Nickel-Catalyzed Coupling of Alkenes, Aldehydes, and Silyl Triflates

Ng, S.-S.; Ho, C.-Y.; Jamison, T. F. *

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139

Supporting Information

Experimental Procedures, Analytical and Spectroscopic Data for Compounds 1a - 5b. Pages S2 - S50

> 1 H and 13 C NMR spectra for compounds 1a - 5b. Pages S51 - S164

General Information.

Unless otherwise noted, all reactions were performed under an oxygen-free atmosphere of nitrogen or argon with rigid exclusion of moisture from reagents and glassware. Tetrahydrofuran was distilled from a blue solution of sodium benzophenone ketyl. Dichloromethane and toluene was distilled from calcium hydride. Aromatic aldehydes were purchased from Aldrich Chemical Co. and used as received. Other aldehydes were distilled and saturated with nitrogen before use. Bis(cyclooctadienyl)nickel(0) $(Ni(cod)_2)$ and tris-(o-methoxyphenyl)-phosphine and triphenylphosphine were purchased from Strem Chemicals, Inc., stored under nitrogen atmosphere and used without further purification. Ethylene was purchased from BOC Gases and used as received. 1-octene was purchased from Alfa Aesar and used as received. All other alkenes were purchased from Aldrich Chemical Co. and used as received. Dicyclohexylphenylphosphine and ethyldiphenylphosphinite were purchased from Aldrich Chemical Co., stored under nitrogen atmosphere and used without further purification. Triethylsilyltrifluoromethanesulfonate (TESOTf) and trimethylsilyltrifluoromethansulfonate (TMSOTf) were purchased from Aldrich Chemical Co. and were distilled over calcium hydride before use. Tert-butyldimethysilyltrifluoromethanesulfonate (TBSOTf) was purchased from Alfa Aesar and was distilled over calcium hydride before use.

Analytical thin layer chromatography (TLC) was performed using EM Science silica gel 60 F_{254} plates. The developed chromatogram was analyzed by UV lamp (254 nm), ethanolic phosphomolybdic acid (PMA) or potassium permanganate (KMnO₄). Liquid chromatography was performed using a forced flow (flash chromatography) of the indicated solvent system on Silicycle Silica Gel (230 – 400 mesh). ¹H and ¹³C NMR spectra were recorded on Varian 300 MHz, Varian 500 MHz or Bruker 400 MHz spectrometers in CDCl₃ or C₆D₆, unless otherwise noted. Chemical shifts in ¹H NMR spectra are reported in parts per million (ppm) on the δ scale from an internal standard of residual chloroform (7.27 ppm) or residual benzene (7.16 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad), coupling constant in hertz (Hz), and integration. Chemical shifts of ¹³C NMR spectra are reported in ppm from the central peak of CDCl₃ (77.23 ppm) on the δ scale. Infrared (IR) spectra were recorded on a Perkin-Elmer 2000 FT-IR. High resolution mass spectra (HRMS) were obtained on a Bruker Daltonics APEXII 3 Tesla Fourier Transform Mass Spectrometer by Dr. Li Li of the Massachusetts Institute of Technology Department of Chemistry Instrument Facility. Chiral GC analysis was performed on a Varian CP-3800 gas chromatograph fitted with Chiraldex B-PH, B-DA, and G-TA capillary columns. Chiral HPLC analysis was performed on a Hewlett-Packard 1100 chromatograph equipped with a variable wavelength detector and Chiralcel OD or OD-H columns.

Preparation of 2,2-dimethyl-3-oxo-propionic acid methyl ester

H OMe 2,2-dimethyl-3-oxo-propionic acid methyl ester. 3-Hydroxy-2,2-

dimethyl-propionic acid methyl ester (15 g, 113 mmol) in 200 mL dichloromethane was cooled to 0°C. Pyridinium chlorochromate (43 g, 200 mmol) was added. The mixture was slowly warmed to room temperature and stirred 24 h. The crude in dichloromethane was filtered through silica gel. Celite was added to the remaining black viscous oil from the reaction mixture until the viscous oil is all absorbed to the celite. Dichloromethane was added to this slurry and the dichloromethane solution was filtered through silica gel. Dichloromethane was removed at reduced pressure (80 Torr) to give a pale yellow crude oil. Fractional distillation removed residue dichloromethane and obtained 2,2-dimethyl-3-oxo-propionic acid methyl ester as a colorless oil (7 g, 48% yield).

¹H NMR (300 MHz, CDCl₃, δ): 9.60 (s, 1H); 3.70 (s, 3H); 1.29 (s, 6H). ¹³C NMR (75 MHz, CDCl₃, δ): 199.1, 173.2, 53.9, 52.6, 19.7. IR (NaCl, thin film): 2988, 2958, 1726, 1468, 1278, 1151, 866.

Nickel-catalyzed couplings of ethylene and aldehydes (1a, 1b, 1c, 1d, 1i, 1j, 1l, 1m, 1n).

General procedure 1. A 10 mL round bottom flask and a stir bar were oven-dried and brought into a glove box. Ni(cod)₂ (27.5 mg, 0.1 mmol, 20 mol%) and tris-*o*-methoxyphenylphosphine (70.5 mg, 0.2 mmol, 40 mol%) were added to the round bottom flask, the flask was sealed with a septum, and the sealed flask was brought out of the glove box and connected to an argon line. The catalyst mixture was dissolved in toluene (2.5 mL) under argon and stirred 15 min at room temperature. The reaction mixture was purged with ethylene for 1 min to remove argon, taken care not to introduce oxygen. The ethylene atmosphere was maintained with an ethylene balloon. Triethylamine (418 μ L, 3 mmol, 600 mol%) was added. Aldehyde (0.5 mmol, 100 mol%, as specified) was added. Silyltriflate (0.875 mmol, 175 mol%, as specified) was added. The mixture was filtered through a plug of silica gel. Solvent was removed under reduced pressure and the crude mixture was diluted in hexane. Purification via flash chromatography on silica afforded the coupling product.

Nickel-catalyzed couplings of ethylene and aldehydes (1e, 1f, 1g, 1h, 1k).

General procedure 2. A 10 mL round bottom flask and a stir bar were oven-dried and brought а glove box. $Ni(cod)_2$ (27.5)mg, 0.1 mmol, mol%), into 20 tris-o-methoxyphenylphosphine (70.5 mg, 0.2 mmol, 40 mol%) and aldehyde (0.5 mmol, 100 mol%) were added to the round bottom flask, the flask was sealed with a septum, and the sealed flask was brought out of the glove box and connected to an argon line. The catalyst mixture was dissolved in toluene (2.5 mL) under argon and stirred 15 min at room temperature. The reaction mixture was purged with ethylene for 1 min to remove argon, taken care not to introduce oxygen. The ethylene atmosphere was maintained with an ethylene balloon. Next triethylamine (418 μ L, 3 mmol, 600 mol%) was added. Silyltriflate (0.875 mmol, 175 mol%, as specified) was added. The mixture was stirred at room temperature for 3 - 18 h, as judged by TLC of the reaction mixture. The mixture was filtered through a plug of silica gel. Solvent was removed under reduced pressure and the crude mixture was diluted in hexane. Purification via flash chromatography on silica afforded the coupling product.

OSiEt₃

The reaction of ethylene and benzaldehyde (51 μ L, 0.5 mmol) with Ni(cod)₂, tris-*o*-methoxyphenylphosphine and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 1 above, afforded **1a** in 82% isolated yield as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 7.32 – 7.45 (m, 4H); 7.29 (t, J = 7.0 Hz, 1H); 6.01 (ddd, J = 6.0, 10.2, 16.9 Hz, 1H); 5.34 (dt, J = 1.5, 16.9 Hz, 1H); 5.25 (d, J = 5.9 Hz, 1H); 5.13 (dt, J = 1.5, 10.2 Hz, 1H); 0.99 (t, J = 8.0 Hz, 9H); 0.66 (dq, J = 1.8, 7.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃, δ): 143.9, 141.8, 128.4, 127.3, 126.2, 113.7, 75.9, 7.0, 5.1. IR (NaCl, thin film): 2956, 2877, 1640, 1454, 1240, 1065, 744, 699. HRMS-ESI (m / z): [M + Na]⁺ calcd for C₁₅H₂₄OSiNa, 271.149; found, 271.150.

The reaction of ethylene and *p*-tolualdehyde (59 µL, 0.5 mmol) with Ni(cod)₂, tris-*o*-methoxyphenylphosphine and TESOTf (197 µL, 0.875 mmol), triethylamine in toluene following the general procedure 1 above, afforded **1b** in 88% isolated yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃, δ): 7.27 (d, *J* = 8.0, 2H); 7.16 (d, *J* = 8.0 Hz, 2H); 5.97 (ddd, *J* = 5.9, 10.2, 16.9 Hz, 1H); 5.30 (dt, *J* = 1.5, 17.0 Hz, 1H); 5.17 (d, *J* = 5.9 Hz, 1H); 5.09 (dt, *J* = 1.3, 10.2 Hz, 1H); 2.37 (s, 3H); 0.97 (t, *J* = 7.9 Hz, 9H); 0.65 (dq, *J* = 1.9, 7.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃, δ): 142.1, 141.1, 136.8, 129.1, 126.2, 113.4, 75.8, 21.3, 7.0, 5.2. IR (NaCl, thin film): 2955, 2877, 1640, 1513, 1458, 1415, 1079, 1007, 844. HRMS-ESI (m / z): [M + Na]⁺ calcd for C₁₆H₂₆OSiNa, 285.165; found, 285.165.

(1c)

The reaction of ethylene and *o*-tolualdehyde (58 μ L, 0.5 mmol) with Ni(cod)₂, tris-*o*-methoxyphenylphosphine and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 1 above, afforded **1c** in 93% isolated yield as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 7.50 (d, J = 7.0, 1H); 7.11 – 7.24 (m, 3H); 5.93 (ddd, J = 5.7, 10.2, 17.0 Hz, 1H); 5.36 (d, J = 5.6 Hz, 1H); 5.22 (dt, J = 1.6, 17.1 Hz, 1H); 5.08 (dt, J = 1.5, 10.2 Hz, 1H); 2.34 (s, 3H); 0.95 (t, J = 8.0 Hz, 9H); 0.61 (dq, J = 2.8, 7.5 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 141.9, 140.7, 134.4, 130.3, 127.1, 126.5, 126.3, 113.7, 73.1, 19.4, 7.0, 5.1.

IR (NaCl, thin film): 2955, 2877, 1639, 1461, 1066, 1007, 744.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₁₆H₂₆OSiNa, 285.165; found, 285.165.

The reaction of ethylene and *p*-anisaldehyde (61 μ L, 0.5 mmol) with Ni(cod)₂, tris-*o*-methoxyphenylphosphine and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 1 above, afforded **1d** in 95% isolated yield as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 7.30 (d, J = 8.7 Hz, 2H); 6.90 (d, J = 8.7 Hz, 2H); 5.97 (ddd, J = 5.9, 10.2, 16.9 Hz, 1H); 5.29 (dt, J = 1.4, 17.0 Hz, 1H); 5.16 (d, J = 5.9 Hz, 1H); 5.10 (dt, J = 1.4, 10.2 Hz, 1H); 3.83 (s, 3H); 0.96 (t, J = 7.9 Hz, 9H); 0.63 (dq, J = 1.8, 7.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃, δ): 158.9, 142.0, 136.2, 127.4, 113.7, 113.4, 75.4, 55.4, 7.0, 5.1. IR (NaCl, thin film): 2955, 2877, 1639, 1511, 1464, 1246, 1037, 744. HRMS-ESI (m / z): [M + Na]⁺ calcd for C₁₆H₂₆O₂SiNa, 301.159; found, 301.159.

The reaction of ethylene and 2-naphthaldehyde (78.1 mg, 0.5 mmol) with Ni(cod)₂, tris-*o*-methoxyphenylphosphine and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 2 above, afforded **1e** in 95% isolated yield as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 7.82 – 7.92 (m, 4H); 7.48 – 7.55 (m, 3H); 6.07 (ddd, J = 6.2, 10.2, 15.8 Hz, 1H); 5.35 – 5.45 (m, 2H); 5.17 (dt, J = 1.3, 10.1 Hz, 1H); 1.00 (t, J = 7.8 Hz, 9H); 0.68 (dq, J = 2.5, 7.5 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 141.7, 141.4, 133.5, 133.0, 128.2, 128.1, 127.7, 126.1, 125.8, 124.8, 124.6, 114.0, 76.0, 7.0, 5.1.

IR (NaCl, thin film): 2955, 2876, 1640, 1458, 1239, 1006, 743.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₁₉H₂₆OSiNa, 321.165; found, 321.164.

The reaction of ethylene and 2-naphthaldehyde (78.1 mg, 0.5 mmol) with Ni(cod)₂, tris-*o*-methoxyphenyl- phosphine and TMSOTf (158 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 2 above, afforded **1f** in 60% isolated yield as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 7.80 – 7.90 (m, 4H); 7.45 – 7.54 (m, 3H); 6.06 (ddd, J = 5.6, 10.2, 17.4 Hz, 1H); 5.30 (dt, J = 1.5, 17.3 Hz, 1H); 5.37 (bs, 1H); 5.17 (dt, J = 1.4, 10.2 Hz, 1H); 0.18 (s, 9H).

