**Supplemental Material Table 1.** Reproducibility of RT-PCR amplification of the 3'end of Gag (p2/p7/p1/p6)- and Pol (PR/RT/INT)-coding sequences as a single large fragment (3,428 nt) or two overlapping shorter fragments (1,657 and 2,002 nt)

## (A) Viral load <1,000 copies/ml

(B) Viral load >1,000 copies/ml

|           | Larg        | ge fragm | ragment |  |
|-----------|-------------|----------|---------|--|
| te 2      | n = 5       | +        | 1       |  |
| Replicate | +           | 3        | 1       |  |
| Зер       | -           | 1        | 0       |  |
|           | Replicate 1 |          |         |  |

| Two fragments |   |   |  |
|---------------|---|---|--|
| n = 5         | + | ı |  |
| +             | 4 | 0 |  |
| -             | 0 | 1 |  |
| Replicate 1   |   |   |  |

|           | Lar    | ge fragm    | agment |
|-----------|--------|-------------|--------|
| 7         | n = 15 | +           | ı      |
| Replicate | +      | 15          | 0      |
| plic      | -      | 0           | 0      |
| <u>~</u>  | F      | Replicate 1 |        |

| Two fragments |    |   |  |
|---------------|----|---|--|
| n = 15        | +  | - |  |
| +             | 15 | 0 |  |
| -             | 0  | 0 |  |
| Poplicate 1   |    |   |  |

RT-PCR amplification reproducibility involved the analysis of 20 plasma samples from HIV-infected individuals with different viral loads: (A) 1,000 copies/ml (n = 5) and (B) >1,000 copies/ml (i.e., 1,001 – 5,000 copies/ml, n = 5; 5,001 – 10,000 copies/ml, n = 5; and >10,000 copies/ml, n = 5). RT-PCR amplification of a single (p2/p7/p1/p6/PR/RT/INT) or two (p2/p7/p1/p6/PR/5'RT + 3'RT/INT) fragments was performed by two different operators, using different lots of critical reagents over a seven-day period. A perfect (100%) RT-PCR amplification reproducibility was observed using plasma samples with viral loads >1,000 copies/ml. Interestingly, a 100% reproducibility was also obtained when RT-PCR amplifying the two overlapping fragments from plasma samples with <1,000 copies/ml.

**Supplemental Material Table 2**. Different methods used to define biological cutoffs.

| Drug | IC <sub>50</sub> - based <sup>a</sup> | Mean + 2SD <sup>b</sup> | 97.5 <sup>th</sup> percentile <sup>c</sup> | 99 <sup>th</sup> percentile <sup>d</sup> |
|------|---------------------------------------|-------------------------|--------------------------------------------|------------------------------------------|
| APV  | 1.67                                  | 1.27                    | 1.40                                       | 1.55                                     |
| TPV  | 1.95                                  | 1.67                    | 1.85                                       | 2.20                                     |
| RTV  | 1.78                                  | 1.68                    | 2.09                                       | 2.32                                     |
| IDV  | 1.61                                  | 1.50                    | 1.61                                       | 1.62                                     |
| NFV  | 2.16                                  | 3.15                    | 3.62                                       | 3.81                                     |
| DRV  | 1.72                                  | 1.28                    | 1.29                                       | 1.38                                     |
| SQV  | 2.41                                  | 2.07                    | 2.52                                       | 2.85                                     |
| LPV  | 2.04                                  | 1.45                    | 1.88                                       | 2.14                                     |
| ATV  | 1.98                                  | 1.63                    | 1.52                                       | 2.01                                     |
| EFV  | 2.09                                  | 2.49                    | 2.96                                       | 3.09                                     |
| NVP  | 2.01                                  | 2.22                    | 2.35                                       | 2.89                                     |
| ETR  | 2.06                                  | 1.57                    | 2.14                                       | 2.25                                     |
| DLV  | 2.25                                  | 3.94                    | 4.04                                       | 6.89                                     |
| AZT  | 1.65                                  | 1.82                    | 1.97                                       | 2.37                                     |
| ABC  | 1.51                                  | 1.22                    | 1.33                                       | 1.36                                     |
| 3TC  | 1.64                                  | 1.16                    | 1.19                                       | 1.22                                     |
| FTC  | 1.57                                  | 1.32                    | 1.40                                       | 1.45                                     |
| d4T  | 1.66                                  | 1.23                    | 1.24                                       | 1.31                                     |
| TDF  | 1.45                                  | 1.40                    | 1.39                                       | 1.62                                     |
| ddI  | 1.53                                  | 1.22                    | 1.28                                       | 1.39                                     |
| RAL  | 1.63                                  | 1.44                    | 1.34                                       | 1.34                                     |

Upper BCO values for each antiretroviral drug were calculated using four different criteria, i.e., twice the coefficient of variation of the  $IC_{50}$  values plus one  $^a$ , the mean FC plus two standard deviations  $^b$ , the 97.5<sup>th</sup> percentile  $^c$  or the 99<sup>th</sup> percentile  $^d$  of the FC distribution.

## B APV TPV RTV Fold change in susceptibility to PIs Drug rep-1 rep-2 rep-3 IDV NFV DRV o rep1 u rep2 a rep3 APV 0.49 0.51 0.72 TPV 0.51 0.55 0.79 RTV 2.30 1.69 1.68 IDV 1.33 1.49 2.40 LPV NFV >max >max 829 SQV ATV DRV 0.71 0.63 0.63 SQV 8.60 2.80 4.40 LPV 1.48 0.94 1.93 ATV 14.0 7.30 12.0 **EFV** NVP **ETR** Fold change in o rep1 rep2 rep3 susceptibility to NNRTIs Drug rep-1 rep-2 rep-3 DLV EFV 0.24 1.73 0.94 o rep1 o rep2 o rep3 NVP 1.63 1.45 1.57 **ETR** 1.14 1.03 0.36 DLV 0.32 0.69 0.55 AZT ABC 3ТС o rep1 o rep2 a rep3 Fold change in susceptibility to NRTIs Drug rep-1 rep-2 rep-3 d4T TDF o rep1 rep2 rep3 AZT 3.30 3.00 3.50 ABC 2.90 2.40 1.77 3TC 2.40 2.90 2.30 FTC 2.20 4.60 2.50 ddl d4T 1.81 1.73 2.70 o rep1 □ rep2 ▲ rep3 **TDF** 2.20 2.40 2.90 ddl 1.41 2.20 Fold change in RAL susceptibility to INSTIs

**Supplemental Material Figure 1**. Reproducibility of the entire HIV-1 phenotypic assay. Three aliquots of a plasma sample obtained from a treatment-experienced HIV-infected individual were processed and analyzed in parallel. Phenotypic drug susceptibility profiles (A) and fold-change in susceptibility to PIs, NNRTIs, NRTIs, and INSTI (B) are shown for each independent p2-INT-recombinant virus or replicate (rep). Mutations associated with reduction in drug susceptibility included: PR (L10FHLY, D30DN, A71AT, N88DN), RT (M41LM, T69ADNT, V75IMV, F77FL, T215NSTY), and INT (none).

Drug

RAL

rep-1

0.55

rep-2

0.42

rep-3

0.79