ökologisch-faunistische Studien an südbrasilianischen Ameisen. Arb Physiol Angew Entomol Berlin-Dahlem 3:81–114.
- Fernández-Marín H, Zimmerman J, Wcislo W, Rehner S (2005) Colony foundation, nest architecture and demography of a basal fungus-growing ant, *Mycocepurus smithii* (Hymenoptera, Formicidae). J Nat Hist 39:1735–1743.
- 11. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. *Methods Mol Biol* 132:365–386.
- DeWoody JA, et al. (2004) Universal method for producing ROX-labeled size standards suitable for automated genotyping. *Biotechniques* 37:348–352.
- Halkett F, Simon JC, Balloux F (2005) Tackling the population genetics of clonal and partially clonal organisms. *Trends Ecol Evol* 20:194–201.
- Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to address clonality in population studies. *Mol Ecol* 16:5115–5139.
- Arnaud-Haond S, Belkhir K (2007) GENCLONE: A computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. *Mol Ecol Notes* 7:15–17.
- Pearcy M, Hardy O, Aron S (2006) Thelytokous parthenogenesis and its consequences on inbreeding in an ant. *Heredity* 96:377–382.
- Rey O, et al. (March 31, 2011) Meiotic recombination dramatically decreased in thelytokous queens of the little fire ant and their sexually produced workers. *Mol Biol Evol*, 10.1093/molbev/msr082.
- Balloux F, Lehmann L, de Meeûs T (2003) The population genetics of clonal and partially clonal diploids. *Genetics* 164:1635–1644.
- De Meeûs T, Balloux F (2005) F-statistics of clonal diploids structured in numerous demes. Mol Ecol 14:2695–2702.
- Lewis P, Zaykin D (2002) GDA (Genetic Data Analysis). http://hydrodictyon.eeb.uconn. edu/people/plewis/software.php.
- Peakall R, Smouse PE (2006) GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. *Mol Ecol Notes* 6:288–295.
- Jombart T, Pontier D, Dufour AB (2009) Genetic markers in the playground of multivariate analysis. *Heredity* 102:330–341.
- Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. *BMC Genet* 11: 94.
- 24. Nei M (1972) Genetic distance between populations. Am Nat 106:283-292.
- 25. Lessa EP (1990) Multidimensional analysis of geographic genetic structure. Syst Biol 39:242–252.
- Novembre J, Stephens M (2008) Interpreting principal component analyses of spatial population genetic variation. Nat Genet 40:646–649.
- Ross KG, Gotzek D, Ascunce MS, Shoemaker DDW (2010) Species delimitation: A case study in a problematic ant taxon. Syst Biol 59:162–184.
- Heady R, Lucas J (2007) PERMAP: Perceptual MAPping Software (Univ of Louisiana at Lafayette). http://www.ucs.louisiana.edu/~rbh8900.
- 29. Schultz T (1993) Stalking the wild attine. Notes Undergr 8:7-10.
- Rabeling C, Bacci M (2010) A new workerless inquiline in the Lower Attini (Hymenoptera: Formicidae), with a discussion of social parasitism in fungus-growing ants. Syst Entomol 35:379–392.
- Schultz TR, Brady SG (2008) Major evolutionary transitions in ant agriculture. Proc Natl Acad Sci USA 105:5435–5440.
- Wetterer JK, Schultz TR, Meier R (1998) Phylogeny of fungus-growing ants (Tribe Attini) based on mtDNA sequence and morphology. *Mol Phylogenet Evol* 9:42–47.
- Martins J, Jr, et al. (2007) Nuclear mitochondrial-like sequences in ants: Evidence from Atta cephalotes (Formicidae: Attini). Insect Mol Biol 16:777–784.

- 34. Maddison DR, Maddison WP (2000) MacClade 4 (Sinauer, Sunderland, MA).
- Ward PS, Brady SG, Fisher BL, Schultz TR (2010) Phylogeny and biogeography of dolichoderine ants: Effects of data partitioning and relict taxa on historical inference. Syst Biol 59:342–362.
- Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50:580–601.
- Posada D, Crandall KA (1998) MODELTEST: Testing the model of DNA substitution. Bioinformatics 14:817–818.
- Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19:1572–1574.
- Brown JM, Hedtke SM, Lemmon AR, Lemmon EM (2010) When trees grow too long: Investigating the causes of highly inaccurate Bayesian branch-length estimates. Syst Biol 59:145–161.
- Marshall DC, Simon C, Buckley TR (2006) Accurate branch length estimation in partitioned Bayesian analyses requires accommodation of among-partition rate variation and attention to branch length priors. Syst Biol 55:993–1003.
- Marshall DC (2010) Cryptic failure of partitioned Bayesian phylogenetic analyses: Lost in the land of long trees. Syst Biol 59:108–117.
- Spinks PQ, Shaffer HB (2009) Conflicting mitochondrial and nuclear phylogenies for the widely disjunct Emys (Testudines: Emydidae) species complex, and what they tell us about biogeography and hybridization. Syst Biol 58:1–20.
- 43. Rambaut A, Drummond A (2007) Tracer v1.5. http://tree.bio.ed.ac.uk/software/tracer.
- 44. Newton MA, Raftery AE (1994) Approximate Bayesian inference with the weighted likelihood bootstrap. J R Stat Soc, B 56:3–48.
- Suchard MA, Weiss RE, Sinsheimer JS (2001) Bayesian selection of continuous-time Markov chain evolutionary models. *Mol Biol Evol* 18:1001–1013.
- 46. Zwickl D (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD dissertation (Univ of Texas at Austin). http://garli.googlecode.com.
- 47. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773-795.
- Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67.
- Brown JM, Lemmon AR (2007) The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics. Syst Biol 56:643–655.
- Rabeling C, Brown JM, Verhaagh M (2008) Newly discovered sister lineage sheds light on early ant evolution. Proc Natl Acad Sci USA 105:14913–14917.
- Brandley MC, Schmitz A, Reeder TW (2005) Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Syst Biol 54:373–390.
- Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W (2002) Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. *Genetics* 161:1307–1320.
- Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88.
- Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214.
- Brady SG, Schultz TR, Fisher BL, Ward PS (2006) Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc Natl Acad Sci USA 103:18172–18177.
- Grimaldi DA, Engel MS (2005) Evolution of the Insects (Cambridge Univ Press, New York).
- Simon C, et al. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. *Ann Entomol Soc Am* 87:651–701.
- Ward PS, Downie DA (2005) The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): Phylogeny and evolution of big-eyed arboreal ants. Syst Entomol 30: 310–335.
- 59. Abouheif E, Wray GA (2002) Evolution of the gene network underlying wing polyphenism in ants. *Science* 297:249–252.
- Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Mol Mar Biol Biotechnol* 3:294–299.
- Hasegawa E, Tinaut A, Ruano F (2002) Molecular phylogeny of two slave-making ants: Rossomyrmex and Polyergus (Hymenoptera: Formicidae). Ann Zool Fenn 39:267–271.
- Artiss T, Schultz TR, Polhemus DA, Simon C (2001) Molecular phylogenetic analysis of the dragonfly genera Libellula, Ladona, and Plathemis (Odonata: Libellulidae) based on mitochondrial cytochrome oxidase I and 16S rRNA sequence data. Mol Phylogenet Evol 18:348–361.
- Wetterer JK, Schultz TR, Meier R (1998) Phylogeny of fungus-growing ants (Tribe Attini) based on mtDNA sequence and morphology. *Mol Phylogenet Evol* 9:42–47.

