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Statistical methodology

All four approaches to estimate infection rates require information from multiple sources. The
Bayesian statistical paradigm (1) is particularly well suited to combining information from dif-
ferent sources while allowing for proper propagation of uncertainty. For all four methods, we use
non-informative, flat prior distributions on all parameters unless external data were available to
provide an informative prior distribution. For these informative prior distributions, we started
with a non-informative prior, fit a model to the external data, and used the resulting posterior
distribution including all within model uncertainty as the informative prior for the main analysis.
Where an analytical form could not be found for it, the posterior distribution from fitting to
external data was approximated by a (multivariate) Gaussian distribution.

When conjugate priors were not available, models were fit using Markov chain Monte Carlo
integration, with univariate Gaussian proposal distributions centred on the current value and the
Metropolis—Hastings acceptance algorithm (1). Proposal bandwidths were selected by trial and
error until satisfactory mixing of MCMC chains was achieved; convergence of MCMC output was
assessed by visual inspection of trace plots. When mixing was slow, chains were run for longer and
thinned to reduce autocorrelations, but for models in which the MCMC routine mixed ostensibly
quickly through the posterior distribution, no thinning was used.

Method 1: paired serological surveys

Method 1 used paired serology, with a baseline blood sample and the highest follow up sample,
either mid- or post-epidemic. A “fourfold rise” (from baseline in (1:¢,1:2¢) to (1:4¢,1:8t) for
t € {5,10,20,...}; note that although this does not guarantee a fourfold rise in the uncensored
titres standard terminology is to call it a fourfold rise, a convention we abide by here) is deemed
to be a seroconversion. The proportion seroconverting must however be scaled up to account for
imperfect sensitivity of serology. To do this, we used data on seroconversions associated with
RT-PCR confirmed infection from (2) and (3).

Data used:

e number of seroconversions;



e number of possible seroconversions;

e estimated sensitivity of seroconversion.

The number of seroconversions and number at risk were taken from a seroepidemiological study
performed in Singapore during the first wave (3). The sensitivity of seroconversion relative to
RT-PCR confirmed infection was estimated from historic (2) and contemporary (3) studies. The
estimates from these two studies individually were close enough to warrant merging the two and
using the historic data alongside the 2009-H1N1 data.

Notation:

e n = the number of individuals in follow-up—known;
e x = the number of individuals that seroconverted—known;

e 01 = sensitivity of the seroconversion test versus RT-PCR, i.e. the probability of a sero-
conversion given a virologically confirmed infection;

e p = the proportion infected in the population.
Full model for data and parameters:

x ~ Bin(n,o1p)
o1 ~ Be(675,174)
p ~ U(0,1).

The prior distribution for o7 comes from taking the conjugate prior U(0,1) = Be(1,1) to a
binomial model for seroconversion given RT-PCR confirmed infection using the data in (2) and

(3).

Simplified representation of model:
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Assumptions:

e The findings from (2) and (3) generalise to our study population. The two papers show
similar results, supporting this assumption.

e Our cohort is a random sample from the population—the fact that it is not means there
may be a systematic and unquantifiable bias in the results.

e Seroconversions are independent—some study participants had co-habitants also in the
study, leading to a systematic underestimate of the uncertainty. The magnitude of the bias
is likely to be small due to the small fraction of households with multiple members in the
study.



Table 1: Posterior mean and 95% credible intervals for parameters of method 1

Parameter ‘ Estimate Lower bound Upper bound
o1 0.79 0.77 0.82
D 0.17 0.14 0.20

Estimation:

The joint distribution of (o1, p) is sampled via Markov chain Monte Carlo.

Method 2: cross-sectional serological surveys

Method 2 uses cross-sectional serological samples of the population. We emulate this by delinking
the paired serology data. In both samples, a titre of 1:40 is taken as evidence of exposure to the
virus. To account for pre-existing antibodies (resulting from cross reaction to other strains or
measurement error), the estimated proportion above this threshold pre-epidemic is “subtracted”
from the estimated proportion post-epidemic.

Data used:
e number of people at pre- and post-epidemic with titres above 1:40;
e number of people in these two samples;

e cross sectional antibody data from participants with RT-PCR confirmed infection.

The emulated cross-sectional data are derived from ref (3), as is the sensitivity estimate.

Notation:

e 1, = the number of individuals giving samples at baseline—known;

e 15 = the number of individuals at final follow up—known;

e 11 = the number of individuals with high (above 1:40) initial titres—known;

e 15 = the number of individuals with high final titres—known;

e g = the proportion of the population with naturally high titres, pre-infection (presumed);

e 0y = the proportion of the population with high titres at final follow that were infected
and had low initial titres;

p = the proportion infected in the population.



Table 2: Posterior mean and 95% credible intervals for parameters of method 2

Parameter ‘ Estimate Lower bound Upper bound

o2 0.79 0.67 0.88
q 0.03 0.02 0.04
P 0.12 0.09 0.17

Full model for data and parameters:

x1 ~ Bin(ny,q)
xo ~ Bin(ng,q¢+ (1 — q)oap)
oy ~ Be(46,12)
qg ~ Be(3,55)
~ U(0,1).
The prior distributions for ¢ and o2 come from taking the conjugate priors U(0,1) = Be(1,1) to a

binomial model for high titres at baseline and follow up for individuals with RT-PCR confirmed
infection during the study using the data from (3).