¹³C NMR (100 MHz, CDCl₃, δ): 141.4, 141.0, 133.5, 133.0, 128.19, 128.18, 127.9, 126.2, 125.9, 124.9, 124.8, 114.4, 76.1, 0.4.

IR (NaCl, thin film): 2958, 1640, 1251, 1077, 841.

(1g)

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₁₆H₂₀OSiNa, 279.118; found, 279.119.

OSi*t*-BuMe₂

The reaction of ethylene and 2-naphthaldehyde (78.1 mg, 0.5 mmol) with Ni(cod)₂, tris-*o*-methoxy- phenylphosphine and TBSOTf (201 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 2 above, afforded **1g** in 67% isolated yield as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 7.80 – 7.92 (m, 4H); 7.45 – 7.55 (m, 3H); 6.04 (ddd, J = 5.8, 10.2, 16.8 Hz, 1H); 5.39 (dt, J = 1.5, 17.0 Hz, 1H); 5.38 (s, 1H); 5.14 (dt, J = 1.5, 10.2 Hz, 1H); 0.99 (s, 9H); 0.16 (s, 3H); 0.06 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ): 141.8, 141.4, 133.5, 133.0, 128.2, 128.1, 127.9, 126.1, 125.8, 124.8, 124.6, 113.8, 76.2, 26.1, 18.6, -4.4, -4.6.

IR (NaCl, thin film): 2956, 2857, 1636, 1472, 1252, 1081, 837.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₁₉H₂₆OSiNa, 321.165; found, 321.164.

The reaction of ethylene and 1-methyl-2-indolecarboxaldehyde (79.6 mg, 0.5 mmol) with $Ni(cod)_2$, tris-*o*-methoxy- phenylphosphine and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 2 above, afforded **1h** in 67% isolated yield as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 7.63 (d, *J* = 7.8 Hz, 1H); 7.36 (d, *J* = 8.2 Hz, 1H); 7.26 (t, *J* = 8.3 Hz, 1H); 7.14 (t, *J* = 7.9 Hz, 1H); 6.43 (s, 1H); 6.13 (ddd, *J* = 4.5, 10.3, 17.1 Hz, 1H); 5.52 (ddd, *J* = 1.7, 1.7, 4.5 Hz, 1H); 5.39 (ddd, *J* = 1.7, 1.7, 17.1 Hz, 1H); 5.25 (ddd, *J* = 1.7, 1.7, 10.4, 1H); 3.82 (s, 3H); 0.98 (t, *J* = 8.0 Hz, 9H); 0.66 (dq, *J* = 1.4, 8.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 140.6, 139.7, 138.5, 127.5, 121.5, 120.8, 119.4, 114.9, 109.1, 100.5, 70.4, 31.0, 7.0, 5.0.

IR (NaCl, thin film): 2955, 2911, 2876, 1911, 1758, 1641, 1469, 1238, 1009, 841, 731. HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₁₈H₂₇NOSiNa, 324.178; found, 324.178.

OSiEt₃ O (1i)

The reaction of ethylene and furan-2-carbaldehyde (41 μ L, 0.5 mmol) with Ni(cod)₂, tris-*o*-methoxyphenylphosphine and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 1 above, afforded **1i** in 38% isolated yield as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 7.37 (bs, 1H); 6.32 (dd, J = 1.9, 3.1 Hz, 1H); 6.22 (d, J = 3.2 Hz, 1H); 6.06 (m, 1H); 5.40 (d, J = 17.1 Hz, 1H); 5.21 (d, J = 7.9 Hz, 2H); 0.95 (t, J = 7.9 Hz, 9H); 0.63 (q, J = 7.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 156.0, 142.1, 138.1, 115.3, 110.4, 106.4. 69.3, 6.9, 4.9. IR (NaCl, thin film): 2956, 2878, 1646, 1459, 1237, 1010, 733.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for $C_{13}H_{22}O_2SiNa$, 261.128; found, 261.129.

The reaction of ethylene and 4-(trifluoromethyl)-benzaldehyde (70 μ L, 0.5 mmol) with Ni(cod)₂, tris-*o*-methoxyphenylphosphine and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 1 above, afforded a mixture of **1j** and triethylsilylethers of pinnacol coupling products. This mixture was subjected to TBAF to isolate 25% of the desilylated **1j** as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 7.62 (d, *J* = 8.2 Hz, 2H); 7.50 (d, *J* = 8.4 Hz, 2H); 6.02 (ddd, *J* = 6.3, 10.3, 16.9 Hz, 1H); 5.38 (ddd, *J* = 1.2, 1.2, 17.0 Hz, 1H); 5.27 (bd, *J* = 7.0 Hz, 1H); 5.25 (ddd, *J* = 1.2, 1.2, 10.3 Hz, 1H); 2.10 (bs, 1H).

¹³C NMR (100 MHz, CDCl₃, δ): 146.5, 139.8, 130.0 (*J* = 32.3 Hz), 126.7, 125.7, 123.0, 116.4, 75.1.

19 F NMR (376 MHz, CDCl₃, δ): -66.8 (s, 3F).

IR (NaCl, thin film): 3342, 1620, 1419, 1328, 1166, 1126, 1068, 931.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₁₀H₉OF₃Na, 202.060; found, 202.059.

The reaction of ethylene and methyl-4-formyl-benzoate (88 mg, 0.536 mmol) with Ni(cod)₂, tris-*o*-methoxy- phenylphosphine and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 2 above, afforded **1k** in 34% isolated yield as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 8.01 (d, *J* = 8.4 Hz, 2H); 7.43 (d, *J* = 8.1 Hz, 2H); 5.92 (ddd, *J* = 6.0, 10.2, 16.9 Hz, 1H); 5.31 (ddd, *J* = 1.5, 1.5, 17.0 Hz, 1H); 5.21 (bd, *J* = 6.0 Hz, 1H); 5.11 (ddd, *J* = 1.4, 1.4, 10.2 Hz, 1H); 3.91 (s, 3H); 0.93 (t, *J* = 7.8 Hz, 9H); 0.61 (dq, *J* = 1.7, 7.5 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 167.2, 149.1, 141.1, 129.8, 129.1, 126.1, 114.5, 75.6, 52.2, 6.9, 5.0.

IR (NaCl, thin film): 2954, 2912, 2877, 1727, 1610, 1436, 1278, 1113, 1019, 842, 745. HRMS-ESI (m / z): $[M + Na]^+$ calcd for $C_{17}H_{26}O_3SiNa$, 329.154; found, 329.155.

The reaction of ethylene and pivaldehyde (55 μ L, 0.5 mmol) with Ni(cod)₂, tris-*o*-methoxyphenylphosphine and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 1 above, afforded **11** in 70% isolated yield as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 5.97 (ddd, *J* = 5.9, 10.2, 16.9 Hz, 1H); 5.11 (d, *J* = 8.5 Hz, 1H); 5.08 (bs, 1H); 3.67 (d, *J* = 7.5 Hz, 1H); 0.96 (t, *J* = 7.9 Hz, 9H); 0.86 (s, 9H); 0.63 (q, *J* = 7.7 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 139.4, 115.8, 82.4, 35.5, 26.0, 7.2, 5.3. IR (NaCl, thin film): 2955, 2877, 1641, 1462, 1239, 1082, 835.

The reaction of ethylene and 2,2-dimethyl-3-oxo-propionic acid methyl ester (70 mg, 0.54 mmol) with Ni(cod)₂, tris-*o*-methoxyphenylphosphine and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 1 above, afforded **1m** in 81% (0.28 mmol) isolated yield as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 5.75 (ddd, J = 7.6, 10.4, 17.5 Hz, 1H); 5.17 (bd, J = 17.3 Hz, 1H); 5.15 (bd, J = 10.3 Hz, 1H); 4.31 (d, J = 7.6 Hz, 1H); 3.66 (s, 3H); 1.15 (s, 3H); 1.05 (s, 3H); 0.92 (t, J = 7.9 Hz, 9H); 0.55 (dq, J = 1.5, 7.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃, δ): 177.4, 137.8, 117.3, 79.2, 51.8, 48.3, 21.4, 19.9, 7.0, 5.2. IR (NaCl, thin film): 2954, 2878, 1745, 1732, 1642, 1468, 1261, 1087, 834. HRMS-ESI (m / z): [M + Na]⁺ calcd for C₁₄H₂₈O₃SiNa, 295.170; found, 295.171.

OSiEt₃ (1n)

The reaction of ethylene and cyclohexanecarboxaldehyde (60 μ L, 0.5 mmol) with Ni(cod)₂, tris-*o*-methoxyphenylphosphine and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 1 above, afforded **1n** in 25% yield as determined by ¹H NMR versus a standard. Another experiment was carried out under 2 atm of ethylene and yielded 34% **1n** and 66% silyl enol ether of cyclohexanecarboxaldehyde. Treatment of this mixture with a TBAF / THF / H₂O solution removed the silyl enol ether from the mixture and column chromatography isolated **1n** as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 5.78 (ddd, J = 7.0, 10.3, 17.3 Hz, 1H); 5.07 (m, 2H); 3.78 (t, J = 6.6 Hz, 1H); 1.40 – 0.90 (m, 11H); 0.95 (t, J = 8.0 Hz, 9H); 0.59 (q, J = 8.0 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃, δ): 140.7, 114.8, 78.9, 44.5, 29.0, 29.0, 26.9, 26.5, 26.5, 7.1, 5.2. IR (NaCl, thin film): 2953, 2926, 2877, 1644, 1451, 1239, 1068, 743. HRMS-ESI (m / z): [M + Na]⁺ calcd for C₁₅H₃₀OSiNa, 277.196; found, 277.197. Nickel-catalyzed coupling of monosubstituted olefins and aldehydes (2a – 2p).

Nickel-catalyzed coupling of monosubstituted alkenes and aldehydes (homoallylic products)

General procedure 3. A 10 mL test tube and a stir bar were oven-dried and brought into a glove box. Ni(cod)₂ (27.5 mg, 0.1 mmol, 20 mol%) and ligand (0.2 mmol, 40 mol% as specified) were added to the test tube, the test tube was sealed with a septum, and the sealed tube was brought out of the glove box and connected to an argon line. The catalyst mixture was dissolved in toluene (2.5 mL) under argon and stirred 5 min at room temperature. Alkene (0.5 mL), triethylamine (418 μ L, 3 mmol, 600 mol%) and then aldehyde (0.5 mmol, 100 mol%) were added. TESOTf (197 μ L, 0.875 mmol, 175 mol%) was added. The mixture was stirred at room temperature for 48 h. The mixture was filtered through a plug of silica gel. Solvent was removed under reduced pressure and the crude mixture was diluted in hexane. Purification via flash chromatography on silica afforded the coupling product.

A 10 mL test tube and a stir bar were oven-dried and brought into a glove box. Ni(cod)₂ (27.5 mg, 0.1 mmol, 20 mol%) and EtOPh₂P (43 μ l, 0.2 mmol, 40 mol%) were added to the round bottom flask, the flask was sealed with a septum, and the sealed flask was brought out of the glove box and connected to an argon line. The catalyst mixture was dissolved in toluene (2.5 mL) under argon and stirred 5 min at room temperature. The reaction mixture was purged with propene for 1 min to remove argon, taken care not to introduce oxygen. The propene atmosphere was maintained with a propene balloon. Triethylamine (418 μ L, 3 mmol, 600 mol%) was added. benzaldehyde (51 μ L, 0.5 mmol, 100 mol%) was added. Silyltriflate (0.875 mmol, 175 mol%, as specified) was added. The mixture was stirred at room temperature for 48 h. The mixture was filtered through a plug of silica gel. Solvent was removed under reduced pressure and ¹H NMR of the crude mixture indicated the total yield of **2a** and **2a'** was 73% and the ratio of **2a**:**2a'** is 89:11. Purification via flash chromatography on silica afforded **2a** and **2a'** as colorless oils.

¹H NMR (400 MHz, CDCl₃, δ): 7.27-7.38 (m, 5H); 5.78-5.89 (m, 1H); 5.05-5.10 (m, 2H); 4.74 (dd, *J* = 7.2, 5.5 Hz, 1H); 2.42-2.59 (m, 2H); 0.94 (t, *J* = 7.9 Hz, 9H); 0.59 (dq, *J* = 2.6, 7.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 145.3, 135.4, 128.2, 127.2, 126.1, 117.0, 75.1, 45.6, 7.0, 5.0. IR (NaCl, thin film): 2954, 2927, 2876, 1644, 1493, 1449, 1239, 1090, 858, 699. HRMS-ESI (m / z): [M + Na]⁺ calcd for C₁₆H₂₆OSiNa, 285.165; found, 285.163.

¹H NMR (400 MHz, CDCl₃, δ): 7.24-7.39 (m, 5H); 5.15 (m, 2H); 4.86 (s, 1H); 1.56 (s, 3H); 0.94 (t, *J* = 7.8 Hz, 9H); 0.61 (q, *J* = 7.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 148.1, 143.5, 128.1, 127.0, 126.3, 111.0, 78.4, 17.4, 7.0, 5.0. IR (NaCl, thin film): 2955, 2913, 2877, 1451, 1237, 1091, 1066, 1005, 899, 853, 740, 698. HRMS-ESI (m / z): [M + Na]⁺ calcd for C1₆H₂₆OSiNa, 285.165; found, 285.165.