Fig. S1. Phylogram of the fungus-growing ant genus *Mycocepurus* generated by a Bayesian analysis of three nuclear protein-coding genes and one mitochondrial gene. Bayesian posterior probabilities (×100) (BPP) and ML bootstrap proportions (MLBP) are indicated as BPP/MLBP; values of BPP = 100 or MLBP = 100 are indicated by an asterisk. Relationships between 87 outgroup taxa are collapsed to better depict relationships among *Mycocepurus* species. (Scale bar, number of substitutions per site.)

Table S1. Mycocepurus smithii populations sampled across Latin America

SANG SANG

						Number		Genotype:	Genotype:
Country	State	Locality/population	Number of individuals	Number of queens	Number of workers	of unique genotypes	Number of colonies	colony ratio	individual ratio
Argentina	Chaco	Pampa del Indio	5	0	5	1	1	1	0.2
Argentina	Misiones	lguazú National Park	22	0	22	1	3	0.33	0.05
Brazil	Amazonas	Caldeirão	243*	5	234	173	11	15.72	0.71
Brazil	Amazonas	Manaus	263	13	250	3	36	0.08	0.01
Brazil	Amazonas	Parintins	7	0	7	5	1	5	0.71
Brazil	Amazonas	Reserva Ducke	8	0	8	1	1	1	0.13
Brazil	Amazonas	Santa Rita	15	0	15	1	3	0.33	0.07
Brazil	Amazonas	São Gabriel da Cachoeira	8	0	8	8	1	8	1
Brazil	Pará	Alter do Chão	9	0	9	1	1	1	0.1
Brazil	Pará	Belém	25	0	25	24	3	8	0.96
Brazil	Pará	Belterra	22	0	22	2	4	0.5	0.09
Brazil	São Paulo	Rio Claro	390	138 [†]	252	2	59	0.03	0.01
Costa Rica	Limón	Cahuita	11	0	11	1	1	1	0.09
Costa Rica	Guanacaste	Lomas Barbudal	25	0	25	2	5	0.4	0.08
Costa Rica	Limón	Limón	28	10 [‡]	18	1	2	0.5	0.04
Cuba		Cienfuegos	20	0	20	1	2	0.5	0.05
Guatemala	Peten	El Remate	45	0	45	2	9	0.22	0.04
Guatemala	Peten	Tikal	15	0	15	1	3	0.33	0.07
Guyana	Potaro- Siparuni	Paramakatoi	24	0	24	1	3	0.33	0.04
Honduras	Copán	Copán Archeological Museum	15	0	15	1	3	0.33	0.07
Honduras	Copán	Copán Ruinas	30	0	30	3	6	0.5	0.1
Mexico	Chiapas	El Panchan	30	0	30	4	6	0.67	0.13
Mexico	Chiapas	Palenque	10	0	10	2	2	1	0.2
Mexico	Nuevo León	Monterrey	50	0	50	1	6	0.17	0.02
Mexico	Tamaulipas	El Encino	35	0	35	1	5	0.2	0.03
Nicaragua	Matagalpa	El Tuma	25	0	25	1	5	0.2	0.04
Panama	Bocas del Toro	Bocas del Toro	33	0	33	1	4	0.25	0.03
Panama	Colon	Ft. Sherman	35	0	35	3	4	0.75	0.09
Panama	Colon	Gamboa (breeding experiment)	93	93 [§]	0	1	2	0.5	0.01
Panama	Colon	Gamboa	20	0	20	2	1	2	0.1
Peru	Cusco	Huacaria	40	0	40	1	4	0.25	0.03
Peru	Cusco	Pilcopata	5	0	5	1	1	1	0.2
Peru	Loreto	Explorama Lodge, Iquitos	47	2	45	1	4	0.25	0.02
Peru	Madre de Dios	CICRA, Los Amigos	149	10	139	6	15	0.4	0.04
Trinidad		Las Cuevas	20	0	20	3	2	1.5	0.15
Trinidad		Arena Dam	20	0	20	1	2	0.5	0.05
Trinidad		Pierreville	20	0	20	1	1	1	0.05
Trinidad		Simla Research Station	18	1	17	3	2	1.5	0.17
Venezuela	Aragua	Ocumare de la Costa	40	0	40	5	8	0.63	0.13
Venezuela	Aragua	Rio Cumboto	10	0	10	3	2	1.5	0.3
Total		39 localities	1,930	272	1,654	276	234		

Number of individuals describes the sample total including queens and workers. Number of unique genotypes is the number of unique multilocus genotypes. Number of colonies corresponds to either the number of nest entrances or the number of chambers from which individuals were collected. The genotype:colony ratio describes the ratio between the number of genotypes and the number of sampled colonies (*SI Materials and Methods*). The genotype:individual ratio describes the ratio between the number of genotypes and the number of sampled individuals. A value of the genotype:individual ratio approaching 0 describes genetic uniformity within a colony; a value of 1 describes sexual reproduction under random mating. Recombining populations are italicized and highlighted in bold.

*Number of individuals includes the number of male mates estimated from the spermatheca content extracted and genotyped from four queens.

[†]A total of 12 of the 138 queens were reproductively active; the remaining 126 individuals were queen larvae.

^{*}All 10 queens were alates emerging from the maternal colony and were not reproductively active at the time of collection.

[§]All queens were raised in six consecutive generations in a breeding experiment in laboratory colonies and represent offspring from two colonies initially collected in close proximity in Gamboa, Panama.

