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Appendix S1

Construction of Synthetic Population and the Social Network

We have created synthetic social contact networks for several large regions in the US, representing the
daily interactions between the inhabitants of the region. [1–4] The synthetic Seattle population has over
3.2 million individuals (represented as nodes in the contact graph), with over 88.7 million explicitly
represented interactions (edges in the contact graph). The Miami population has nearly 2.1 million
people and just over 52.7 million interactions. Our approach consists of four steps:

1. population synthesis, in which a synthetic representation of each household in a region is created
from the US Census data;

2. activity assignment, in which each synthetic person in a household is assigned a set of activities to
perform during the day, along with the times when the activities begin and end, as derived from the
activity or time-use survey data from the National Household Travel Survey (NHTS), and American
Time Use Survey (ATUS).

3. location choice, in which an appropriate real location is chosen for each activity for every synthetic
person based on Dun & Bradstreet (D&B) data and land use data.

4. social contact network, in which each synthetic person is deemed to have made contact with a subset
of other synthetic people simultaneously at the same location. The resulting social contact network
is a graph whose vertices are synthetic people, labeled by their demographics, and whose edges
represent contacts, labeled by duration of contact and type of activity.

The population synthesis step preserves the confidentiality of the individuals in the original data
sets, yet produces realistic attributes and demographics for the synthetic individuals. Joint demographic
distributions are reconstructed from the marginal distributions available in typical census data together
with joint distributions in Public Use Microdata Samples (PUMS) using an iterative proportional fitting
technique.

This technique guarantees that a census of our synthetic population is statistically indistinguishable
from the input census when aggregated to block groups. Particularly important is step 2, i.e. activity
assignment, in which each synthetic household is matched with one of the survey households, using a
decision tree based on demographics such as the number of people in the household, number of children
of various ages, household income, etc.

In the location choice step, for each household and each activity performed by this household, a
preliminary assignment of a location is made based on observed land-use patterns, building capacity, tax
data, etc. [5, 6]. Once activity based location assignments for each person in the population are made,
we generate two types of graphs, a people-location graph GPL and a people-people graph GP .

A GPL graph is constructed where P is the set of people and L is the set of locations. If a person
p ∈ P visits a location ` ∈ L, there is an edge (p, `, label) ∈ E(GPL) between them, where label represents
the type of the activity and its start and end times. We also consider another graph GP induced on the
set of people: (p1, p2) ∈ E(GP ) if there is a location ` ∈ L such that (p1, `), (p2, `) ∈ E(GPL), and the
time intervals during which p1 and p2 are present at ` overlap, i.e., there is a common location at which
the two people p1, p2 are present at the same time.

Simulation of Disease Transmission

EpiFast is a very fast epidemic simulation tool. It achieves its speed by using a graph theory based
algorithm (as opposed to event based simulation tools) and by efficiently dividing large social networks
into many pieces so the computations can be done in parallel. This allows it to compute epidemics on
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populations with 16 million individuals and includes their realistic person to person contact networks
in less than 5 minutes (using a 96 node cluster). EpiFast also supports a range of interventions that
can be dynamically defined (ie depend on the state of the epidemic rather than a fixed point in the
simulation) which can rearrange the structure of social networks or change the degree of infectiousness
or susceptibility of the individuals.

At its core, EpiFast represents each individuals disease state based on the commonly used SEIR
(Susceptible, Exposed, Infectious, and Recovered) paradigm. Individuals move through these states
and can infect their contacts while they are in the infectious state. EpiFast currently supports both a
symptomatic and asymptomatic infectious state and allows for the asymptomatic state to have a different
level of infectiousness. Additionally, the presence of symptoms can be used to identify individuals that
are ill and thus can be have appropriate interventions applied to them based on this identification. A
more precise and technical description of EpiFast’s handling of disease follows.

Each person in the model is in one of the following four health states at any given time: susceptible,
exposed, infectious, and removed.

• A person is in the susceptible state until he becomes exposed.

• If person v becomes exposed, he remains exposed for Incub[v] days (called incubation period),
during which he is not infectious.

• Then he becomes infectious and remains infectious for Infect[v] days (called infectious period),
during which he may be symptomatic or asymptomatic. An asymptomatic person is less likely to
transmit the disease to other people.

• Finally he becomes removed (or recovered) and remains so permanently.

A contact network G(V,E,w), is a directed, edge-weighted network. Each node corresponds to an
individual in the population; each edge represents a contact between two end nodes during each day,
and the edge weight is the contact duration. Edge (u, v) with weight w(u, v) represents that node u has
contact of duration w(u, v) with node v every the day, during which the disease may transmit from node
u to node v with probability p(w(u, v)).

On any given day, if a node u is in the infectious state, and v is in the susceptible state, then with
probability

p(w(u, v)) = 1− (1− r)w(u,v)

node u transmits the disease to node v on that day, where r is the probability of disease transmission for
each unit of time of contact.

A crucial assumption made in almost all epidemic models is that of independence: we assume that
the spread of infection from a node u to node v is completely independent of the infection from a node
u′ to node v. Similarly, an infected node u spreads the infection to each neighbor v, independent of the
other neighbors of u.
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