The reaction of 1-octene and benzaldehyde (51 μ L, 0.5 mmol) with Ni(cod)₂, EtOPh₂P (43 μ l, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **2b** and **2b'** in 85% total yield according to ¹H NMR of the crude mixture and the ratio of **2b**:**2b'** is 95:5. The *E* / *Z* ratio of **2b** is 75:25. Purification via flash chromatography on silica afforded **2b** and **2b'** as colorless oils.

In another experiment, the reaction of 1-octene (1 mL) and benzaldehyde (51 μ L, 0.5 mmol) with Ni(cod)₂, Cy₂PhP (56 mg, 0.2 mmol, 40 mol%) and TESOTF (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **2b**' and **2b** in 73% total yield according to ¹H NMR of the crude mixture and the ratio of **2b**':**2b** is 71:29. Purification via flash chromatography on silica afforded **2b**' and **2b** in 70% isolated yield as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 7.20–7.40 (m, 5H); 5.30–5.50 (m, 2H); 4.63 (dd, J = 5.6, 7.2 Hz, 1H); 2.45 (quintet, J = 6.1 Hz, 1H); 2.35 (quintet, J = 5.9 Hz, 1H); 1.33 (m, 2H); 0.92 (t, J = 7.8 Hz, 12H); 0.56 (dq, J = 2.4, 7.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 145.6, 133.3, 128.1, 127.1, 126.6, 126.2, 75.6, 44.5, 32.8, 31.6, 29.3, 22.8, 14.2, 7.0, 5.1.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₂₁H₃₆OSiNa, 355.243; found, 355.244.

¹H NMR (400 MHz, CDCl₃, δ): 7.36 (d, *J* = 7.0 Hz, 2H); 7.31 (t, *J* = 7.1 Hz, 2H); 7.24 (t, *J* = 7.2, 1H); 5.22 (bs, 1H); 5.15 (bs, 1H); 4.87 (s, 1H); 1.96 (pentet, *J* = 7.8 Hz, 1H); 1.76 (pentet, *J* = 8.0 Hz, 1H); 1.15 – 1.40 (m, 8H); 0.93 (t, *J* = 8.0 Hz, 9H); 0.87 (t, *J* = 6.8 Hz, 3H); 0.60 (dq, *J* = 1.6, 7.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 152.3, 143.8, 128.1, 127.1, 126.6, 109.5, 78.3, 32.0, 30.8, 29.4, 28.0, 22.8, 14.3, 7.0, 5.1.

IR (NaCl, thin film): 2956, 2876, 1647, 1456, 1089, 1066, 742.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₂₁H₃₆OSiNa, 355.243; found, 355.242.

The reaction of 1-octene and 4-anisaldehyde (61 μ L, 0.5 mmol) with Ni(cod)₂, EtOPh₂P (43 μ l, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **2c** and **2c'** in 85% total yield according to ¹H NMR of the crude mixture and the ratio of **2c**:**2c'** is >95:5. The *E* / *Z* ratio of **2c** is 75:25. Purification via flash chromatography on silica afforded **2c** as a colorless oil. **2c'** was not detected.

¹H NMR (400 MHz, CDCl₃, δ): 7.22 (d, *J* = 8.6 Hz, 2H); 6.84 (d, *J* = 8.6 Hz, 2H); 5.33-5.43 (m, 2H); 4.58 (dd, *J* = 6.1 Hz, 6.1 Hz, 1H); 3.81 (s, 3H); 2.27-2.42 (m, 2H); 1.93-1.98 (m, 2H); 1.22-1.60 (m, 6H); 0.95 (t, *J* = 8.0 Hz, 3H); 0.88 (t, *J* = 7.8 Hz, 9H); 0.53 (q, *J* = 7.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃, δ): 158.7, 137.9, 133.2, 127.3, 126.7, 113.4, 75.2, 55.4, 44.5, 32.8, 31.6, 29.3, 22.8, 14.3, 7.0, 5.0.

IR (NaCl, thin film): 2955, 2876, 1613, 1512, 1459, 1302, 1247, 1172, 1078, 1005, 972, 830, 742.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₂₂H₃₈O₂SiNa, 385.2539; found, 385.2537.

The reaction of 1-octene and 4-chlorobenzaldehyde (70 mg, 0.5 mmol) with Ni(cod)₂, EtOPh₂P (43 μ l, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **2d** and **2d'** in 37% total yield according to ¹H NMR of the crude mixture and the ratio of **2d:2d'** is >95:5. The *E* / *Z* ratio of **2d** is 74:26. Purification via flash chromatography on silica afforded **2d** as a colorless oil. **2d'** was not detected.

¹H NMR (400 MHz, CDCl₃, δ): 7.24 (m, 4H); 5.30-5.41 (m, 2H); 4.61 (dd, J = 6.1 Hz, 6.1 Hz, 1H); 2.26-2.40 (m, 2H); 1.89-1.97 (m, 2H); 1.21-1.59 (m, 6H); 0.94 (t, J = 8.0 Hz, 3H); 0.89 (t, J = 7.8 Hz, 9H); 0.54 (q, J = 7.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 144.1, 133.7, 132.5, 128.2, 127.5, 126.0, 74.8, 44.4, 32.8, 31.5, 29.2, 22.7, 14.3, 7.0, 4.9.

IR (NaCl, thin film): 2956, 2876, 1647, 1456, 1089, 1066, 742.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₁₅H₂₀Na, 223.1463; found, 223.1305.

The reaction of 1-octene and 2-naphthaldehyde (78 mg, 0.5 mmol) with Ni(cod)₂, EtOPh₂P (43 μ l, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **2e** and **2e**' in 88% total yield according to ¹H NMR of the crude mixture and the ratio of **2e**:**2e**' is >95:5. The *E* / *Z* ratio of **2e** is 70:30. Purification via flash chromatography on silica afforded **2e** as a colorless oil. **2e**' was not detected.

¹H NMR (400 MHz, CDCl₃, δ): 7.83-7.92 (m, 3H); 7.80 (s, 1H); 7.48-7.59 (m, 3H); 5.43-5.53 (m, 2H); 4.89 (dd, *J* = 6.9, 13.2 Hz, 1H); 2.45-2.68 (m, 2H); 1.98-2.05 (m, 2H); 1.26-1.39 (m, 6H); 0.97 (t, *J* = 8.0 Hz, 9H); 0.94 (t, *J* = 7.6 Hz, 3H); 0.63 (q, *J* = 4.1, 8.0 Hz 6H). ¹³C NMR (100 MHz, CDCl₃, δ): 143.1, 133.4, 133.0, 132.3, 128.1, 127.9, 126.5, 126.0, 125.6, 125.6, 124.7, 124.7, 75.7, 44.4, 32.8, 31.7, 29.3, 22.8, 14.3, 7.0, 5.1. IR (NaCl, thin film): 2956, 2929, 2875, 1458, 1414, 1377, 1239, 1086, 1005, 972, 744.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₂₅H₃₈OSiNa, 405.2590; found, 405.2584.

The reaction of 1-octene and 1-methyl-2-indolecarboxaldehyde (79.6 mg, 0.5 mmol) with Ni(cod)₂, EtOPh₂P (43 µl, 0.2 mmol, 40 mol%) and TESOTF (197 µL, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **2f** and **2f** in 56% total yield according to ¹H NMR of the crude mixture and the ratio of **2f**:**2f** is >95:5. The *E* / *Z* ratio of **2f** is 83:17. Purification via flash chromatography on silica afforded **2f** as a colorless oil. **2f** was not detected.

¹H NMR (400 MHz, CDCl₃, δ): 7.65 (d, J = 7.8 Hz, 1H); 7.37 (d, J = 8.2 Hz, 1H); 7.27 (t, J = 7.1 Hz, 1H); 7.17 (t, J = 7.1 Hz, 1H); 6.40 (s, 1H); 5.43-5.59 (m, 2H); 4.96 (dd, J = 6.5, 7.4 Hz, 1H); 3.92 (s, 3H); 2.56-2.71 (m, 2H); 2.01-2.07 (m, 2H); 1.29-1.42 (m, 6H); 0.97 (t, J = 8.0 Hz, 9H); 0.95 (t, J = 4.0 Hz, 3H); 0.63 (dq, J = 1.1, 8.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 142.3, 138.4, 133.7, 127.7, 126.2, 121.3, 120.7, 119.4, 109.1, 100.2, 70.6, 42.2, 32.8, 31.6, 31.0, 29.3, 22.8, 14.3, 7.0, 5.0.

IR (NaCl, thin film): 2954, 2927, 2874, 1466, 1339, 1236, 1072, 1010, 731.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₂₄H₃₉ONSiNa, 408.2693; found, 408.2695.

The reaction of 1-octene and pivaldehyde (55 μ L, 0.5 mmol) with Ni(cod)₂, EtOPh₂P (43 μ l, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **2g** and **2g**' in 64% total yield according to ¹H NMR of the crude mixture and the ratio of **2g**:**2g**' is >95:5. The *E* / *Z* ratio of **2g** is 78:22. Purification via flash chromatography on silica afforded **2g**. **2g**' was not detected.

¹H NMR (400 MHz, CDCl₃, δ): 5.37-5.53 (m, 2H); 3.37 (dd, J = 3.8, 7.4 Hz, 1H); 2.30-2.36 (m, 1H); 1.99-2.12 (m, 3H); 1.27-1.42 (m, 6H); 0.99 (t, J = 8.0 Hz, 9H); 0.92 (t, J = 6.8 Hz, 3H); 0.90 (s, 9H); 0.63 (q, J = 8.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 130.6, 128.5, 81.2, 36.2, 31.8, 31.4, 29.5, 27.6, 26.5, 22.8, 14.2, 7.3, 5.7.

IR (NaCl, thin film): 2956, 2876, 1466, 1238, 1096, 1009, 737.

HRMS-ESI (m / z): [M + Na]⁺ calcd for C19H40OSiNa, 335.2746; found, 335.2741.

The reaction of allylbenzene and benzaldehyde (51 µL, 0.5 mmol) with Ni(cod)₂, Ph₃P (52 mg, 0.2 mmol, 40 mol%) and TESOTf (197 µL, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **2h** and **2h'** in 86% total yield according to ¹H NMR of the crude mixture and the ratio of 2h:2h' is 92:8. The E/Z ratio of 2h is >95:5. Purification via flash chromatography on silica afforded 2h as a colorless oil. 2h' was subjected to TBAF and the free alcohol was isolated by flash chromatography on silica as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 7.30-7.50 (m, 10H); 6.51 (d, J = 15.9 Hz, 1H); 6.34 (dt, J = 7.2, 15.9 Hz, 1H); 4.89 (dd, J = 5.3, 7.2 Hz, 1H); 2.64-2.81 (m, 2H); 1.03 (t, J = 7.9 Hz, 9H); 0.68 (dq, J = 2.0, 7.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 145.5, 138.0, 132.4, 128.8, 128.4, 127.4, 127.4, 127.2, 126.3, 126.2, 75.5, 45.0, 7.1, 5.2.

IR (NaCl, thin film): 3062, 3028, 2955, 2911, 2876, 1600, 1494, 1453, 1414, 1239, 1088, 1070, 1006, 965, 830, 742, 700.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for 361.1964; found, 361.1974.

(Desilvlated 2h')

¹H NMR (400 MHz, CDCl₃, δ): 7.39 (m, 4H), 7.29-7.35 (m, 3H), 7.22-7.24 (m, 1H), 7.13-7.15 (m, 2H), 5.37 (s, 1H); 5.15 (s, 1H); 4.93 (s, 1H); 3.38 (d, J = 15.5 Hz, 1H); 3.13 (d, J = 15.5 Hz, 1H); 1.24 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃, δ): 150.6, 142.0, 139.3, 129.4, 128.7, 128.5, 128.1, 127.0, 126.4, 112.4, 76.7, 39.2.

IR (NaCl, thin film): 3377, 3061, 3028, 2919, 1494, 1453, 1025, 909, 750, 699.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₁₆H₁₆ONa, 247.1099; found, 247.1101.

The reaction of allylbenzene and *o*-anisaldehyde (60 μ L, 0.5 mmol) with Ni(cod)₂, Ph₃P (52 mg, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **2i-ortho** and **2i'-ortho** in 78% total yield according to ¹H NMR of the crude mixture and the ratio of **2i-ortho**:**2i'-ortho** is 92:8. The *E* / *Z* ratio of **2i-ortho** is >95:5. **2i-ortho** was subjected to TBAF and the free alcohol was isolated as a colorless oil. Allylic alcohol **2i'-ortho** was not isolated.

¹H NMR (400 MHz, CDCl₃, δ): 7.22–7.43 (m, 7H); 7.02 (t, *J* = 7.5 Hz, 1H); 6.93 (d, *J* = 8.1 Hz, 1H); 6.52 (d, *J* = 15.9 Hz, 1H); 6.31 (dt, *J* = 7.2, 15.9 Hz, 1H); 5.09 (dd, *J* = 5.1, 7.5 Hz, 1H); 3.89 (s, 3H); 2.69–2.81 (m, 3H).

¹³C NMR (100 MHz, CDCl₃, δ): 156.5, 137.6, 132.8, 131.9, 128.6, 128.5, 127.3, 127.0, 126.9, 126.3, 120.9, 110.6, 70.2, 55.5, 41.3.