Country	State	Locality/population	Clone	n	Ho	H _e	F _{IS}
Argentina	Chaco	Pampa del Indio	PampaA	5	0.667	0.333	-1
Argentina	Misiones	Iguazú National Park	lguazuA [6]	22	0.917	0.458	-1
Brazil	Amazonas	Caldeirão	n/a	243 (173)	0.372	0.369	-0.009
Brazil	Amazonas	Manaus	ManausA	5	0.667	0.333	-1
			ManausB [6]	5	0.917	0.458	-1
			ManausC [7]	253	0.417	0.208	-1
Brazil	Amazonas	Parintins	n/a	7 (5)	0.650	0.398	-0.773
Brazil	Amazonas	Reserva Ducke	DuckeA [7]	8	0.417	0.208	-1
Brazil	Amazonas	Santa Rita	RitaA	15	0.667	0.333	-1
Brazil	Amazonas	São Gabriel da Cachoeira	n/a	8 (8)	0.365	0.315	-0.172
Brazil	Pará	Alter do Chão	AlterA	9	0.75	0.375	-1
Brazil	Pará	Belém	n/a	25 (24)	0.451	0.466	0.034
Brazil	Pará	Belterra	BelterraA	17	0.417	0.208	-1
			BelterraB	5	0.667	0.333	-1
Brazil	São Paulo	Rio Claro	RioClaroA	295	0.5	0.25	-1
			RioClaroB	95	0.5	0.25	-1
Costa Rica	Limón	Cahuita	CahuitaA	11	0.333	0.167	-1
Costa Rica	Guanacaste	Lomas Barbudal	LomasA	20	0.833	0.417	-1
			LomasB	5	0.75	0.375	-1
Costa Rica	Limón	Limón	LimonA	28	0 583	0 292	_1
Cuba	Linton	Cienfuegos	CubaA [4]	20	0.667	0.333	-1
Guatemala	Peten	Fl Remate	Remate [1]	35	0.417	0.208	_1
Guatemala	reten	Er Kennate	RemateR	10	0.5	0.200	_1
Guatemala	Poton	Tikal	TikalA [1]	15	0.117	0.25	_1
Guatemala	Potaro Siparuni	Paramakatoj	ParamakatojA	7/	0.417	0.208	-1
Honduras	Copán	Copán Archeological	MuseumA	15	0.583	0.292	-1
Honduras	Conán	Conán Buinas	ConanA	Q	0.25	0 125	_1
nonduras	Copan	copari Rumas	CopanA	16	0.167	0.125	-1
			Copand	5	0.107	0.085	-1
Movico	Chiapar	El Banchan	Copane Panchan A	15	0.5	0.25	-1
WEXICO	Chiapas		PanchanR	15	0.5	0.23	-1
			PanchanG	5	0.007	0.355	-1
			PanchanD	5	0.565	0.292	-1
Mavica	Chianas	Palangua	PanchanD	5	0.5	0.25	-1
WEXICO	Chiapas	Palenque	PalenqueA	5	0.5	0.25	-1
Maulaa	Numera Lana	Mantana	PalenqueB	5	0.417	0.208	-1
Nexico	Nuevo Leon	Nonterrey	NonterreyA	50	0.417	0.208	-1
IVIEXICO	Tamaulipas		EICIEIOA	35	0.5	0.25	-1
Nicaragua	Matagaipa	El Tuma De ses del Terre	EllumaA	25	0.667	0.333	-1
Panama	Bocas del Toro	Bocas del Toro	BocasA	33	0.333	0.167	-1
Panama	Colon	Ft. Sherman	ShermanA [5]	10	0.583	0.292	-1
			ShermanB	15	0.583	0.292	-1
_			ShermanC [2]	10	0.583	0.292	-1
Panama	Colon	Gamboa (breeding experiment)	GamboaA [5]	93	0.583	0.292	-1
Panama	Colon	Gamboa	GamboaB [2]	13	0.583	0.292	-1
			GamboaC	7	0.583	0.292	-1
Peru	Cusco	Huacaria	HuacariaA	40	0.667	0.333	-1
Peru	Cusco	Pilcopata	PilcopataA	5	0.667	0.333	-1
Peru	Loreto	Explorama Lodge, Iquitos	IquitosA	47	0.5	0.375	-1
Peru	Madre de Dios	CICRA, Los Amigos	AmigosA	23	0.833	0.417	-1
			AmigosB	6	0.75	0.375	-1
			AmigosC	22	0.75	0.375	-1
			AmigosD	41	0.75	0.375	-1
			AmigosE	18	0.75	0.375	-1
			AmigosF	39	0.75	0.375	-1
Trinidad		Las Cuevas	CuevasA	10	0.25	0.125	-1
			CuevasB [3]	3	0.417	0.208	-1
			CuevasC [8]	7	0.5	0.25	-1
Trinidad		Arena Dam	ArenaDamA [3]	20	0.417	0.208	-1

Table S2.	Sample size,	observed a	and expected	heterozygosity,	and	inbreeding	coefficient	of	multilocus	genotypes	and	recombinant
population	is (indicated b	y bold and	l italicized fon	it)								

Table S2. Cont.

PNAS PNAS

Country	State	Locality/population	Clone	n	Ho	H _e	F _{IS}
Trinidad		Pierreville	PierrevilleA	20	0.667	0.333	-1
Trinidad		Simla Research Station	SimlaA [4]	2	0.667	0.333	-1
			SimlaB	8	0.583	0.292	-1
			SimlaC [8]	8	0.5	0.25	-1
Venezuela	Aragua	Ocumare de la Costa	OcumareA [3]	5	0.417	0.208	-1
			OcumareB	5	0.583	0.292	-1
			OcumareC	5	0.5	0.25	-1
			OcumareD	21	0.667	0.333	-1
			OcumareE	4	0.75	0.375	-1
Venezuela	Aragua	Rio Cumboto	CumbotoA	2	0.667	0.333	-1
	-		CumbotoB	3	0.667	0.333	-1
			CumbotoC	5	0.75	0.375	-1
Total (asexual)				1,647	0.589	0.671	0.123
Total (sexual)				283	0.387	0.458	0.154
Total (sexual and asexual)				1,930	0.430	0.545	0.210

Statistics are presented separately for each multilocus genotype in asexual populations. A total of eight identical multilocus genotypes is shared between colonies from different localities, which are indicated by numbers in square brackets. For recombinant populations, the number of multilocus genotypes is given in parentheses following the sample number; a single representative for each multilocus genotype was included to calculate the observed and expected heterozygosity and the inbreeding coefficient. n/a, not applicable.

	Ā	6	D	117		\ 5	0	9	G	6	A6		C10	, ,	D11		B1		B4		C		D8	
PampaA	145	161	202	202	246	257	259	265	123	126	117	117	216	219	588	291	860	114	205	205	236	236	165	177
IguazuA	145	147	202	218	238	242	246	259	117	120	111	113	210	213	288	291	860	106	205	207	236	236	174	177
ManausA	145	148	202	239	240	246	250	265	111	120	103	105	204	213	288	288	060	112	207	207	236	236	162	162
ManausB	145	147	202	218	238	242	246	259	117	120	111	113	210	213	288	291	860	106	205	207	236	236	174	177
ManausC	145	148	202	239	240	242	250	265	120	120	103	105	213	213	288	288	112	112	207	207	236	236	162	162
DuckeA	145	148	202	239	240	242	250	265	120	120	103	105	213	213	288	288	112	112	207	207	236	236	162	162
RitaA	135	147	202	205	242	250	253	265	114	117	103	111	207	210	288	288	114	118	207	207	236	236	174	174
AlterA	143	147	202	205	242	254	259	265	111	117	103	105	204	210	288	288	108	116	207	207	236	236	180	183
BelterraA	145	148	205	242	250	252	265	265	117	120	105	105	210	213	288	288	112	112	205	205	236	236	174	174
BelterraB	135	147	202	208	242	250	253	265	114	117	103	111	207	210	288	288	114	118	207	207	236	236	174	174
RioClaroA	141	141	218	236	252	257	265	271	123	123	111	119	216	216	288	288	114	124	205	205	236	236	174	177
RioClaroB	141	147	218	218	246	252	253	259	117	117	109	111	210	210	288	288	860	114	205	205	236	236	165	174
CahuitaA	135	135	196	202	245	245	259	259	117	117	103	115	210	210	288	291	112	130	207	207	230	230	174	174
LomasA	135	143	202	205	245	245	253	265	117	120	115	117	210	213	288	291	112	128	207	207	233	236	174	177
LomasB	135	143	202	205	245	245	253	265	117	120	109	117	210	213	288	291	112	128	207	207	236	236	174	177
LimonA	145	145	202	205	244	257	259	265	114	132	103	117	207	225	288	288	108	108	207	207	236	236	171	174
CubaA	143	143	202	205	250	250	259	265	114	120	111	111	207	213	285	291	108	112	207	207	233	236	171	174
RemateA	135	143	202	205	245	245	259	259	117	117	105	105	210	210	288	291	112	124	205	207	236	236	174	174
RemateB	135	143	202	205	245	245	259	259	117	117	105	107	210	210	288	291	112	124	205	207	236	236	174	174
TikalA	135	143	202	205	245	245	259	259	117	117	105	105	210	210	288	291	112	124	205	207	236	236	174	174
ParamakatoiA	145	150	202	205	250	257	253	265	114	120	101	111	207	213	288	288	060	112	207	207	236	236	168	174
MuseumA	143	148	205	205	245	250	253	268	111	117	115	115	204	210	288	291	122	122	207	207	230	233	174	174
CopanA	135	141	205	205	245	245	265	265	120	120	107	107	213	213	288	288	112	120	207	207	236	239	174	174
CopanB	135	141	205	205	245	245	265	265	120	120	107	107	213	213	288	288	120	120	207	207	236	239	174	174
CopanC	135	141	205	205	245	245	259	265	120	120	115	119	213	213	288	291	118	124	207	207	236	239	174	174
PanchanA	143	148	205	205	238	245	237	268	117	117	103	119	210	210	288	291	112	120	207	207	236	236	174	174
PanchanB	135	141	202	202	245	247	265	268	114	117	103	107	207	210	288	288	860	124	207	207	236	236	159	174
PanchanC	135	141	202	202	245	247	265	268	114	117	103	107	207	210	288	288	860	860	207	207	236	236	159	174
PanchanD	135	135	196	205	245	245	253	259	120	126	103	103	213	219	291	291	860	112	207	207	236	236	174	177
PalenqueA	143	148	205	205	238	245	259	268	117	117	103	119	210	210	288	291	112	120	207	207	236	236	174	174
PalenqueB	141	143	202	205	245	245	259	259	117	117	103	113	210	210	288	291	860	860	205	207	236	236	174	174
MonterreyA	143	143	202	208	245	245	253	259	120	123	103	103	213	216	288	288	112	130	207	207	239	239	174	174
ElCieloA	143	143	205	205	245	247	253	268	117	123	119	119	210	216	288	288	112	124	207	207	236	239	174	174
ElTumaA	137	141	202	205	245	245	250	265	117	123	115	123	210	216	288	291	112	122	207	207	236	236	174	174
BocasA	135	135	196	202	244	244	259	259	117	117	103	115	210	210	288	291	112	132	207	207	230	230	174	174
ShermanA	145	145	202	205	244	257	259	265	114	132	103	115	207	225	288	288	108	108	207	207	236	236	171	174
ShermanB	137	141	202	202	245	245	265	265	114	123	113	123	207	216	288	294	860	100	207	207	236	236	159	174
ShermanC	137	141	202	202	245	245	265	265	114	123	113	125	207	216	288	294	860	102	207	207	236	236	159	174
GamboaA	145	145	202	205	244	257	259	265	114	132	103	115	207	225	288	288	108	108	207	207	236	236	171	174
GamboaB	137	141	202	202	245	245	265	265	114	123	113	125	207	216	288	294	860	102	207	207	236	236	159	174
GamboaC	137	141	202	202	245	245	265	265	114	123	115	125	207	216	288	294	860	102	207	207	236	236	159	174
HuacariaA	145	165	202	202	246	246	250	265	111	120	111	121	204	213	288	291	060	060	205	205	236	242	174	177
PilcopataA	148	148	202	237	246	250	250	250	111	120	111	125	204	213	288	288	060	124	205	207	236	236	177	180
IquitosA	143	147	202	205	242	246	250	265	117	120	105	107	210	213	288	288	060	112	207	207	236	236	171	174
AmigosA	141	147	202	205	246	246	256	265	111	120	111	115	204	213	288	291	060	112	207	207	236	239	168	171
AmigosB	141	161	202	205	250	257	259	259	111	120	109	113	204	213	588	288	060	112	205	207	236	236	171	174

