Prototrophic colonies from a combination between WAc-114 and a mutant of WAc-115 which formed yellow vegetative mycelia (WAc-124) produced aerial hyphae and yellow vegetative mycelia. Other results were identical to those previously given except that WAc-124 occurred more frequently during dissociation (table 1).

These findings, which differ from previous ones (Sermonti and Spada-Sermonti, Nature, 176, 121, 1955) in that (1) parental types dissociate from the prototrophs and (2) presumptive recombinants which express the mutant phenotypes of each parent actually contain the complete genomes of both parents, are consistent with heterokaryosis. These data could result from parasexuality (Pontecorvo, G., Proc. 9th Intern. Congr. Genetics, **1**, 193, 1954) if the genetic markers employed were closely linked. A recombinant nucleus might go undetected in a heterokaryon.

INFLUENCE OF CULTURE CONDITIONS ON UPTAKE AND DISTRIBUTION OF MOLYBDENUM IN AZOTOBACTER VINELANDII¹

RICHARD F. KEELER

Department of Biochemistry, College of Agriculture, The Ohio State University, Columbus 10, Ohio

Received for publication October 22, 1956

The uptake and distribution of molybdenum in Azotobacter is of interest because of the absolute requirement of these organisms for molybdenum while fixing nitrogen. In a previous paper (Keeler, et al., J. Bacteriol., **72**, 394–396, 1956) the isolation from disrupted Azotobacter vinelandii cells of a particulate fraction (R-144-6) was reported. This fraction had a high 260/280 m μ ratio, the highest level of Mo⁹⁹ per mg protein, and a major fraction of the total Mo⁹⁹ taken up by the cells.

Similar studies for cells grown on NO3 or NH[†] as a nitrogen source have been conducted. Results indicated a marked variability in Mo⁹⁹ uptake per unit growth which was found to be more closely related to the degree of aeration than to nitrogen source. It was also apparent from the results that Mo⁹⁹ distribution was not a unique function of nitrogen source. Shake cultures revealed that either low iron concentration or a high degree of aeration approximately doubled Mo⁹⁹ uptake per unit growth regardless of nitrogen source. These results, in the light of the interesting proposal of Lenhoff et al. (J. Biol. Chem., 220, 983-995, 1956) of an alternate molybdoflavoprotein terminal oxidase pathway in pseudomonads, led to a study of Fe⁵⁹ uptake as influenced by aeration and molybdenum levels. For cells growing on N₂, iron uptake per unit growth was constant for molybdenum levels

¹ This work supported in part by a grant from the Research Corporation, New York.

varying from 0.001–10.0 ppm. However, iron uptake per unit growth was strongly influenced by aeration. Four times as much Fe⁵⁹ was taken up by stagnant cultures as by rapid shake cultures. In all instances growth was determined by optical density readings (at 660 m μ) of the log phase cells. The uptake of radioactivity was determined by the differences in radioactivity of the cell-free media before and after growth.

Because of the considerable influence of aeration and iron concentration on Mo^{99} uptake, it was desirable to know the effects of these factors on Mo^{99} distribution as well as on uptake. Table 1 shows such data for cells grown on NO_3^- , NH_4^+ , and N_2 in 6-L cultures where the aeration was controlled by the line pressure of the laboratory air supply. Although the effect of iron and aeration levels on Mo^{99} uptake is very large, the effect on Mo^{99} distribution is not significant except in the case of the N_2 grown cells. A large proportion of the total molybdenum taken up is found in the R-144-6 fraction, except where cell breakage was unusually high, indicating a high proportion of particulate rupture

Further evidence concerning the disposition of the Mo⁹⁹ taken up by A. vinelandii was obtained by the following experiments. Cells were grown on the three nitrogen sources in 1 ppm of Mo⁹⁹ until most of the molybdenum was taken up. The cells were then harvested and washed at 0 C three times in molybdate-free medium. In all

NOTES

Conditions	Fraction†	260/280 mµ Ratio	Total Activity in Fraction	Total Protein per Fraction	Specific Activity of Fractions	Total Mo ⁹⁹ Uptake per Unit of Protein	Cell Breakage
	1999 <u>- 1999 - 1999 - 1999 - 1999 - 1999 - 1999</u>		counts/min.	mg			%
NH ⁺							
0.1 ppm Fe, high aera- tion	$R-144-\frac{1}{2}$	1.31	2,060	199	11	53	43
	R-144-6	1.71	13,700	116	118		
	S-144-6	1.77	7,880	135	58		
100 ppm Fe, low aera-	R-144-½	1.04	266	277	1	3	86
tion	R-144-6	1.79	168	11	16		
	S-144-6	1.63	462	53	9		
NO ₃							
0.1 ppm Fe, high aera- tion	R-144-1/2	1.29	2,310	183	13	70	43
	R-144-6	1.70	22,600	147	154		
	S-144-6	1.54	16,700	267	63		
100 ppm Fe, low aera- tion	R-144-1/2	1.23	1,320	210	6	36	43
	R-144-6	1.59	17,600	277	64		
	S-144-6	1.63	6,560	214	31		
							ų
0.1 ppm Fe, high aera-	R-144-1/2	1.42	1,650	91	18	68	75
tion	R-144-6	1.69	7,200	48	147		
	S-144-6	1.62	8,930	124	72		
100 ppm Fe, low aera-	R-144-½	1.37	1,070	60	17	23	16
tion	R-144-6	1.44	1,120	62	18		
	S-144-6	1.62	3,000	102	30		

 TABLE 1

 Mo⁹⁹ Uptake and distribution as a function of culture conditions*

* 1 ppm Mo⁹⁹ added.

† Fractionation procedure and nomenclature follows that previously used (Keeler et al., J. Bacteriol., 72, 394-396, 1956).

cases about 15 per cent of the Mo⁹⁹ taken up was lost from the cells. When the cells were washed at 0 C in a medium containing 100 ppm of molybdenum, about 30 per cent of the Mo⁹⁹ was lost. Labeled cells allowed to incubate for 4 hr at 34 C in a new medium containing 100 ppm of molybdenum also lost about 30 per cent of their Mo⁹⁹. There were no differences in the loss of Mo⁹⁹ as a result of these treatments that could be ascribed to the different nitrogen sources. In addition, the Mo⁹⁹ in the R-144-6 fractions from the cells grown on different nitrogen sources was not removed appreciably in any case by dialysis against 10^{-3} cyanide at pH 7.2. It therefore seems probable that most of the molybdenum taken up is incorporated into molybdoprotein(s).