IR (NaCl, thin film): 3399, 3026, 2935, 2836, 1601, 1491, 1464, 1438, 1287, 1240, 1181, 1049, 1029, 966, 753, 694.

HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₃H₃₂O₂SiNa, 391.2069; found, 391.2053.

The reaction of allylbenzene and *m*-anisaldehyde (61 μ L, 0.5 mmol) with Ni(cod)₂, Ph₃P (52 mg, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **2i-meta** and **2i'-meta** in 96% total yield according to ¹H NMR of the crude mixture and the ratio of **2i-meta**:**2i'-meta** is 92:8. The *E* / *Z* ratio of **2i-meta** is >95:5. Purification via flash chromatography on silica afforded **2i-meta** as a colorless oil. Allylic alcohol **2i'-meta** was not isolated.

¹H NMR (400 MHz, CDCl₃, δ): 7.25–7.41 (m, 6H), 7.03 (m, 1H), 7.0 (d, *J* = 7.6 Hz, 1H); 6.87 (dd, *J* = 0.8, 2.7 Hz, 1H); 6.48 (d, *J* = 15.9 Hz, 1H); 6.30 (dt, *J* = 7.2, 15.9 Hz, 1H); 3.87 (s, 3H); 2.61–2.75 (m, 2H), 0.99 (t, *J* = 7.9 Hz, 9H); 0.64 (q, *J* = 7.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 159.7, 147.1, 137.9, 134.0, 133.8, 132.3, 129.2, 128.9, 128.7, 128.6, 127.2, 127.1, 126.2, 118.4, 112.8, 111.3, 75.2, 55.3, 44.8, 7.0, 5.0.

IR (NaCl, thin film): 3027, 2954, 2910, 2876, 2835, 1601, 1587, 1488, 1456, 1435, 1359, 1320, 1284, 1263, 1153, 1083, 1050, 1006, 966, 943, 825, 779, 743, 699.

HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₃H₃₂O₂SiNa, 391.2069; found, 391.1750.

The reaction of allylbenzene and *o*-anisaldehyde (61 μ L, 0.5 mmol) with Ni(cod)₂, Ph₃P (52 mg, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **2i-para** and **2i'-para** in 99% total yield according to ¹H NMR of the crude mixture and the ratio of **2i-para**:**2i'-para** is 92:8. The *E* / *Z* ratio of **2i-para** is >95:5. Purification via flash chromatography on silica afforded **2i-para** as a colorless oil. **2i'-para** was not isolated.

In another experiment, general procedure 3 was followed, except that the reaction was carried out in five fold larger scale. The reaction was heated at 35 °C and 9 mL toluene was used as the solvent. This reaction afforded **2i-para** and **2i'-para** in 98% total yield according to ¹H NMR of the crude mixture and the ratio of **2i-para**:**2i'-para** is 92:8. The E / Z ratio of **2i-para** is >95:5. Purification via flash chromatography on silica afforded **2i-para** as a colorless oil. **2i'-para** was not isolated.

¹H NMR (400 MHz, CDCl₃, δ): 7.49 (m, 7H); 7.00 (d, J = 8.6 Hz, 2H); 6.52 (d, J = 15.9 Hz, 1H); 6.35 (dt, J = 7.2, 15.9 Hz, 1H); 4.85 (dd, J = 6.4, 6.4 Hz, 1H); 3.89 (s, 3H); 2.63-2.81 (m, 2H); 1.04 (t, J = 7.8 Hz, 9H); 0.70 (q, J = 7.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 159.0, 138.1, 137.7, 132.3, 128.7, 127.5, 127.3 127.2, 126.3, 113.7, 75.0, 55.4, 45.1, 7.1, 5.2.

IR (NaCl, thin film): 3027, 2954, 2910, 2875, 1612, 1511, 1414, 1302, 1248, 1171, 1081, 1005, 966, 836, 743, 693.

HRMS-ESI (m / z): [M + Na]⁺ calcd for C₂₃H₃₂O₂SiNa, 391.2069; found, 391.2057.

The reaction of allylbenzene and naphthaldehyde (78 mg, 0.5 mmol) with Ni(cod)₂, Ph₃P (52 mg, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **2j** and **2j**' in 88% total yield according to ¹H NMR of the crude mixture and the ratio of **2j**:**2j**' is 95:5. The *E* / *Z* ratio of **2j** is >95:5. Purification via flash chromatography on silica afforded **2j** as a colorless oil. **2j**' was subjected to TBAF and the free alcohol was isolated by flash chromatography on silica as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 7.90-7.96 (m, 4H); 7.67 (d, J = 1.6 Hz, 1H); 7.60-7.65 (m, 2H); 7.30-7.59 (m, 5H); 6.54 (d, J = 15.9 Hz, 1H); 6.36 (dt, J = 7.2, 15.9 Hz, 1H); 5.05 (dd, J = 5.4, 7.2 Hz, 1H); 2.74-2.89 (m, 2H); 1.03 (t, J = 8.0 Hz, 9H); 0.70 (dq, J = 2.9, 8.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 142.9, 137.9, 133.4, 133.1, 132.4, 128.7, 128.1, 128.1, 127.9, 127.1, 126.2, 126.1, 125.7, 124.6, 75.5, 44.9, 7.0, 5.1.

IR (NaCl, thin film): 3026, 2954, 2910, 2875, 1507, 1496, 1457, 1239, 1123, 1083, 1005, 965, 819, 744.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₂₆H₃₂OSiNa, 411.2120; found, 411.2167.

(Desilylated 2j')

¹H NMR (400 MHz, CDCl₃, δ): 7.86-7.88 (m, 4H); 7.48-7.55 (m, 3H); 7.20-7.36 (m, 3H); 7.13-7.16 (m, 2H); 5.43 (s, 1H); 5.32 (s, 1H); 4.97 (s, 1H); 3.41 (d, *J* = 15.6 Hz, 1H), 3.16 (d, *J* = 15.6 Hz, 1H), 2.02 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃, δ): 150.5, 149.2, 139.4, 139.3, 133.4, 133.3, 129.4, 128.6, 128.2, 127.9, 126.4, 126.4, 126.2, 126.0, 124.9, 112.8, 77.4, 39.2.

IR (NaCl, thin film): 3365, 3058, 2923, 1495, 1453, 1031, 908, 819, 745, 700.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₂₀H₁₈ONa, 297.1255; found, 297.1260.

The reaction of allylbenzene and 1-methyl-2-indolecarboxaldehyde (79.6 mg, 0.5 mmol) with Ni(cod)₂, Ph₃P (52 mg, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **2k** in 57% total yield according to ¹H NMR of the crude mixture and the ratio of **2k**:**2k**' is >95:5. The *E* / *Z* ratio of **2k** is >95:5. **2k**' was not detected. **2k** was subjected to TBAF and the free alcohols were isolated by flash chromatography on silica (buffered with Et₃N) as colorless oils.

In another experiment, the reaction of allylbenzene and 1-methyl-2-indolecarboxaldehyde (79.6 mg, 0.5 mmol) with Ni(cod)₂, Cy₂PhP (56mg, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **2k**' and **2k** in 56% total yield according to ¹H NMR of the crude mixture and the ratio of **2k**':**2k** is 80:20. The E / Z ratio of **2k** is >95:5. Both **2k**' and **2k** were subjected to TBAF and the free alcohols were isolated by flash chromatography on silica (buffered with Et₃N) as colorless oils.

¹H NMR (400 MHz, CDCl₃, δ): 7.63 (d, *J* = 7.8 Hz, 1H); 7.20-7.41 (m, 7H); 7.14 (t, *J* = 7.8 Hz, 1H); 6.62 (d, *J* = 15.8 Hz, 1H); 6.55 (s, 1H); 6.34 (dt, *J* = 7.3, 15.8 Hz, 1H); 5.01 (m, 1H); 3.86 (s, 3H); 2.93-2.99 (m, 2H); 1.93 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃, δ): 149.2, 141.3, 138.1, 137.2, 133.8, 128.7, 127.6, 126.4, 125.7, 122.1, 121.0, 119.8, 109.3, 99.4, 66.9, 40.2, 30.4.

IR (NaCl, thin film): 3640, 3026, 2953, 2910, 2875, 1467, 1339, 1237, 1073, 1006, 966, 744. HRMS-ESI (m / z): $[M + Na]^+$ calcd for C19H19ONNa, 300.1364; found, 300.1365.

(Desilylated 2k')

¹H NMR (400 MHz, CDCl₃, δ): 7.63 (d, 1H); 7.12-7.38 (m, 8H); 6.49 (s, 1H); 5.38 (s, 1H); 5.31 (s, 1H); 5.14 (s, 1H); 3.70 (s, 3H); 3.54 (d, *J* = 15.3 Hz, 1H); 3.33 (d, *J* = 15.3 Hz, 1H); 1.98 (d, *J* = 5.1Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, δ): 148.7, 139.6, 139.1, 138.4, 129.3, 128.6, 127.3, 126.6,

122.0, 121.0, 119.7, 113.2, 109.3, 101.5, 69.6, 40.2, 30.3.

IR (NaCl, thin film): 3349, 3059, 3027, 2923, 1649, 1601, 1494, 1468, 1453, 1318, 1234, 1030, 968, 907, 751, 737, 700.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C19H19NONa, 300.1364; found, 300.1369.

The reaction of allylbenzene and pivaldehyde (55 μ L, 0.5 mmol) with Ni(cod)₂, Ph₃P (52 mg, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **2l** in 65% total yield according to ¹H NMR of the crude mixture and the ratio of **2l**:**2l**' is >95:5. The *E* / *Z* ratio of **2l** is 78:22. **2l**' was not detected. Purification via flash chromatography on silica afforded **2l** as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 7.22–7.40 (m, 5H); 6.43 (d, J = 15.9 Hz, 1H); 6.32 (dt, J = 7.1, 15.9 Hz, 1H); 3.50 (dd, J = 3.4, 7.7 Hz, 1H); 2.49–2.55 (m, 1H), 2.28–2.35 (m, 1H), 1.00 (t, J = 8.0 Hz, 9H); 0.96 (s, 9H); 0.64 (q, J = 8.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 138.1, 131.3, 129.7, 128.7, 127.0, 126.1, 81.0, 37.4, 36.2, 26.6, 7.3, 5.7.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for C₂₀H₃₄OSiNa, 341.2277; found, 341.2263.

The reaction of 4-phenyl-1-butene and *o*-anisaldehyde (61 μ L, 0.5 mmol) with Ni(cod)₂, Ph₃P (52 mg, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **2m** and **2m'** in 91% total yield according to ¹H NMR of the crude mixture and the ratio of **2m**:**2m'** is 92:8. The *E* / *Z* ratio of **2m** is 68:32. Purification via flash chromatography on silica afforded **2m** and **2m'** as colorless oils.

¹H NMR (400 MHz, CDCl₃, δ): 7.13–7.42 (m, 7H), 6.92 (d, J = 8.7 Hz, 2H), 5.49–5.69 (m, 2H), 4.76 (t, J = 6.3 Hz, 0.33 H), 4.70 (t, J = 6.4 Hz, 0.67 H), 3.87 (s, 3H), 3.37–3.39 (m, 2H), 2.35–2.81 (m, 2H), 0.96 (t, J = 7.9 Hz, 6H); 0.60 (q, J = 7.9 Hz, 9H).

¹H NMR (400 MHz, CDCl₃, δ): 7.13–7.42 (m, 7H), 6.93 (d, J = 8.7 Hz, 2H), 5.34 (s, 1H), 5.19 (s, 1H), 5.00 (s, 1H), 3.86 (s, 3H), 2.61–2.79 (m, 2H), 2.26–2.42 (m, 1H), 2.16–2.22 (m, 1H), 1.07 (t, J = 7.8 Hz, 9H); 0.74 (q, J = 7.9 Hz, 6H).

The reaction of 4-methyl-1-pentene and *o*-anisaldehyde (61 μ L, 0.5 mmol) with Ni(cod)₂, EtOPh₂P (43 μ l, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **2n** and **2n'** in 82% total yield according to ¹H NMR of the crude mixture and the ratio of **2n:2n'** is >95:5. The *E* / *Z* ratio of **2n** is 81:19. **2n'** was not detected. Purification via flash chromatography on silica afforded **2n** as a colorless oil.

In another experiment, a 10 mL round bottom flask and a stir bar were oven-dried and brought into a glove box. Ni(cod)₂ (27.5 mg, 0.2 mmol, 20 mol%) and dicyclohexylphenylphosphine (55 mg, 0.4 mmol, 40 mol%) were added to the round bottom flask, the flask was sealed with a septum, and the sealed flask was brought out of the glove box and connected to an argon line. The catalyst mixture was dissolved in toluene (2.5 mL) under argon and stirred 5 min at room temperature. 4-methyl-1-pentene (633 μ L, 5 mmol, 1000 mol%) was added. Triethylamine (418 μ L, 3 mmol, 600 mol%) was added. Benzaldehyde (51 μ L, 0.5 mmol, 100 mol%) was added to the reaction mixture, followed by TESOTf (197 μ L, 0.875 mmol, 175 mol%). The mixture was stirred at room temperature for 14 h. The mixture was filtered through a plug of silica gel. Solvent was removed under reduced pressure and NMR of the crude mixture indicated the ratio of **2n':2n** is 75:25. Purification via flash chromatography on silica afforded **2n'** in 44% isolated yield as a colorless oil and **2n** in 10% isolated yield.