8 C	171	183	177	174	171	177	171	177	174	174	171	171	177	174	174	174	174	174	174	174	evas B,
	168	174	174	174	171	171	171	171	171	171	171	171	171	171	171	171	171	171	174	171	A and Cu
7	239	236	236	239	236	236	236	236	236	236	236	236	236	236	236	236	236	236	236	242	a Dam A
0	236	236	236	236	236	236	236	236	230	233	236	236	236	236	236	236	236	236	236	236	nd Aren
4	207	207	207	207	207	207	207	207	207	207	207	207	207	207	207	207	207	207	207	207	mare A a
	207	205	205	207	207	207	207	207	207	207	207	207	207	207	207	207	207	207	207	207	n C, Ocui
1	060	122	122	112	114	112	112	112	114	112	114	112	112	112	112	112	108	112	112	124	Sherma
Ξ	060	112	112	060	112	060	112	060	112	108	112	112	060	108	108	108	108	108	108	108	oa B and
11	291	288	288	288	288	288	291	288	288	291	291	291	288	288	288	288	288	288	288	288	. Gambo
Ō	288	288	288	288	285	288	288	288	288	285	288	288	288	288	285	288	288	288	288	288	emate A
04	213	216	213	213	213	213	219	213	210	213	219	219	213	225	225	225	207	222	222	213	Aand R
ŋ	204	204	204	207	213	213	213	213	204	207	213	213	213	216	216	216	207	207	216	204	ns: Tikal
9	115	111	111	103	111	103	103	103	113	111	103	103	103	115	115	115	115	115	111	117	opulatio
A	111	103	111	101	111	103	103	103	113	111	103	103	103	103	103	103	103	103	103	111	a paino
19	120	123	120	120	120	120	126	120	117	120	126	126	120	132	132	123	135	129	129	120	l tha foll
ŋ	111	111	111	114	120	120	120	120	111	114	120	120	120	123	123	123	114	114	123	111	Juome b
9	265	262	262	265	253	265	259	265	259	265	259	259	265	265	265	265	265	265	265	265	re chare
0	256	256	243	253	253	259	253	259	259	259	253	253	259	259	259	259	259	259	259	246	otvnec a
2	246	250	246	254	250	254	248	254	248	250	248	248	254	250	250	250	257	257	250	257	ce 8 den
A	246	246	242	246	250	246	244	246	242	250	244	244	246	246	246	246	244	244	248	250	7 herau
17	205	202	205	205	208	205	205	205	205	205	205	205	205	205	205	205	205	205	208	208	vnec ic 5
D1	202	202	202	202	208	205	205	205	202	202	205	205	205	202	202	202	202	202	202	202	is denoty
6	147	161	161	161	148	147	148	147	150	143	148	148	147	141	141	141	145	145	147	161	nultiloci
A!	141	148	148	148	141	141	145	141	141	143	145	145	141	141	141	141	145	145	141	161	uninin n
	AmigosC	AmigosD	AmigosE	AmigosF	CuevasA	CuevasB	CuevasC	ArenaDamA	PierrevilleA	SimlaA	SimlaB	SimlaC	OcumareA	OcumareB	OcumareC	OcumareD	OcumareE	CumbotoA	CumbotoB	CumbotoC	The number of

and Arena Daw populations and strengtharty, wanteds barred based on their mitochondrial genotypes (Fig. 3). Therefore, we caution that identical multilocus genotypes may not in every case indicate common descent but in some cases result from convergent evolution, that is, fragments identical in size but not in sequence. Alternatively, mitochondrial heteroplasmy, the occurrence of multiple mitochondrial haplotypes within a single individual, is also consistent with the observed pattern. Future studies will have to explore this seemingly paradoxical result.

Table S3. Cont.

Table S4.	Compari	son of (genotyp	es (allele	sizes r	neasur	ed as b	ase pai	rs) at 12	micros	atellite	loci fr	om one	selectec	l sexual	and oi	ne sele	cted as	exual I	popula	tion of	M. sm	ithii	
Individuals	A9	A9	D117	D117	A5	A5	C6	C6	C119	C119	A6	A6	C104	C104	D11	D11	B1	B1	B4	B4	C	C	D8	D8
Sexual																								
Queen (1)	141	149	202	205	242	250	246	246	117	117	111	113	210	210	288	288	112	114	207	207	233	236	162	171
Queen (1)	143	143	202	202	242	252	246	256	117	117	103	113	210	210	288	288	112	112	205	205	233	236	171	174
Queen (1)	143	143	202	202	242	252	246	256	117	117	103	113	210	210	288	288	112	112	205	207	233	236	171	174
Queen (1)	143	149	202	202	250	252	246	256	117	117	103	111	210	210	288	288	112	112	205	207	233	236	171	174
Queen (1)	143	149	202	202	250	250	250	259	117	117	103	111	210	210	288	288	112	112	205	207	236	236	171	171
Male (1)	143		205		250		259		120		111		213		288		112		207		236		171	
Male (1)	143		205		242		259		117		103		210		288		112		205		236		162	
Male (1)	143		202		250		259		117		111		207		288		108		207		236		171	
Male (1)	148		202		242		246		117		111		210		288		112		207		236		171	
Worker (1)	143	143	202	205	250	250	259	259	117	120	103	111	210	213	288	288	112	112	207	207	236	236	171	171
Worker (1)	149	149	202	205	242	250	246	246	117	120	103	113	210	213	288	288	112	112	205	207	236	236	174	177
Worker (1)	143	143	202	205	250	250	250	259	117	120	111	111	210	213	288	288	112	112	207	207	236	236	171	171
Worker (1)	149	149	202	202	250	252	246	256	117	117	103	111	210	210	288	288	112	112	205	207	236	236	171	171
Worker (1)	143	143	202	202	242	252	246	256	117	117	103	113	210	210	288	288	112	112	207	207	233	236	171	171
Asexual																								
Queen (6)	141	141	218	236	253	257	265	271	123	123	111	119	216	216	288	288	114	124	204	204	236	236	174	177
Worker (168	() 141	141	218	236	253	257	265	271	123	123	111	119	216	216	288	288	114	124	204	204	236	236	174	177
Brood (121)	141	141	218	236	253	257	265	271	123	123	111	119	216	216	288	288	114	124	204	204	236	236	174	177
Queen (6)	141	147	218	218	246	253	253	259	117	117	109	111	210	210	288	288	97	114	204	204	236	236	165	174
Worker (84)	141	147	218	218	246	253	253	259	117	117	109	111	210	210	288	288	97	114	204	204	236	236	165	174
Brood (5)	141	147	218	218	246	253	253	259	117	117	109	111	210	210	288	288	97	114	204	204	236	236	165	174
In the left	nost colun	nn, the r	number in	parenthe	ses follo	wing th	e caste/s	ex of the	e individu	al indica	tes the r	umber o	of sample	s with th	e depicte	id genot	ype. Rep	bresenta	itive ger	notypes	for a se	tual pop	pulation	are
from the Cal	deirão poț	oulation.	"Male" c	genotypes	were d	etermin	ed from	the spe	rmatheca	content	of inser	ninated	dueens. I	aternal	alleles ap	pear as	bold, ita	alicized	number	s. Work	er geno	types of	this sex	kual
population w	rere select	ed to re _l	present a	diversity c	of mater	nal and	paterna	l alleles,	including	g recomb	inant ge	notypes	S. Note th	at not al	alleles p	iresent i	n the sp	erm wei	e recov	ered in	the wor	ker gen	otypes a	and,
conversely, v	orkers cai	rried a f	ew alleles	not detec	ted in e	ither qu	neens or	males, i	indicating	that the	e allelic	diversity	present	in this po	pulation	was no	t sample	ed exha	ustively.	. Sample	es repre	enting	the asex	xual
population v	/ere collec	ted in K	io Claro, 5	ao Paulo.	In this a	sexual	populati	on, only	two idei	ntical mu	Itilocus	genotyp	es were 1	ound an	100 390	genotyl	ped Indi	viduals	represei	nting qu	ueens, w	orkers,	and ten	nale
brood; males	are not k	cnown tu	occur in	strictly as	exual po	pulatio	ns (8).																	

•		•	•									
Species	Extraction code	Collector's code	Country	Sample locality	EF1-α F1 exon 1	EF1-α F1 exon 2	Wg exon 1	LW Rh exon 1	LW Rh exon 2	CO	tRNA Leu	COII
M. curvisninosus	87.CM	UGM0950612	Costa	Parque Nacional	IN054745	IN054829	IN055079	IN054913	IN054996	IN055163	n/a	e/u
			Rica	Santa Rosa							5	5
M. curvispinosus	M285	AGH010405-01	Panama	Pipeline Rd. Km 6, Parque Nacional Soberanía	JN054746	JN054830	JN055080	JN054914	JN054997	JN055164	n/a	n/a
M. curvispinosus	M286	AGH010405-01	Panama	Pipeline Rd. Km 6, Parque Nacional Soberanía	JN054747	JN054831	JN055081	JN054915	JN054998	JN055165	n/a	n/a
M. curvispinosus	M296	E.Deulefent M2169	Colombia	Villa Roca	JN054748	JN054832	JN055082	JN054916	JN054999	JN055166	n/a	n/a
M. curvispinosus	M317	CR071221-09	Costa Rica	Lomas Barbudal	JN054749	JN054833	JN055083	JN054917	JN055000	JN055167	n/a	n/a
M. goeldii	M028	CR050121-05	Brazil	Pareci Novo, Rio Grande do Sul	JN054750	JN054834	JN055084	JN054918	JN055001	JN055168	n/a	n/a
M. goeldii	M145	MB050906-07	Brazil	Rio Claro, São Paulo	JN054751	JN054835	JN055085	JN054919	JN055002	JN055169	n/a	n/a
M. goeldii	M241	CR060903-01	Brazil	Manaus, Amazonas	JN054752	JN054836	JN055086	JN054920	JN055003	JN055170	n/a	n/a
M. goeldii	M263	CR060819-05	Brazil	Alter do Chão, Pará	JN054753	JN054837	JN055087	JN054921	JN055004	JN055171	n/a	n/a
M. goeldii	M278	J.Martins061011-	Brazil	Júlio de Castilhos,	JN054754	JN054838	JN055088	n/a	n/a	JN055172	n/a	n/a
		05 B F - H 07 100 1		Rio Grande do Sul							-1-	-1
w. goelali M. goeldii	M281 M281	K. Feitosauo 100 I Dietz&Silva041006	Brazil	Lizarda, Iocantins Ponte Alta do Bom	cc/4c0NL	JN054840		JN054923		JN055174	n/a n/a	n/a n/a
M coeldii	bb C M	CR070716-05	Brazil	Jesus, Tocantins Brasília Distrito Federal	IND54757	1ND54841	IND55091		IND55007	IND55175	e/u	e/u
M. aoeldii	M307	CR061002-02	Brazil	Rio Claro. São Paulo	JN054758	JN054842	JN055092	JN054925	JN055008	JN055176	n/a	n/a
M. goeldii	M328	UGM080921-01	Brazil	Estação Ecológica do	JN054759	JN054843	JN055093	JN054926	JN055009	JN055177	n/a	n/a
				Panga, Minas Gerais							- 1-	1
M. goeldii	0000M	116440809020 02	Brazil	Piracanjuba, Golas	100/ 420NL	JN054844					n/a	а/ч
M. goelali			DI 4211	Jussara, Golas	10/4C0NL		CENCENIL	026450NL		6/1000Nr	E/11	P/1
M. goeldii	M331	UGM081003-01	Brazil	Roadside nr. Cuiabă, Mato Grosso	JN054762	JN054846	JN055096	JN054929	JN055012	JN055180	n/a	n/a
M. aoeldii	M333	CR081003-01	Brazil	Rio Claro. São Paulo	JN054763	JN054847	JN055097	JN054930	JN055013	JN055181	n/a	n/a
M. goeldii	M335	CR081003-04	Brazil	Rio Claro, São Paulo	JN054764	JN054848	JN055098	JN054931	JN055014	JN055182	n/a	n/a
M. goeldii	M337	CR081002-02	Brazil	Rio Claro, São Paulo	JN054765	JN054849	JN055099	JN054932	JN055015	JN055183	n/a	n/a
M. goeldii	M339	CR081002-07	Brazil	Rio Claro, São Paulo	JN054766	JN054850	JN055100	JN054933	JN055016	JN055184	n/a	n/a
M. goeldii	M340	CR060831-12	Brazil	Caldeirão, Amazonas	JN054767	JN054851	JN055101	JN054934	JN055017	JN055185	n/a	n/a
M. obsoletus	M243	CR060906-02	Brazil	Parintins, Amazonas	JN054768	JN054852	JN055102	JN054935	JN055018	JN055186	n/a	n/a
M. obsoletus	M249	CR060906-03	Brazil	Parintins, Amazonas	JN054769	JN054853	JN055103	JN054936	JN055019	JN055187	n/a	n/a
M. obsoletus	M255	CR060813-04	Brazil	Alter do Chão, Pará	JN054770	JN054854	JN055104	JN054937	JN055020	JN055188	n/a	n/a
M. obsoletus	M256	CR060813-06	Brazil	Alter do Chão, Pará	JN054771	JN054855	JN055105	JN054938	JN055021	JN055189	n/a	n/a
M. ODSOIETUS			Brazil Pro-il	Alter do Chao, Para		002420NL		1N054939		061 CCUNL	n/a	n/a
M obsoletus		CR070717-01	Brazil	Bracília Dictrito							e/u	e/u
MI. 00000103	0000			Federal								
M. obsoletus	M314	SCC081112-01	Brazil	Brasília, Distrito	JN054775	JN054859	JN055109	JN054942	JN055025	JN055193	n/a	n/a
				Federal								
M. smithi	M070	CR050318-03	Cuba	Cientuegos	JN054//6	JN054860	JN055110	JN054943	JN055026	JN055231	JN055313	JN055272
M. smitnii	MU/1	CK050318-03	Cupa	Clentuegos	1114CUNL	1 024CUNL		1NU54544	12UCCUNL		n/a	n/a