This reaction can be run according to general procedure 3, which also afforded **2n'** and **2n** in similar yield.

¹H NMR (400 MHz, CDCl₃, δ): 7.30 (m, 5H); 5.40 (m, 2H); 4.63 (dd, J = 5.3, 7.3 Hz, 1H); 2.41 (quintet, J = 5.3 Hz, 1H); 2.30 (quintet, J = 5.5 Hz, 1H); 2.24 (septet, J = 6.7 Hz, 1H); 2.00 (m, 2H); 0.95 (dd, J = 6.7, 7.6 Hz, 6H); 0.89 (t, J = 7.9 Hz, 9H); 0.62 (q, J = 7.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 145.6, 140.2, 128.1, 127.0, 126.1, 123.7, 75.7, 44.5, 31.3, 22.6, 7.01, 5.0.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₁₉H₃₂OSiNa, 327.212; found, 327.212.

¹H NMR (400 MHz, CDCl₃, δ): 7.36 (d, *J* = 7.8 Hz, 2H); 7.32 (t, *J* = 7.1 Hz, 2H); 7.25 (t, *J* = 7.1, 1H); 5.30 (bs, 1H); 5.12 (bs, 1H); 4.87 (bs, 1H); 1.65 - 1.85 (m, 3H); 0.93 (t, *J* = 8.0 Hz, 9H); 0.84 (d, *J* = 6.4 Hz, 3H); 0.82 (d, *J* = 6.2 Hz, 3H); 0.60 (dq, *J* = 1.3, 8.3 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 150.5, 143.7, 128.1, 127.1, 126.7, 110.7, 77.9, 41.1, 26.3, 23.0, 22.6, 7.0, 5.0.

IR (NaCl, thin film): 2955, 2877, 1646, 1454, 1088, 1067, 743.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₁₉H₃₂OSiNa, 327.211; found, 327.212.

Triethyl-(4-methyl-1-phenyl-pent-3-enyloxy)-silane (20).

Triethyl-(4-methyl-1-phenyl-pent-2-enyloxy)-silane (20').

The reaction of 3-methyl-1-butene and benzaldehyde (51 μ L, 0.5 mmol) with Ni(cod)₂, EtOPh₂P (43 μ l, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **20** and **20'** in 95% total yield according to ¹H NMR of the crude mixture and the ratio of **20:20'** is 86:14. The *E* / *Z* ratio of **20'** is >95:5. Purification via flash chromatography on silica afforded **20**. **20'** was not isolated.

(20)

¹H NMR (400 MHz, CDCl₃, δ): 7.27-7.43 (m, 5H); 5.19-5.24 (m, 1H); 4.68 (dd, *J* = 5.8, 7.2 Hz, 1H); 2.36-2.54 (m, 2H); 1.74 (d, *J* = 0.8 Hz, 3H); 1.58 (s, 3H); 0.95 (t, *J* = 7.8 Hz, 9H); 0.60 (dq, *J* = 3.4, 7.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 145.8, 133.6, 128.1, 127.0, 126.1, 121.0, 75.4, 40.0, 26.0, 18.0, 7.0, 5.0.

IR (NaCl, thin film): 3028, 2956, 2877, 2912, 1454, 1414, 1377, 1239, 1089, 1069, 1005, 941, 744, 699.

HRMS-ESI (m / z): [M + Na]⁺ calcd for C₁₈H₃₀OSiNa, 313.1964; found, 313.1966.

The reaction of vinylcyclohexane and benzaldehyde (51 μ L, 0.5 mmol) with Ni(cod)₂, EtOPh₂P (43 μ l, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **2p** and **3p** in 99% total yield according to ¹H NMR of the crude mixture and the ratio of **2p**:**3p** is 75:25. The *E* / *Z* ratio of **3p** is >95:5. Purification via flash chromatography on silica afforded a mixture of **2p** and **3p**.

In another experiment, a 10 mL round bottom flask and a stir bar were oven-dried and brought into a glove box. Ni(cod)₂ (27.5 mg, 0.2 mmol, 20 mol%) and dicyclohexylphenylphosphine (55 mg, 0.4 mmol, 40 mol%) were added to the round bottom flask, the flask was sealed with a septum, and the sealed flask was brought out of the glove box and connected to an argon line. The catalyst mixture was dissolved in toluene (2.5 mL) under argon and stirred 5 min at room temperature. Vinylcyclohexane (856 μ L, 6.25 mmol, 1250 mol%) was added. Triethylamine (418 μ L, 3 mmol, 600 mol%) was added. Benzaldehyde (51 μ L, 0.5 mmol, 100 mol%) was added, followed by TESOTf (197 μ L, 0.875 mmol, 175 mol%). The mixture was stirred at room temperature for 16 h. The mixture was filtered through a plug of silica gel. 1H NMR of the crude mixture indicated that **2p**' is the minor product, along with homoallylic product **2p** and 1,3-disubstituted allylic product **3p** as major products. Purification via flash chromatography on silica afforded **2p**' in 5% isolated yield as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 7.24-7.42 (m, 5H); 5.14 (t, *J* = 7.4 Hz, 1H); 4.66 (t, *J* = 6.4 Hz, 1H); 2.37-2.52 (m, 2H); 2.00-2.11 (m, 3H); 1.50-1.78 (m, 3H); 1.03-1.48 (m, 4H); 0.94 (t, *J* = 7.9 Hz, 9H); 0.59 (dq, *J* = 2.8, 7.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 145.7, 141.6, 128.0, 127.0, 126.2, 117.5, 75.6, 39.0, 37.5, 29.0, 28.7, 27.8, 27.1, 7.0, 5.0.

¹H NMR (400 MHz, CDCl₃, δ): 7.33 (d, *J* = 8.6 Hz, 2H); 7.29 (t, *J* = 7.9, 2H); 7.22 (t, *J* = 7.0 Hz, 1H); 5.23 (dd, *J* = 1.3, 1.3 Hz, 1H); 5.14 (s, 1H); 4.90 (s, 1H); 1.2 – 2.0 (m, 11H); 0.91 (t, *J* = 7.9 Hz, 9H); 0.58 (dq, J = 0.5, 7.8 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃, δ): 157.7, 143.7, 128.0, 127.1, 126.9, 108.2, 77.6, 39.5, 34.5, 33.5, 27.1, 27.0, 26.5, 7.1, 5.0.

IR (NaCl, thin film): 2954, 2927, 2876, 1644, 1493, 1449, 1239, 1090, 858, 699. HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₂₁H₃₄OSiNa, 353.227; found, 353.227.

¹H NMR (400 MHz, CDCl₃, δ): 7.24-7.42 (m, 5H); 5.69 (dd, J = 6.5, 15.4 Hz, 1H); 5.56 (dd, J = 7.0, 15.4 Hz, 1H); 5.18 (d, J = 7.0 Hz, 1H); 2.00-2.11 (m, 3H); 1.63-1.78 (m, 1H); 1.50-1.78 (m, 3H); 1.03-1.48 (m, 4H); 1.00 (t, J = 8.0 Hz, 9H); 0.67 (dq, J = 2.3, 8.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 144.8, 136.9, 131.2, 128.2, 126.9, 126.1, 75.9, 40.4, 33.0, 32.9, 26.4, 26.2, 7.1, 5.2.

The following IR and HRMS data is from a mixture of 2p and 2p'.

IR (NaCl, thin film): 2954, 2928, 2876, 2853, 1449, 1414, 1238, 1086, 1067, 1007, 969, 829, 744, 699.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₂₁H₃₄OSiNa, 353.2277; found, 353.2267.

The reaction of 3,3-dimethyl-1-butene and benzaldehyde (51 μ L, 0.5 mmol) with Ni(cod)₂, EtOPh₂P (43 μ l, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **3q** only in 14% total yield according to ¹H NMR of the crude mixture. Purification via flash chromatography on silica afforded **3q** as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 7.30-7.41(m, 5H), 5.82 (d, *J* = 14.6 Hz, 1H), 5.59 (dd, *J* = 14.6, 7.0 Hz, 1H), 5.18 (m, 1H), 1.88 (brs, 1H), 1.05 (s, 9H). ¹³C NMR (100 MHz, CDCl₃, δ): 149.2, 143.8, 128.6, 127.6, 127.3, 126.4, 75.6, 33.1, 29.6. IR (NaCl, thin film): 3657, 2954, 2876, 1457, 1238, 966, 737, 691.

HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₉H₃₂OSiNa, 327.2115; found, 327.2105.

A 10 mL round bottom flask and a stir bar were oven-dried and brought into a glove box. Ni(cod)₂ (28 mg, 0.1 mmol, 20 mol%), dicyclohexylphenylphosphine (56 mg, 0.2 mmol, 40 mol%) and 2-naphthaldehyde (78 mg, 0.5 mmol, 100 mol%) were added to the round bottom flask, the flask was sealed with a septum, and the sealed flask was brought out of the glove box and connected to an argon line. The catalyst mixture was dissolved in toluene (2.5 mL) under argon and stirred 5 min at room temperature. The system was purged with propene for 1 min. The propene atmosphere was maintained by a propene balloon. Triethylamine (418 μ L, 3 mmol, 600 mol%) was added. TESOTf (197 μ L, 0.875 mmol, 175 mol%) was added. The mixture was stirred at room temperature for 6 h. The mixture was diluted with hexane and filtered through a plug of silica gel. Solvent was removed under reduced pressure. Purification via flash chromatography on silica afforded **2r'** in 73% isolated yield as a colorless oil and **2r** in 14%

¹H NMR (400 MHz, CDCl₃, δ): 7.86 (m, 4H); 7.50 (m, 3H); 5.33 (s, 1H); 5.26 (s, 1H); 4.94 (s, 1H); 1.62 (s, 3H); 1.00 (t, *J* = 8.0 Hz, 9H); 0.67 (dq, *J* = 1.8, 7.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃, δ): 148.0, 141.0, 133.4, 133.0, 128.2, 127.8, 127.8, 126.0, 125.7, 124.9, 124.8, 78.6, 17.6, 7.1, 5.1.

IR (NaCl, thin film): 2955, 2912, 2876, 1652, 1508, 1457, 1238, 1084, 1005, 899, 742. HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₂₀H₂₈OSiNa, 335.180; found, 335.181.

¹H NMR (400 MHz, CDCl₃, δ): 7.83 (t, *J* = 8.5 Hz, 3H); 7.75 (s, 1H); 7.48 (m, 3H); 5.81 (m, 1H); 5.05 (m, 1H); 5.02 (m, 1H); 4.86 (t, *J* = 5.9 Hz); 2.55 (m, 2H); 0.91 (t, *J* = 8.0 Hz, 9H); 0.57 (dq, *J* = 3.5, 7.5 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 142.8, 135.3, 133.4, 133.0, 128.1, 127.9, 127.9, 126.1, 125.7, 124.6, 75.2, 45.6, 7.0, 5.0.

IR (NaCl, thin film): 2955, 2876, 1458, 1239, 1084, 1005, 914, 817, 743.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₂₀H₂₈OSiNa, 335.180; found, 335.181.

The reaction of propene (1atm, balloon) and *p*-anisaldehyde (61 μ L, 0.5 mmol) with Ni(cod)₂, Cy₂PhP (56 mg, 0.2 mmol, 40 mol%) and TESOTF (197 μ L, 0.875 mmol), triethylamine in toluene following the procedure for **2r'** above afforded **2s'** and **2s** and the ratio of **2s':2s** is 82:18. Purification via flash chromatography on silica afforded **2s'** and **2s** as a colorless mixture in 95% isolated yield.

¹H NMR (400 MHz, CDCl₃, δ): 7.30 (d, *J* = 8.7 Hz, 2H); 6.90 (d, *J* = 8.7 Hz, 2H); 5.22 (s, 1H); 5.08 (s, 1H); 4.96 (s, 1H); 3.62 (s, 3H); 2.15 (s, 1H); 1.62 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, δ): 159.3, 147.2, 134.3, 127.9, 113.9, 110.8, 77.5, 55.4, 18.7.

¹H NMR (400 MHz, CDCl₃, δ): 7.30 (d, J = 8.7 Hz, 2H); 6.90 (d, J = 8.7 Hz, 2H); 5.82 (m, 1H); 5.15 (m, 2H); 4.69 (t, J = 6.5 Hz, 1H); 2.52 (d, J = 6.8 Hz, 2H), 2.15 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 159.1, 136.2, 134.8, 127.3, 118.4, 113.9, 73.1, 55.4, 43.9.

A 10 mL round bottom flask and a stir bar were oven-dried and brought into a glove box. Ni(cod)₂ (27.5 mg, 0.2 mmol, 20 mol%) and dicyclohexylphenylphosphine (55 mg, 0.4 mmol, 40 mol%) were added to the round bottom flask, the flask was sealed with a septum, and the sealed flask was brought out of the glove box and connected to an argon line. The catalyst mixture was dissolved in toluene (1.0 mL) under argon and stirred 5 min at room temperature. 7-methyl-1,7-octa- diene (825 μ L, 5 mmol, 1000 mol%) was added. Triethylamine (418 μ L, 3 mmol, 600 mol%) was added. TESOTf (197 μ L, 0.875 mmol, 175 mol%) was added. Benzaldehyde (51 μ L, 0.5 mmol, 100 mol%) in 1.5 mL toluene was added to the reaction mixture over 6 min. The mixture was stirred at room temperature for 18 h. The mixture was filtered through a plug of silica gel. Solvent was removed under reduced pressure and ¹H NMR of the crude mixture indicated the ratio of **2t**':**2t** is 71:29. Purification via flash chromatography on silica afforded **2t**' in 50% isolated yield as a colorless oil and **2t** in 22% isolated yield as a colorless oil.

This reaction can be run according to general procedure 3, which also afforded 2t' and 2t in similar yield.

¹H NMR (400 MHz, CDCl₃, δ): 7.40 (d, J = 7.0 Hz, 2H); 7.34 (t, J = 7.8 Hz, 2H); 7.27 (t, J = 7.2, 1H); 5.26 (bs, 1H); 5.18 (bs, 1H); 5.10 (t, J = 7.2 Hz, 1H); 4.81 (bs, 1H); 1.76 – 2.10 (m, 4H); 1.71 (s, 3H); 1.60 (s, 3H); 1.44 (quintet, J = 7.7 Hz, 2H); 0.97 (t, J = 7.9 Hz, 9H); 0.62 (dq, J = 1.5, 7.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 152.1, 143.7, 131.6, 128.1, 127.1, 126.6, 124.8, 109.5, 78.2, 30.4, 28.2, 28.1, 25.9, 17.8, 7.0, 5.0.

IR (NaCl, thin film): 2955, 2877, 1647, 1456, 1091, 1067, 743.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₂₂H₃₆OSiNa, 367.243; found, 367.243.

¹H NMR (400 MHz, CDCl₃, δ): 7.30 (m, 5H); 5.45 (m, 2H); 5.15 (t, *J* = 7.1 Hz, 1H); 4.64 (dd, *J* = 5.4, 7.3 Hz, 1H); 2.45 (quintet, *J* = 5.4 Hz, 1H); 2.35 (quintet, *J* = 5.9 Hz, 1H); 2.05 (m, 4H); 1.62 (s, 3H); 1.72 (s, 3H); 0.92 (t, *J* = 7.9 Hz, 9H); 0.55 (dq, *J* = 1.5, 7.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 145.6, 132.8, 131.7, 128.1, 127.1, 126.9, 126.1, 124.4, 75.6, 44.5, 33.1, 28.2, 25.9, 17.9, 7.0, 5.0.

IR (NaCl, thin film): 2955, 2914, 2876, 1454, 1089, 1005, 969, 699.

HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₂₂H₃₆OSiNa, 367.243; found, 367.243.

The reaction of allylphthalimide (281 mg, 1.5 mmol, 300 mol%) and benzaldehyde (51 μ L, 0.5 mmol) with Ni(cod)₂, dicyclohexylphenylphosphine (55 mg, 0.4 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene at 35 °C following the general procedure 3 above afforded **4a** and **4a**' in 67% total yield according to ¹H NMR of the crude mixture and the ratio of **4a**:**4a**' is 74:26. Purification via flash chromatography on silica afforded **4a** as a mixture of **4a** and the isomerized starting material.

¹H NMR (400 MHz, CDCl₃, δ): 7.77 (dd, J = 3.0, 5.4 Hz, 2H); 7.73 (dd, J = 3.0, 5.4 Hz, 2H); 7.13–7.41 (m, 5H); 5.36 (s, 1H), 5.30 (s, 1H), 4.99 (s, 1H), 4.26 (d, J = 16 Hz, 1H), 4.08 (d, J = 16 Hz, 1H), 0.91 (t, J = 7.9 Hz, 9H); 0.59 (q, J = 7.9 Hz, 6H).

The reaction of allylphthalimide (1.5 mmol, 300 mol%) and benzaldehyde (51 μ L, 0.5 mmol) with Ni(cod)₂, EtOPh₂P (43 μ l, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene at 35 °C following the general procedure 3 above afforded **4a** and **4a**' in 43% total yield according to ¹H NMR of the crude mixture and the ratio of **4a**:**4a**' is 12:88. The *E* / *Z* ratio of **4a**' is 60:40. Purification via flash chromatography on silica afforded **4a**' as a mixture with the isomerized starting material.

¹H NMR (400 MHz, CDCl₃, δ): 7.86 (dd, J = 3.1, 5.4 Hz, 2H); 7.73 (dd, J = 3.1, 5.4 Hz, 2H); 7.25–7.37 (m, 5H); 6.62 (m, 2H); 4.76 (dd, J = 5.5, 6.9 Hz, 1H); 2.47–2.60 (m, 2H); 0.89 (t, J = 8.0 Hz, 9H); 0.56 (q, J = 2.8, 8.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 166.7, 149.2, 145.0, 134.5, 131.9, 128.2, 127.3, 126.1, 123.7, 119.5, 118.8, 75.0, 43.1, 7.0, 5.0.

IR (NaCl, thin film): 2954, 2876, 1781, 1721, 1384, 1088, 1069, 715, 701.

HRMS-ESI (m/z): $[M-OTES]^+$ calcd for C₁₈H₁₄NO₂Na, 276.1025; found, 276.1022.

The reaction of homoallylphthalimide (1.5 mmol, 300 mol%) and *o*-anisaldehyde (61 μ L, 0.5 mmol) with Ni(cod)₂, dicyclohexylphenylphosphine (55 mg, 0.4 mmol, 40 mol%) and TESOTF (197 μ L, 0.875 mmol), triethylamine in toluene at 35 °C following the general procedure 3 above afforded **4b** and **4b**' in 54% total yield according to ¹H NMR of the crude mixture and the ratio of **4b**:**4b**' is 71:29. Purification via flash chromatography on silica afforded **4b** and **4b**'.

¹H NMR (400 MHz, CDCl₃, δ): 7.81 (dd, J = 3.0, 5.4, 2H); 7.70 (dd, J = 3.0, 5.4, 2H); 7.26 (d, J = 8.7 Hz, 2H); 6.79 (d, J = 8.7 Hz, 2H); 5.27 (s, 1H); 5.15 (s, 1H); 4.99 (s, 1H); 3.66–3.86 (m, 2H); 3.78 (s, 3H); 2.33–2.40 (m, 1H); 2.16–2.23 (m, 1H); 0.90 (t, J = 7.9 Hz, 9H); 0.57 (q, J = 7.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 168.4, 158.8, 148.6, 135.2, 134.0, 132.3, 127.7, 123.3, 113.5, 111.8, 77.6, 55.3, 37.2, 29.8, 7.0, 5.0.

IR (NaCl, thin film): 2954, 2876, 1773, 1715, 1511, 1467, 1431, 1395, 1354, 1247, 1078, 952, 719.

HRMS-ESI (m / z): [M + Na]⁺ calcd for C₂₆H₃₃O₄SiNa, 474.2066; found, 474.2071.

The reaction of homoallylphthalimide (1.5 mmol, 300 mol%) and *o*-anisaldehyde (61 μ L, 0.5 mmol) with Ni(cod)₂, Ph₃P (52 mg, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene at 35 °C following the general procedure 3 above afforded **4b** and **4b'** in 76% total yield according to ¹H NMR of the crude mixture and the ratio of **4b**:**4b'** is <5:95. Treatment of 4b' with TBAF followed by flash chromatography on silica afforded a desilylated **4b'**.

(Desilylated 4b')

¹H NMR (400 MHz, CDCl₃, δ): 7.86 (dd, J = 3.1, 5.4 Hz, 2H); 7.73 (dd, J = 3.1, 5.4 Hz, 2H); 7.25 (d, J = 8.7 Hz, 2H); 6.84 (d, J = 8.7 Hz, 2H); 5.73(dt, J = 6.0, 15.4 Hz, 1H); 5.62 (dt, J = 6.0, 15.4 Hz, 1H); 4.68 (dd, J = 6.4, 6.4 Hz, 1H); 4.25–4.33 (m, 2H); 3.78 (s, 3H); 2.46 (m, 2H), 2.09 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃, δ): 168.2, 159.1, 136.1, 134.1, 132.3, 130.8, 127.2, 127.1, 123.5, 113.9, 73.1, 55.4, 42.3, 39.7.

IR (NaCl, thin film): 3466, 2929, 1770, 1711, 1611, 1512, 1395, 1249, 1174, 1034, 833, 720. HRMS-ESI (m / z): $[M + Na]^+$ calcd for C₂₀H₁₈NO₃Na, 320.129; found, 320.130.

The reaction of homoallyloxazolidinone (1.5 mmol, 300 mol%) and benzaldehyde (51 μ L, 0.5 mmol) with Ni(cod)₂, dicyclohexylphenylphosphine (55 mg, 0.4 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene at room temperature following the general procedure 3 above afforded **4c** and **4c'** in 60% total yield according to ¹H NMR of the crude mixture and the ratio of **4c**:**4c'** is 83:17. Purification via flash chromatography on silica afforded **4c** and **4c'** as colorless oils.

¹H NMR (400 MHz, CDCl₃, δ): 7.23–7.38 (m, 5H); 5.31 (s, 1H); 5.20 (s, 1H); 5.00 (s, 1H); 4.16–4.21 (m, 2H); 3.19–3.36 (m, 4H); 2.02–2.26 (m, 2H); 0.93 (t, *J* = 7.9 Hz, 9H); 0.60 (q, *J* = 7.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 158.4, 148.1, 143.1, 128.2, 127.4, 126.3, 112.0, 78.1, 61.8, 44.3, 42.8, 27.9, 7.0, 4.9.

IR (NaCl, thin film): 2955, 2912, 2876, 1753, 1484, 1426, 1265, 1089, 1067, 1044, 1007, 861, 744, 701.

HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₀H₃₁NO₃Na, 384.1965; found, 384.1951.

The reaction of homoallylphthalimide (1.5 mmol, 300 mol%) and benzaldehyde (51 μ L, 0.5 mmol) with Ni(cod)₂, EtOPh₂P (43 μ l, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene at room temperature following the general procedure 3 above afforded **4c** and **4c'** in 28% total yield according to ¹H NMR of the crude mixture and the ratio of **4c**:**4c'** is 10:90. 4c' was subjected to TBAF and purification via flash chromatography on silica afforded a desilylated **4c'**.

(Desilylated 4c')

¹H NMR (400 MHz, CDCl₃, δ): 7.28–7.42 (m, 5H), 5.68 (dt, J = 5.7, 7.1 Hz, 1H), 5.49 (dt, J = 5.7, 7.1 Hz, 1H), 4.77 (dd, J = 6.7, 6.8 Hz, 1H), 4.28 (t, J = 8.0 Hz, 2H), 3.80–3.82 (m, 2H), 3.38 (dt, J = 2.5, 8.0 Hz, 2H), 2.53–2.59 (m, 2H), 2.11–2.17 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃, δ): 158.4, 143.9, 131.2, 128.7, 127.8, 127.3, 126.0, 73.8, 61.9, 46.4, 44.2, 42.1.

IR (NaCl, thin film): 3421, 2919, 2361, 1734, 1653, 1490, 1437, 1259, 1038, 762, 702. HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₄H₁₇NO₃Na, 270.111; found, 270.110.

The reaction of allylbenzoate (2.5 mmol, 500 mol%) and benzaldehyde (51 μ L, 0.5 mmol) with Ni(cod)₂, dicyclohexylphenylphosphine (55 mg, 0.4 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene following the general procedure 3 above afforded **4d** and **4d'** in <5% total yield according to ¹H NMR of the crude mixture. **4d** and **4d'** were not isolated from the reaction mixture.

The reaction of allylbenzoate (2.5 mmol, 500 mol%) and benzaldehyde (51 μ L, 0.5 mmol) with Ni(cod)₂, EtOPh₂P (43 μ l, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene at 35 °C following the general procedure 3 above afforded **4d** and **4d'** in <5% total yield according to ¹H NMR of the crude mixture. **4d** and **4d'** were not isolated from the reaction mixture.

The reaction of homoallylbenzoate (1.5 mmol, 300 mol%) and benzaldehyde (51 μ L, 0.5 mmol) with Ni(cod)₂, dicyclohexylphenylphosphine (55 mg, 0.4 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene at room temperature following the general procedure 3 above afforded **4e** and **4e**' in 21% total yield according to ¹H NMR of the crude mixture. **4e** was subjected to TBAF and the free alcohol was isolated as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 8.02 (d, J = 7.3 Hz, 2H); 7.58 (t, J = 7.3 Hz, 1H); 7.28 (m, 7H); 5.37 (s, 1H); 5.29 (s, 1H); 5.12 (s, 1H); 4.36–4.50 (m, 2H); 2.34–2.51 (m, 2H); 2.29 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 166.9, 147.0, 141.8, 133.1, 130.4, 129.7, 128.7, 128.5, 128.0, 126.7, 113.3, 77.6, 63.7, 31.3.

IR (NaCl, thin film): 3447, 3063, 3030, 2961, 1717, 1701, 1451, 1316, 1276, 1117, 1071, 1026, 912, 712, 701, 668.

HRMS-ESI (m/z): [M+Na]⁺ calcd for C₁₈H₁₈O₃Na, 305.1148; found, 305.1156.