Table S5. Cont.												
Species	Extraction code	Collector's code	Country	Sample locality	EF1-α F1 exon 1	EF1-α F1 exon 2	Wg exon 1	LW Rh exon 1	LW Rh exon 2	Ō	tRNA Leu	COII
M. smithii	M109	CR040613-01	Peru	Explorama Lodge,	JN054778	JN054862	JN055112	JN054945	JN055028	JN055232	JN055314	JN055273
M. smithii	M110	CR040613-02	Peru	lquitos Explorama Lodge,	JN054779	JN054863	JN055113	JN054946	JN055029	JN055233	JN055315	JN055274
M. smithii	M129	UGM950107-07	Trinidad	lquitos Simla Research	n/a	n/a	n/a	n/a	n/a	JN055234	JN055316	JN055275
M smithii	M131	UGM950112-09	Trinidad	Station Pierreville	e/u	e/u	e/u	e/u	e/u	1N055235	1N055317	IND55276
M. smithii	M132	UGM950114-08	Trinidad	Arena Dam	JN054780	JN054864	JN055114	JN054947	JN055030	JN055236	JN055318	JN055277
M. smithii	M152	UGM960116-01	Panama	Canal Zone	n/a	n/a	n/a	n/a	n/a	JN055237	JN055319	JN055278
M. smithii	M170	UGM950616-01	Costa Rica	Limón	n/a	n/a	n/a	n/a	n/a	JN055238	JN055320	JN055279
M. smithii	M175	TRS960416-12	Guyana	Paramakatoi	JN054781	JN054865	JN055115	JN054948	JN055031	JN055239	JN055321	JN055280
M. smithii	M182	TRS960428-22	Panama	Ft. Sherman	JN054782	JN054866	JN055116	JN054949	JN055032	JN055240	JN055322	JN055281
M. smithil	M186	11-128026SN1	Brazıl	sao Gabriel da Cachoeira,	n/a	n/a	n/a	n/a	n/a	142cc0NL	525220NL	282cc0NL
				Amazonas								
M. smithii	M198	UGM950110-02	Trinidad	Las Cuevas	n/a	n/a	n/a	n/a	n/a	JN055242	JN055324	JN055283
M. smithii	M218	CR060627-07	Mexico	El Encino, Tamaulipas	JN054783	JN054867	JN055117	JN054950	JN055033	JN055243	JN055325	JN055284
M. smithii	M226	UGM030329-02	Argentina	Iguazú National Park	JN054784	JN054868	JN055118	JN054951	JN055034	JN055244	JN055326	JN055285
M. smithii	M230	UGM960116-01	Panama	Gamboa	JN054785	JN054869	JN055119	JN054952	JN055035	JN055195	n/a	n/a
M. smithii	M264	CR060820-03	Brazil	Belterra, Para	JN054785	JN054870	021220NL	JN054953	JN055036			
M. Smithi	/97W	CR060908-04	Brazil Decel	Badajos, Amazonas	18/420NL	1/8420NL	121320NL	JN054954		010055246	925520NL	
NI. Smithi	M268	CR061014 03	Brazil Decel	Parintins, Amazonas	1N054788	2/8420NL	221 220NL	226420NL		1N055247	925520NL	882660NL
M. smithi	6/7W	CR061011-03	Brazil	Rio Claro, Sao Paulo	1N054/89	JN0548/3	1N055123	JN054956	JN055039	JN055248	055520NL	282220NL
M. smithii M. smithii	0/2/N	PPSilva041000	Brazil Brazil	Allo Claro, Sao Paulo Allrora do Torantine		4/94CUNL	1000124				IND55221	
	C / ZINI			Toranting				OCCHONIC				DESCONIC
M. smithii	M305	G.Alpert020221	St. Lucia	Gros Islet, Point	JN054792	JN054876	JN055126	JN054959	JN055042	JN055250	JN055332	JN055291
				du Cap								
M. smithii	M318	CR071221-05	Costa Rica	Lomas Barbudal	JN054793	JN054877	JN055127	JN054960	JN055043	JN055251	JN055333	JN055292
M. smithii	M319	CR071229-05	Nicaragua	El Tuma	JN054794	JN054878	JN055128	JN054961	JN055044	JN055252	JN055334	JN055293
M. smithii	M320	CR080103-01	Honduras	Copán, Archeological Museum	JN054795	JN054879	JN055129	JN054962	JN055045	JN055253	JN055335	JN055294
M. smithii	M321	CR080108-04	Guatemala	El Remate	JN054796	JN054880	JN055130	JN054963	JN055046	JN055254	JN055336	JN055295
M. smithii	M322	CR080109-01	Guatemala	Tikal	JN054797	JN054881	JN055131	JN054964	JN055047	JN055255	JN055337	JN055296
M. smithii	M323	CR080110-04	Mexico	El Panchan, Chiapas	JN054798	JN054882	JN055132	JN054965	JN055048	JN055256	JN055338	JN055297
M. smithii	M324	CR080111-02	Mexico	El Panchan, Chiapas	JN054799	JN054883	JN055133	JN054966	JN055049	JN055197	n/a	n/a
M. smithii	M325	CR080813-06	Venezuela	Ocumare de la Costa	JN054800	JN054884	JN055134	JN054967	JN055050	JN055257	JN055339	JN055298
M. smithii	M326	CR080815-01	Venezuela	Parque Nacional Henri Pittier, Rio	JN054801	JN054885	JN055135	JN054968	JN055051	JN055258	JN055340	JN055299
				Cumboto								
M. smithii	M341	CR060831-10	Brazil	Caldeirão, Amazonas	JN054802	JN054886	JN055136	JN054969	JN055052	JN055259	JN055341	JN055300
M. smithii	M342	CR060925-02	Brazil	Manaus, Amazonas	JN054803	JN054887	JN055137	JN054970	JN055053	JN055260	JN055342	JN055301
M. smithii	M343	CR040528-03	Peru	Pilcopata	JN054804	JN054888	JN055138	JN054971	JN055054	JN055261	JN055343	JN055302
M. smithii	M344	CR040605-04	Peru	CICRA, Los Amigos	JN054805	JN054889	JN055139	JN054972	JN055055	JN055262	JN055344	JN055303
M. smithii	M353	CR060808-03	Brazil	Belém, Pará	JN054806	JN054890	JN055140	JN054973	JN055056	JN055263	JN055345	JN055304
MI. SMITHI	1V1554	LKU0U814-U3	brazii	Alter do Chao, Para		1604CUNI		4/64CUNI		492CCUNI	045CCUNI	CUECCUNIC

Table S5. Cont.	_											
	Extraction	Collector's			EF1-α F1	EF1-α F1	Wg	LW Rh	LW Rh		tRNA	
Species	code	code	Country	Sample locality	exon 1	exon 2	exon 1	exon 1	exon 2	COI	Leu	COII
M. smithii	M355	S.Sanchez-01	Mexico	Monterrey, Nuevo León	n/a	n/a	n/a	n/a	n/a	JN055265	JN055347	JN055306
M. smithii	M356	AGH020607-05	Panama	Bocas del Toro	n/a	n/a	n/a	n/a	n/a	JN055266	JN055348	JN055307
M. smithii	M357	UGM030406-03	Argentina	Pampa del Indio	n/a	n/a	n/a	n/a	n/a	JN055267	JN055349	JN055308
M. smithii	M358	CR080104-02	Honduras	Conan Ruinas	n/a	e/u	n/a	n/a	n/a	IN055268	IN055350	1N055309
M. smithii	M360	TRS920816-07	Brazil	Reserva Ducke	n/a	n/a	n/a	n/a	n/a	IN055269	JN055351	IN055310
				Manaus,								
M. smithii	M363	CR060905-01	Brazil	Santa Rita,	n/a	n/a	n/a	n/a	n/a	JN055270	JN055352	JN055311
				Amazonas								
M. smithii	M364	CR040530-04	Peru	Huacaria	n/a	n/a	n/a	n/a	n/a	JN055271	JN055353	JN055312
M. tardus	M162	UGM960125-01	Panama	Pipeline Rd. Km6, Parque Nacional Soborado	JN054808	JN054892	JN055142	JN054975	JN055058	JN055198	n/a	n/a
M. tardus	M173	UGM950202-03	Panama	Pipeline Rd. Km6,	JN054809	JN054893	JN055143	JN054976	JN055059	JN055199	n/a	n/a
				Parque Nacional Soberanía								
M. tardus	M309	UGM960202-02	Panama	Pipeline Rd. Km6,	JN054810	JN054894	JN055144	JN054977	JN055060	JN055200	n/a	n/a
				Parque Nacional Soberanía								
M. tardus	M310	UGM960202-01	Panama	Pipeline Rd. Km6,	JN054811	JN054895	JN055145	JN054978	JN055061	JN055201	n/a	n/a
				Parque Nacional Soberanía								
M sp. nov. 1	M250	CR060906-05	Brazil	Parintins. Amazonas	JN054812	JN054896	JN055146	JN054979	JN055062	JN055202	n/a	n/a
M sp. nov. 1	M251	CR060906-09	Brazil	Parintins. Amazonas	JN054813	JN054897	JN055147	JN054980	JN055063	JN055203	n/a	n/a
M sp. nov. 1	M252	CR060906-07	Brazil	Parintins, Amazonas	JN054814	JN054898	JN055148	JN054981	JN055064	JN055204	n/a	n/a
M sp. nov. 2	M245	CR060915-01	Brazil	Manaus, Amazonas	JN054815	JN054899	JN055149	JN054982	JN055065	JN055205	n/a	n/a
M sp. nov. 2	M246	CR060919-05	Brazil	Manaus, Amazonas	JN054816	JN054900	JN055150	JN054983	JN055066	JN055206	n/a	n/a
M sp. nov. 3	M095	CR040603-1-4	Peru	CICRA, Los Amigos	JN054817	JN054901	JN055151	JN054984	JN055067	JN055207	n/a	n/a
M sp. nov. 3	M102	CR040608-03	Peru	CICRA, Boca Amigos	JN054818	JN054902	JN055152	JN054985	JN055068	JN055208	n/a	n/a
M sp. nov. 3	M103	CR040608-04	Peru	CICRA, Boca Amigos	JN054819	JN054903	JN055153	JN054986	JN055069	JN055209	n/a	n/a
M sp. nov. 3	M117	CR040615-01/06	Peru	Explorama Lodge, Iguitos	JN054820	JN054904	JN055154	JN054987	JN055070	JN055210	n/a	n/a
M sp. nov. 3	M135	AGH030616-03	Ecuador	Tiputini Biodiversity	JN054821	JN054905	JN055155	JN054988	JN055071	JN055211	n/a	n/a
				Station								
<i>M</i> sp. nov. 3	M136	AGH030613-04	Ecuador	Tiputini Biodiversity Station	JN054822	JN054906	JN055156	JN054989	JN055072	JN055212	n/a	n/a
M sp. nov. 3	M345	CR040529-02	Peru	Pilcopata	JN054823	JN054907	JN055157	JN054990	JN055073	JN055213	n/a	n/a
M sp. nov. 4	M153	TRS960415-16	Guyana	Paramakatoi	JN054824	JN054908	JN055158	JN054991	JN055074	JN055214	n/a	n/a
<i>M</i> sp. nov. 4	M311	TRS960415-17	Guyana	Paramakatoi	JN054825	JN054909	JN055159	JN054992	JN055075	JN055215	n/a	n/a
<i>M</i> sp. nov. 4	M312	TRS960415-12	Guyana	Paramakatoi	JN054826	JN054910	JN055160	JN054993	JN055076	JN055216	n/a	n/a
M sp. nov. 4	M313	TRS960415-13	Guyana	Paramakatoi	JN054827	JN054911	JN055161	JN054994	JN055077	JN055217	n/a	n/a
M sp. nov. 5	M294	A.Parente M713	Colombia	Amacayacu	JN054828	JN054912	JN055162	JN054995	JN055078	JN055218	n/a	n/a
				National Park								

PNAS PNAS

Outgroup taxa are listed in Schultz and Brady (31). Collection information can be requested from the first author.