The reaction of homoallylbenzoate (1.5 mmol, 300 mol%) and benzaldehyde (51 μ L, 0.5 mmol) with Ni(cod)₂, Ph₃P (52 mg, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol), triethylamine in toluene at 35 °C following the general procedure 3 above afforded **4e** and **4e'** in <5% total yield according to ¹H NMR of the crude mixture and. **4e'** was not isolated from the reaction mixture.

The reaction of 1-hexen-6-benzoate (510.3 mg, 2.5 mmol, 500 mol%) and *o*-anisaldehyde (61 μ L, 0.5 mmol) with Ni(cod)₂, EtOPh₂P (43 μ l, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol, 175 mol%), triethylamine in toluene following the general procedure 3 above afforded **4f** and **4f** in 44% total isolated yield after flash chromatography on silica and according to ¹H NMR of the crude mixture the ratio of **4f**:**4f** is 73:27. **4f** and **4f** were isolated together as a mixture.

The reaction of triethyl-hex-5-enyloxy-silane (1.5 mmol, 300 mol%) and *o*-anisaldehyde (61 μ L, 0.5 mmol) with Ni(cod)₂, EtOPh₂P (43 μ l, 0.2 mmol, 40 mol%) and TESOTf (197 μ L, 0.875 mmol, 175 mol%), triethylamine in toluene at 35 °C following the general procedure 3 above afforded **4g** and **4g'** in 66% total yield according to ¹H NMR of the crude mixture and the ratio of **4g**:**4g'** is 92:8. The *E* / *Z* ratio of **4g** is 50:50. **4g'** was not isolated from the mixture. **4g** were subjected to TBAF and the free diols was isolated via flash chromatography on silica as a colorless oil.

HO OH (Desilylated 4g)

¹H NMR (400 MHz, CDCl₃, δ): 7.26–7.28 (m, 2H); 6.89 (d, J = 8.6 Hz, 2H); 5.41–5.63 (m, 2H), 4.70 (dd, J = 4.8, 8.0 Hz, 0.5 H), 4.64 (dd, J = 7.2, 7.2 Hz, 0.5 H), 3.81 (s, 3H), 3.60–3.65 (m, 2H), 2.39–2.62 (m, 2H), 2.10–2.27 (m, 2H), 1.89 (brs, 2H), 1.58–1.67 (m, 2H). ¹³C NMR (100 MHz, CDCl₃, δ): 159.2, 159.2, 136.5, 136.4, 134.2, 132.5, 127.2, 127.2, 126.6, 126.1, 114.0, 113.9, 73.7, 73.4, 62.7, 62.0, 55.5, 42.8, 37.3, 32.3, 32.1, 29.5, 23.7. IR (NaCl, thin film): 3354, 2933, 1612, 1513, 1442, 1303, 1247, 1175, 1035, 832. HRMS–ESI (m/z): [M+Na]⁺ calcd for C₂₆H₄₈O₃Si₂Na, 487.3040; found, 487.3017.

To β -Citronellene (0.5 mmol) in anhydrous CH₂Cl₂ (5 mL) was added Me₂AlCl (1.0 M in hexane, 1.1 mL) at 0 °C. The mixture was stirred at room temperature for 24 h. The reaction was quenched by diluting the reaction mixture with diethylether, followed by slow addition of water until gas evolution ceased. The organic layer was separated, and the aqueous layer was extracted with ether twice. The combined organic layers were washed with brine, dried and evaporated in vacuo. Purification via flash chromatography on silica gel afforded the coupling product **5a** as a colorless oil. Homoallylic alcohol **5b** was not detected.

¹H NMR (400 MHz, CDCl₃, δ): 7.28-7.39 (m, 5H); 5.45-5.61 (m, 1H); 5.09 (s, 1H); 5.00 (s, 1H); 4.79-4.94 (m, 2H); 4.38 (dd, *J* = 0.7, 8.5 Hz, 1H); 2.19-2.35 (m, 1H); 1.89-2.05 (m, 1H); 1.73, 1.75 (two s, 3H); 1.67 (brs, 1H); 0.91-1.27 (m, 4H); 0.87, 0.84 (two d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃, δ): 145.1, 144.3, 142.9, 128.5, 127.9, 127.4, 127.3, 126.0, 116.5, 116.4, 113.1, 112.4, 75.5, 75.4, 56.5, 56.4, 37.8, 37.5, 34.2, 34.2, 31.2, 26.3, 21.0, 19.5, 18.3, 18.1.

HRMS-EI (m / z): $[M]^{+}$ calcd for C₁₇H₂₄ONa, 244.182; found, 244.182.

The reaction of β -Citronellene and benzaldehyde (51 µL, 0.5 mmol, 100 mol%) with Ni(cod)₂, EtOPh₂P (43 µl, 0.2 mmol, 40 mol%) and TESOTf (197 µL, 0.875 mmol, 175 mol%), triethylamine in toluene following the general procedure 3 above afforded **5b** 75% total yield according to ¹H NMR of the crude mixture and the E/Z ratio of **5b** is 71:29. **5a** was not detected. Purification via flash chromatography on silica afforded **5b** as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 7.25-7.36 (m, 5H); 5.18-5.20 (m, 1H); 5.12-5.12 (m, 1H); 4.64-4.68 (m, 1H); 2.37-2.48 (m, 2H); 2.01-2.10 (m, 4H); 1.73 (m, 4H); 1.64 (m, 3H); 1.55 (s, 2H); 0.92 (t, *J* = 6.9 Hz, 9H); 0.57 (dq, *J* = 3.0, 6.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃, δ): 145.8, 145.8, 137.2, 137.1, 131.7, 131.5, 128.1, 128.0, 127.0, 127.0, 126.1, 126.1, 124.6, 124.5, 121.8, 120.7, 75.5, 75.3, 40.0, 39.8, 39.7, 32.3, 26.8, 26.7, 25.9, 25.9, 23.6, 17.8, 17.8, 16.3, 7.0, 7.0, 5.0, 5.0.

IR (NaCl, thin film): 2955, 2876, 1454, 1376, 1239, 1088, 1068, 1006, 829, 743, 700. HRMS-ESI (m / z): [M + Na]⁺ calcd for C₂₃H₂₈OSiNa, 381.2590; found, 381.2583.

рра рра														
180						·								
, T 160														
140										1a 〈		OSiEt ₃		
120				i										
100													SN050690	
08					— ,									
60 60														
40														
20														
-														
F2P F2P PPMCM HZCM	1D NMA plo CX F1P	PC B B B	F2 - Proce SI WDW	PL12 SF02	CPOPRG2 PCPD2 PL2	P1 P1 SF01	DE DE DI 12 012	DS SWH FIDRES AQ RG	PULPHUG TD SOLVENT NS	Time INSTRUM PROBHD	F2 - Acqui	NAME EXPNO PROCND	furrent Da	
0.000 ppm 0.00 Hz 10.0000 ppm/cm 1006.12756 Hz/cm	ot parameters 20.00 cm 200.000 ppm 20122 55 H2	1.00 Hz 1.40	essing parameters 32768 100.6127533 MHz EM	22.00 dB 22.00 dB 400.1316005 MHz	CHANNEL f2	CHANNEL f1 13C 8.50 usec 3.00 dB 100.6237959 MHz	20.550 usec 6.00 usec 0.03000000 sec 0.03000000 sec	4 24330.900 Hz 0.371260 Hz 1.3468148 sec 1024	Zgpg30 65536 CDC13 874	5 mm GNP 1H	sition Parameters	SN690-C 1	ליד עם הגררגנו ארד מיד א	
							-004-							

ppm -																							
180	and the standard states of the																		1ь	=		OSiEt ₃	
160	ی میں میں اور																		Me	у Г	IJ		
140	مردين التعالية التي المراجع التي التي التي التي التي التي التي التي						×																
120	ي يىرى جى وي وايدۇ بىلىرى يې					<u> </u>						-											
100	میں ہے۔ میں ایک	ومحاج وحاداته مؤاجرة والمتعادرة ويستعادها وماليك																					SN050714
- 80 -	الم المالية. 1. المالية المالية المالية المالية (1. المالية المالية المالية المالية المالية المالية المالية الم					-		• 															
	an a	سأعملت مختصان معاقرة عناقركا التوافية المعالية فيسلط										•											
40 1	and the second se	fe den starte line a ferre a le ferre a le																					
20	a seda ter 16. di seste provinci de la seda	and and a second and			. <u> </u>																		
-	and the second									<u></u>													
F2 PPMCM HZCM	F1 F1 F2 F	1D NMƏ plot CX	P 8 6	SSB WDW	F2 - Process SI SF	PL13 SF02	PCPD2 PL2	EE	PL1 SF01	 NUC1 P1	d11 d12	2 4 8 9	AQ AQ	SWH FIDRES	N N N	TD SOLVENT	PAOBHD	Time INSTRUM	F2 - Acquis Date_	PROCNO	NAME	Current Dat	
0.00 Hz 10.00C00 ppm/cm 1006.'2744 Hz/cm	200.000 ppm 20122.55 Hz 0.000 ppm	parameters 20.00 cm	1.40 1.40	. 00 	sing parameters 32768 100.6127492 MHz	24.00 dB 400.1316005 MHz	107.50 usec 0.00 dB	= CHANNEL f2 ===================================	3.00 dB 100.6237959 MHz	= CHANNEL f1 ===================================	0.00002000 sec -S56	900.0 K 9.00 Nsec	1.3042164 sec 2048	25125.629 Hz 0.383387 Hz	109	5 LJUJ 92539 0057467	5mm 880 88-1	20.58 spect	ition Parameters 20050716	њ,	SN714-C 1	a Parameters	

بد الم

, wdđ	and the second se					
180						
160	يىدىيە يەتەرىيە مەتەرىيە يەتەرىيە يەتەرىيە يەتەرىيە يەتەرىيە يەتەرىيە يەتەرىيە يەتەرىيە يەتەرىيە يەتەرىيە يەتەر يەتەرىيە يەتەرىيە يەتە		•			
140						
120						
100						SN050715
80 1						
60						
40						
20	والمراجعة والمحاولة					
			/		· · · · · · · · · · · · · · · · · · ·	
F2 PPMCM HZCM	דינג דינג ד21 פ	F2 - Proces SF WDW SSB LB GB GB GB CD NMA plot	CPDPFG2 NUC2 PCPD2 PL2 PL12 SFD2 SFD2	P1 PL1 SF01	Date	Current Da NAME PROCNO
0.00 Hz 10.00000 ppm/cm 1006.12744 Hz/cm	200.00 ppm 20122.55 Hz 0.000 ppm	ssing parameters 32768 100.6127476 MHz 0 1.00 Hz 1.00 Hz 1.40 1.40	CHANNEL f2	== CHANNEL f1 ===================================	21.28 20050718 21.28 spect 5mm BB0 BB-1 29930 65536 CDC13 29930 65536 CDC13 297 4 25125.629 Hz 0.383387 Hz 1.3042164 sec 19.300 usec 6.00 usec 6.00 usec 0.00000000 sec 0.00002000 sec -\$558-	ta Parameters SN715-C 1

mdd	and the second s	A substances of the second states of the											,														
180	and a state of the second s	وحدادة المتعادية بالمتعادية والمتعالية والمتعالية والمتعالية																						-0			
160	میں میں ہوتا ہے۔ میں میں میں میں میں میں میں میں میں میں	and a final contract of the second																		1e	< <	/== }		SiEt ₃			
140	العلم في حمل العام في المحمل الأول المحمل المحم المحمل العام المحمل ا																					<u>`</u>	2				
120	میں میں بن میں اور برجا ہے۔ است																										
100	مانية من المانية عنه و همية. ولم المانية من المانية المانية من المانية المانية من المانية المانية و المانية الم منابعة من المانية المانية من من من المانية المانية المانية المانية المانية المانية المانية المانية المانية المان	nakarta parakarta data setember data data data data data data data dat																									SN050723
	يى بىرىغى يەركىيىغى يەركىيىغى يەركىيىغى يەركىيىغى يەركىيىغى يەركىيىغى يەركىيىغى يەركىيىغى يەركىيىغى يەركىيى يەر ئەركىيە يەركىيىدىغى يەركىيىغى يەركىيە يە			(1 · · · · · · · · · · · · · · · · · · ·				•																			
- 	ويعاربهم فالمالياتهم بالمناصفات وتنازع	وألعبته وأراحهم وخرارهم وحرار الأليانية والمراجع والمراجع والمراجع																									
40	ين من المراجع الم المراجع المراجع	tra Jaka a la Jaka Manala Angela A																									
20	م میں آپنانی ہوتا ہے۔ میں تعدید عموم کر کی تعدید میں اور میں	tan da seta da seta da seta da seta da de desendo de desendo de desendo de desendo de desendo de desendo de de																									
-	منابع مسئل عام من من من من من م																										
F2 HZCM	F1 F2 P	1D NMA plu CX	Dd B B B B B B B B B B B B B B B B B B B	WDW SF	F2 - Proc	PL 13 SF02	PL2	CPOPPG2 NUC2 PCPD2		PL1 SF01	NUC1 P1		d11 d12	3 4 1	796		SWH	n NS	TD SOL VENT	PHUBHU	INSTRUM	Date_ Time	F2 - Acqui	PROCNO	NAME	Current Da	
0.00 Hz 10.00000 ppm/cm 1006.12756 Hz/cm	200.000 ppm 20122.55 Hz ppm	ot parameters 20.00 cm	1.00 Hz 1.40	32768 100.6127538 MHz Em	essing parameters	24.00 dB 400.1316005 MHz	0.00 dB 24.00 dB	waltz16 1H 107 50 usec	=== CHANNEL f2 ===================================	3.00 dB 100.6237959 MHz	13C 15.25 usec	== CHANNEL {	0.03000000 sec 0.00002000 sec -S62	2 0000000 ser 2-	4096 19.900 usec	0.38338/ Hz 1.3042164 sec	25125.629 Hz	137	65536 CDC13	0Ebdčz I-AA NAA WWC	spect	20050721	isition Parameters	<u>هم</u> در	SN723-C)ta Parameters	