Table S6.	Sequence characteristics and	best-fit models of sequence evolution a	as calculated by hLRTs and the AIC
-----------	------------------------------	---	------------------------------------

		All t	аха	Ingro	oup				
Gene	Number of sites	Variable sites	PI sites	Variable sites	PI sites	hLRTs	AIC	Model Bayesian	Model partitioned ML
Global analysis									
Ef1-α Exon1&2	1,071	370	363	43	35				
Ef1-α Pos1&2	714	37	34	1	1	TIM+I+G	TIM+I+G	GTR+I+G	TIM+I+G
Ef1-α Pos3	357	333	329	42	33	GTR+I+G	GTR+I+G	GTR+I+G	GTR+I+G
Wg Exon	405	187	164	20	18				
Wg Pos1	135	36	21	0	0	K80+G	TrNef+G	GTR+G	TrNef+G
Wg Pos2	135	19	15	1	1	K80+G	K80+G	K80+G	K80+G
Wg Pos3	135	132	128	19	17	HKY+G	GTR+G	GTR+G	GTR+G
LWR Exon1&2	456	206	193	25	23				
LWR Pos1	152	56	50	10	10	HKY+I+G	HKY+I+G	HKY+I+G	HKY+I+G
LWR Pos2	152	28	26	0	0	GTR+G	GTR+G	GTR+G	GTR+G
LWR Pos3	152	122	117	15	13	HKY+I+G	HKY+I+G	HKY+I+G	HKY+I+G
COI	387	146	140	146	140				
COI Pos1&2	258	30	28	30	28	TrN+I+G	TIM+I+G	GTR+I+G	TIM+I+G
COI Pos3	129	116	112	116	112	TrN+G	TrN+G	GTR+G	TrN+G
Total	2,319	909	860	234	216	n/a	n/a	n/a	n/a
Local analysis									
COI-II + tRNA Leu	1,515	n/a	n/a	248	169				
COI-II Pos1&2 + tRNA Leu	1,034	n/a	n/a	54	33	HKY+I+G	TrN+I+G	GTR+I+G	TrN+I+G
COI-II Pos3	481	n/a	n/a	194	136	TrN+G	TIM+I+G	GTR+I+G	TIM+I+G
Total	1,515	n/a	n/a	248	169	n/a	n/a	n/a	n/a

"Model" columns indicate the models of sequence evolution implemented in the Bayesian and likelihood analyses. The global dataset consists of nuclear and mitochondrial DNA sequence data for 84 *Mycocepurus* ingroup taxa and 87 attine and myrmicine outgroup taxa. The local dataset consists exclusively of mitochondrial sequence data for 41 *M. smithii* individuals. PI, parsimony-informative.

Table S7. Microsatellite loci developed for the fungus-gardening ant species M. smithii

Locus	Repeat motif	Primer (5'-3')	T _m (°C)	Multiple ×	Dye	Size range	Number of alleles	GenBank accession number
A5	(AC) ₁₄	F: GAACTTCGACGTGTAATTCG	56–57	В	FAM	238–256	12	JN055219
		R: GCCACGGATAATTTCGAT						
A6	(AC) ₁₅	F: CTCCTCCGGCTTTTCTCT	56–57	С	FAM	101–123	12	JN055220
		R: GATCGCGTACGGGTATATG						
A9	(GT) ₁₃	F: AACCTTCCCTTTGCGAAT	56–57	А	FAM	135–165	10	JN055221
		R: TATGTTTTGTGCCGTCGTTA						
B1	(TC) ₁₇	F: GTGAGACGTGTTCGACGAG	56–58	D	HEX	90–132	15	JN055222
		R: GACTCGGAACCGACTTTCT						
B4	(GC) ₈	F: GATTTGCATACGTCTGTCTAGC	56–57	D	FAM	205–207	2	JN055223
		R: GCCTATTTCGTGTAAGGTAATG						
C2	(TTG) ₆ -A-(TTG)₅	F: CGCGTGATTCCTAGACAAC	56–57	D	FAM	230–242	5	JN055224
		R: AACGTGAGTCAGAACAATACG						
C6	(TTG) ₆ -TTA-(TTG) ₄	F: ACCAGGTTACAGGCGTAGAT	56–57	В	HEX	237–271	11	JN055225
		R: CGATACCATCACCACGACTA						
C104	(CAA) ₈	F: CGTCTACCAGTTCTGATTGC	56–57	С	FAM	204–225	8	JN055226
		R: ATCTGACATTTTGTCCAACG						
C119	(CAG) ₄ -(CAA) ₈ -	F: CGATTCTACATCGATTCTGCR	56–57	В	FAM	111–135	9	JN055227
	(ATC) ₃	R: ATCTGACATTTTGTCCAACG						
D8	(CAT) ₁₁ -(CGT) ₅	F: CGGACATGTTCTTCGAGAT	56–57	D	HEX	159–189	10	JN055228
		R: CGCGACCTTTGAAAGTAGAT						
D11	(GAT) ₁₀ -GAC-(GAT) ₄	F: ACTTCGTTCCTCCATCTTCC	56–57	С	FAM	285–294	4	JN055229
		R: CGCATCATCAGTTTGTTCAC						
D117	(TCA) ₂₇	F: GATGTCATAGCAGGGCATTA	56–57	A	FAM	196–242	8	JN055230
		R: TGTCGCGTTGTGTGTCTAT						

T_m is the optimal annealing temperature. Loci were amplified in four multiplexed PCR reactions (A–D). The number of alleles and the size range were determined from genotyping 1,930 individuals from 39 localities in Latin America. Clone sequences were deposited in GenBank under the accession numbers given. F, forward; R, reverse. HEX, hexachlorofluorescein; FAM, carboxyfluorescein.

SANG SANG

Table S8. Primers used for PCR amplification and DNA sequencing

PNAS PNAS

Primer	Sequence (5'-3')	Position	Source	
EF1-α F1 copy				
F1-494F	AAGGAGGCTCAGGAGATGGG	Apis 494–513	(31)	
F1-1044R	CGTCTTACCATCGGCATTGCC	Apis 1044–1019	(31)	
F1-792F	TTGGCGTGAAGCAGCTGATCG	Apis 792–812	(31)	
F1-1189R	ACCTGGTTTYAAGATRCCGGT	Apis 1189–1169	(31)	
F1-1109F	CCGCTTCAGGATGTCTATAA	Apis 1109–1128	(31)	
F1-1551R	CCGCGTCTCAGTTCYTTTAC	Apis 1551–1532	(31)	
F1-1424F	GCGCCKGCGGCTCTCACCACCGAGG	Apis 1424–1448	(55)	
F1-1829R	GGAAGGCCTCGACGCACATMGG	Apis 1829–1808	(55)	
Wg				
MycoWg578F	TGCACGGTGAAGACTTGCTGGATGCG	Pheidole 578–603	Modified from ref. 58	
Wg1032R	ACYTCGCAGCACCARTGGAA	Pheidole 1032–1013	(59)	
LW Rh				
LR143F	ACAAAGTGCCACCGGAGATGCT	Apis 144–165	Modified from ref. 58	
MycoLR639ER	CTTACCGGTTTCCATCCGAACA	Apis ~639–624	Modified from ref. 58	
COI-II				
LCO1490	GGTCAACAAATCATAAAGATATTGG	D. yakuba 1490–1515	(60)	
HCO2198	TGATTTTTTGGTCACCCTGAAGTTTA	D. yakuba 2198–2223	(60)	
CI13	ATAATTTTTTTTATAGTTATACC	Apis 2002–2025	(61)	
CI14	ATTTCTTTTTTCCTCTTTC	Apis 2549–2568	(61)	
MycoJerry	CAACAYYTATTTTGATTTTTTGG	Apis ~2181–2203	Modified from ref. 57	
MycoBen	CAYGAYACHTATTATGTAGTRGC	Apis ~2613–2591	Modified from ref. 62	
MycoGeorge	ATACCTCGTCGATATTCTGA	D. yakuba 2773–2792	Modified from ref. 63	
Marilyn	TCATAAGTTCARTATCATTG	D. yakuba 3364–3383	(63)	
Lewis	TATTATTTGRGARTCCCTCT	Apis ~2660–2679	This study	

Position numbers correspond to *Apis mellifera* GenBank accession number X52884 (EF1- α F1), *Pheidole morrisi* GenBank accession number AY101369.1 (Wg), *A. mellifera* GenBank accession number U26026 (LW Rh), *Drosophila yakuba* GenBank accession number X03240 (COI and COII), and the *A. mellifera* nucleotide position given in ref. 57 (COI). For all genes, the PCR product was amplified directly from the DNA extract.