*							
						o	
					ť	SiMe ₃	
	·						SN05074
		<u></u>	-		<u></u>		ō
F1 F2 F2 F2 F2	F2 - Pr SSB GB FC	CPOPHG2 NUC2 PCPD2 PL2 PL12 SF02 SF02	P1 P1 SF01	FIDPRES	PROBHD PULPROG NS DS DS	NAME EXPNO PAOCNO F2 - ACC F2 - ACC Date_ Time Time	Current
plot parameters 20.00 cm 20122.55 Hz -10.000 ppm -1005.13 Hz 10 50000 nnm	ocessing parameters 32768 100.6127522 MHz 6 1.00 Hz 1.40 1.40	CHANNEL f2 Waltz16 1H 107.50 usec 0.00 dB 24.00 dB 24.00 dB 24.00 dB 24.00 dB 24.00 dB	===== CHANNEL f1 ==== 13C 15.25 usec 3.00 dB 100.6237959 MHZ	0.33387 Hz 1.3042164 sec 6.00 usec 6.00 usec 300.0 K 2.0000000 sec 0.00002000 sec	5mm 880 88-1 299930 65536 CDC13 201 4 2	SN/40-c 1 1 20050729 22.05 Spect	Data Parameters

* ~ ~ ~						
175					D	OSiMe ₂ tE
150						
125						
100						SN050737
75						
50						
ເນ_ -						
0						
PPMCM HZCM	SSB SF SSB SSB SSB SSB SSB F SSB F SSB F SSB F SSB F SSB F SSB F SSB F SSB F SSB F SSB F SSB F SSB F SSB F SSB F SSB F SSB SSB	PL2 PL2 PL2 PL2 PL12 PL13 SF02 F2 - Praces	P1 PL1 SFD1	DS SWH FIDRES AG DW DW DE DW DE D1 12 12	F2 - Acquis Time Time INSTRUM PROBHO PULPROG TD SOLVENT NS	Current Dat NAME EXPNO PROCNO
10.50000 ppm/cm 1056.43396 Hz/cm	100.6127530 MHz 6 1.00 Hz 1.00 Hz 1.40 20.00 cm 200.000 ppm 200.22.55 Hz -10.000 ppm	- CHANNEL f2 ===================================	= CHANNEL f1 ======== 13c 15.25 usec 3.00 dB 100.6237959 MHz	4 25125.629 Hz 0.383387 Hz 1.3042164 sec 3251 19.900 usec 6.00 usec 0.03000000 sec 0.03000000 sec -S666-	1110n Parameters 20050727 22.25 Spect 5mm 880 88-1 299930 65536 CDC13 151	a Parameters SN737-C 1

m _	a a start a st						
180							•
160					I :	OSiEt ₃	
140							
120							S
100					·		N050721 maj
80			-				
60							
40							
20 -							
Г 2 Г 2 РРИС М	F2 - Proc SI SB SB LB PC CX F1 PC	CPDPRG2 PCPD2 PL2 PL12 PL13 SF02	P1 PL1 SF01	FIIRES AGDRES DW DE DE DE DE DE DE DE DE DE DE DE DE DE	Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS	Current D; NAME EXPNO PROCNO F2 - Acqu Date	
20122.55 HZ 0.000 ppm 0.000 HZ 10.00000 ppm/cm 1006.12744 HZ/cm	essing parameters 32768 100.6127499 MHz EM 0 1.00 Hz 0 1.40 1.40 20.00 cm 20.00 cm	<pre>=== CHANNEL f2 ===================================</pre>	=== CHANNEL f1 ======== 13C 15.25 usec 3.00 dB 100.6237959 MHz	C. 383397 Hz 1.3042164 sec 2048 19.900 usec 6.00 usec 300.0 k 2.00000000 sec -S70-	12.31 Spect 299930 65536 CDC13 140 4 25125 629 Hz	ata Parameters SN721-C 1 1 isition Parameters 20050720	

ppm 130 160 160						F ₃ C Desilylated 1j	- Р	
140 -								
120								
100							SN061118 OH	
0;						_		
 5								
5 -					• •			
- 20								
PPHON HZON		F2 - PC	CPDPHG2 NUC2 PCPD2 PL2 PL12 SF02 SF02	PL1 SF01	NS SWH AG PG DW DW DE TE DI d11 d12	F2 - Ac Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT	Current NAME EXPNO PROCNC	
10.00 Hz 10.00000 ppm/cm 1006.12744 Hz/cm	olot parameters 20.00 ст 20122.55 Ирт 0.000 рэт 6.00 Из	ocessing parameters 32768 100.6:27492 MHz 6 1.00 Hz 0 1.40	CHANNEL f2	CHANNEL f1 13C 15.25 usec 3.00 dB 100.6237999 MHz	25125.529 Hz 0.333387 Hz 1.3042164 sec 1625.5 19.900 usec 6.00 usec 0.03000000 sec -S72-	quisition Parameters 20050403 20.22 Spect 5mm B80 88-1 290930 65536 CDC13	Data Parameters SN1118-DH-C 1	
Current Data Parameters NAME SN1119-OH-F EXPNO 1 PROCNO 1 F2 - Acquisition Parameters Date_ 20060403 Time 18.34 ISTRUM spect PROBHD 5 mm GNP 11/1 PULPROG 20107 SOLVENT 20606003 MH 7518788 sec BG 0.8716788 sec BG 0.915 K D1 1.0000000 sec CED 0.90 usec TE 291.5 K D1 1.0000000 MHz MDM 0.01195 F2 - Processing parameters SCD 1.00 CB 0.30 Hz BG 0.30 Hz CD 0.00000 MHz MDM 0.01 parameters CC 20.000 pm F1 -7530.00 Hz F2 -7530.00 Hz F2 -100.000 pm F1 -7530.00 Hz F2 -7530.00 Hz F2 -100.000 pm F1 -7530.00 Hz F2 -7530.00 Hz

218. àð-----

-6-

-80

-70

-9-

-20

-40

-30

ррш

F₃C

wdd

ppm -							Me		
08						0=	o		
160					• •	×		OSIEt ₃	
140									
120		·····							
100								SN061117	
8 									
- 60 -									
- 29-					·				
PPMCN HZCM	1D NMA plot CX F1P F2P	F2 - Proces SF WDW SSB LB GB GC	CPOPH62 NUC2 PCPD2 PL2 PL12 PL13 SF02	P1 P1 PL1 SF01	SWH FIDRES DW DE DE TE D1 TE D1 12 d11	INSTRUM PROBHD PUL PROG TD SOL VENT NS DS	EXPNO PROCNO F2 - Acquis Date_ Time	Current Dat	
10.00000 ppm/cm 1006 12756 Hz/cm	: parameters 200.00 ст 20122.55 Иг 0.000 ррт 0.00 Иг	ssing parameters 32758 100.6127515 WH2 0 1.00 H2 0 1.40	-= CHANNEL f2 = Waltz16 1H 107.50 usec 24.00 dB 24.00 dB 24.00 dB 24.00 dB 24.00 dB	-= CHANNEL f1 ======= 13C 15.25 usec 3.00 dB 100.6237959 MHz	25125.629 Hz 0.3042164 Sec 2048 39.900 USEC 6.00 USEC 0.03000000 Sec 0.03000000 Sec -S75-	Smm BB0 BB-1 2gpg30 65536 CDC13 B4 4	1 1 20050403 18.13	a Panameters SN1117-C2	

•

mdd												·																			
180									·																		_				
160																									1m	//			001		
140																											ā	5			
120	المراجع المراجع المراجع المراجع																														
100	بر میں اور																														SN050745
- - - - - - -							-																								
60	भ्या कि	-																													
40	ور می مواد با بالاند. مواد بالاند از مواد بالاند از مواد بالاند بالاند بالاند بالاند بالاند بالاند بالاند بالا مواد بالاند ب																														
20	الباد المالية المالية المالية المالية المالية المالية. من المالية الم من المالية الم	- 																													
_		-																													
PPMCM HZCM	Р1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1D NMA plo	GB РС	LB	W DY	F2 - Proce	SF02	PL 12	PCPD2	CPDPAG2 NUC2		PL1 SF01	P1		d12		TF E	DW	AQ	FIDRES	DS 2	SOLVENT	PULPROG	PROBHD	I 1 me I NSTRUM	Date_	F2 - Acqui	PROCNO		Current Da	
0.00 Hz 10.00000 ppm/cm 1006.12744 Hz/cm	200.000 ppm 20122.55 Hz 0.000 ppm	t parameters 20.00 cm	1.40	0 1.00 Hz	100.5127492 MHz FM	ssing carameters	400.1316005 MHz	24.00 dB	107.50 usec 0.00 dB	waltz16 1H	== CHANNEL f2 ===================================	100.6237959 MHz	15.25 USEC	== CHANNEL f1 =======:	0.00002000 sec 5	2.0000000 sec 9 -	6.00 usec	4095 19.900 usec	1.3042164 sec	25125.629 Hz 0.383387 Hz	4	CDC 1 3	290930 30	5mm 830 88-1	5.22 Spect	20050801	sition Parameters		SN745-C	ta Parameters	

≜ ~_{₩Ny}

-S82-

129 M P8 - 2- MW

0

that pl-f-put

-S85-

-S86-

-S88-

F2 - Processing parameters

-S95-

-S96-

-S97-

.969H - . 28-8-MM

-S99-

-S102-

LARSE D. .

· - i

0

-S105-

-S107-

Ł. HEY SP-9-42H

-S109-

PLOY-8-99 HP24

22311-54954

-S112-

trater of the H F-D-DW

ſ

(

-S116-

-S117-

-S118-

-S121-

1

					\leq	
				2n'	OSIEt ₃	
						SN05072
						26'allylic a
	•					lcohol
				•		
СВ 60 60 60 60 60 60 60 60 60 60	CPOPA62 PCPD2 PCPD2 PL2 PL12 PL12 PL12 SF0 SF2 - Proc SF SF SF SF	P1 P1 P1 SF01	FIDRES AQ AQ AQ AQ AQ AQ AQ AQ AQ AQ AQ AQ AQ	INSTRUM PROBHD PULPROG TO SOLVENT NS DS	Current D NAME EXPNO PROCNO F2 - Acqu Date_ Time	
1.00 Hz 0 1.40 20.00 cm 20.00 ppm 20122.55 Hz 0.000 ppm 0.00 Hz 10.00000 ppm/cm	CHANNEL f2 Waltz16 1H 107.50 Usec 0.00 dB 24.00 dB 24.00 dB 24.00 dB 24.00 dB 32765 100.6127499 MHz EM 0	CHANNEL f1 13C 15.25 usec 3.00 dB 100.6237959 MHz	0.383387 Hz 1.3042164 sec 19.900 usec 5.00000000 sec 0.00000000 sec 5.125-	5mm 880 88-1 2gpg30 65536 CDC13 159 14 14	Nata Paraneters SN725-all-C 1 1 isition Parameters 20050722 21 43	

-S128-

N

-S132-

Ý

:{ ____

ſ

Ч.

	ters H2 H2 H2 H2 H2 H2 H2 Sec Sec	A C C C C C C C C C C C C C C C C C C C	usec dB dB dB MHz	ers MHz Hz	cm ppm Hz ppm/cm Hz/cm
Data Parameters SN1027-TBAF-(uisition Parame 2006013; 20205013; 2020508-1 202035 202035 2203387 2203387 2203387 23125,62 0.383387 1.3042154 1.3042154 3649.1 1.3042154 3649.1 1.3042154 3649.1 2.000000000	0.0002000 13C 13C 15.25 3.00 100.6237959	CHANNEL f2 walt216 11 107.50 0.00 24.00 24.00 400.1316005	:essing parameti 32768 100.6127553 EM 0 1.00 1.00 1.40	at parameters 20.00 200.000 20122.55 0.000 10.000 10.00000 1006.12755
Current NAME EXPNO PROCNO	F2 - Acq Date INSTRUM PROBHD PULPROG TD SOLVENT SSLVENT SSLVENT FIDRES AG DW DM DM	d12 NUC1 PL1 SF01	ссрорясс Срорясс NUC2 PC2D2 PL2 PL12 PL13 PL13 SF02 SF02	FF2 - Proc SS WDW SSB SSB GB GB PC	10 NMA p] CX F1 F1 F2 PPMCM H2CM

SN061027 TBAF

)

-
4.0041 4.0041 1.0041 1.0041

SN061027 TBAF

-S140-

-S142-

-S143-

-S150-

-S151-

-S152-

-S153-

-S154-

-S155-

SN050737 allylic and ene

-S159-

HEOH HE-R-PUN

-S163-

•1

i,

-S164-

8-8-4-12