Simplified representation of model:

p = 932/712 *»Tl/nl
(1 — 56‘1/711)5’2
69 = 0.79.

Assumptions:
e The sensitivity and initial high titres findings generalise to our study population.
e Our cohort is a random sample from the population—which, again, it is not.
e Titre levels are independent (i.e. no household effects).
e We treat these as two independent cross-sectional surveys, but in actuality they are paired
(see method 1 for the method accounting for pairing).
Estimation:

The joint distribution of (o3, ¢, p) is sampled via Markov chain Monte Carlo.

Method 3: ILI data from sentinel GPs

Data used:
e daily number of ILI consults at GP sentinel network;

e daily number of GPs reporting;



e interview of participants in serological study and their seroconversion status to estimate

consultation rates;

sensitivity of seroconversion (as method 1).

ILI consult data come from a GP sentinel network previously described (4). The questionnaire
data are previously unpublished and were collected from the same group of patients as provided
sera in ref (3). Sensitivity data sources are as in method 1.

Notation:

Unobserved:

p = the proportion of the population infected;

p1 = the proportion of infections leading to ILI consults;

p2 = the proportion of ILI consults that correspond to actual infection;

o3 = the probability of seroconverting given (RT-PCR confirmed) infection;

N7jy ¢ = the number of people infected, visiting primary care with an ILI and seroconverting
in the serology—questionnaire study;

Njg = the number of people infected and seroconverting in the serology—questionnaire
study;

N; = the number of people infected in the serology—questionnaire study;
N?¥, = the number of people visiting primary care with an ILI in the population as a whole;

K = a parameter controlling the variability of GP consultations around the mean.

Observed:

N§g = the number of people seroconverting in the serology—questionnaire study;

Ny ¢ = the number of people seroconverting and visiting primary care with an ILI in the
serology—questionnaire study;

Ny, = the number of people visiting primary care with an ILI in the serology—questionnaire
study;

m = 1/2486 the proportion of primary care consultations attributable to a single GP in our
study—assumed known;

N? = the number of people in the serology—questionnaire studys;

NP = the number of people in the population (we restrict attention to resident adults
throughout);

D; = the daily number of ILIs reported on day t;
F; = the number of GPs faxing or emailing a report on day t;

T = the length of time of the two studies.



Full model for data and parameters:

Nis
]
(N§ — Nys)
Nivs
Nivs
Nivs
Ny
D,

K

P

b2

p
Ny

Bin(Ny, 03)
Be(675,174)
Bin(Njg — Njyg.03)
Bin(Ny g, 03)
Bin(N;S’pl)
Bin(Ny, p2)
U(0,N?)

NegBin(u; = FynNG /T k = k)
U(0,10)

U(0,1)

U(0,1)

U(0,1)

pp1N® /p2

Simplified representation of model:
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Note that alternative simplified point estimates of the number of ILI consults in the population
exist and it is not clear which gives the least bad representation of the estimate accounting for

all within model uncertainty.

Assumptions:

e The sensitivity findings generalise to our study population.

e Our cohort is a random sample from the population.

e Seroconversions are independent (i.e. no household effects).

The GPs in the surveillance network are representative.

Observed ILIs in the GP study are negative binomial distributed, i.e. inflated by a factor

k relative to a Poisson to account for the inhomogeneous pattern of consults caused by the
epidemic wave and day of week effects.



Table 3: Posterior mean and 95% credible intervals for parameters of method 3

Parameter | Estimate Lower bound Upper bound
o3 0.79 0.77 0.82
1 0.20 0.13 0.28
Do 0.67 0.47 0.86
Nig 124 112 137
Nivg 24 20 30
K 2.95 1.88 4.53
NY 116 000 100000 133000
P 0.15 0.10 0.25

Estimation:

A two-stage approach is taken. In the first round, Markov chain Monte Carlo is used to sample
the joint distribution of (p1,p2, 03, Njy g, Njg). A bivariate Normal distribution is then used to
approximate the joint distribution of (p, p2) which is then used as an informative prior for round
two. In the second round, Markov chain Monte Carlo is used to sample the joint distribution of
the population level estimands (p1,p2, k, Ni/).

Method 4: Laboritory surveillance and ILI data from sen-
tinel GPs

Here, we replace the estimated probability of HIN1 given ILI consult from the questionnaire
associated with the serology study by an estimate from lab surveillance.

Data used:

e daily number of ILI consults at GP sentinel network;
e daily number of GPs reporting;

e weekly numbers of swabs of patients presenting with ILI testing positive and negative to
HINT,;

o sensitivity of RT-PCR from (2);
e sensitivity of seroconversion (as method 1);

e interview of participants in serological study and their seroconversion status to estimate
consultation rates.

Data sources as per method 3, with in addition laboratory data from Singapore’s National
Laboratory (published in part in ref (5)).

Notation:

Unobserved:



LI = the number of people sampled for lab testing that were infected in week w;
p1 = the proportion of infections leading to ILI consults;

p2 = the proportion of ILI consults that correspond to actual infection aggregated over
the study period of the sero-cohort questionnaire, subsequently replaced by lab-derived
estimates;

P2 = the proportion of ILI consults that correspond to actual infection in week w;

oPCR = the probability of RT-PCR confirmed infection given any form of confirmed infec-

tion;
%" = the probability of seroconverting given (RT-PCR confirmed) infection;

N7}y ¢ = the number of people infected, visiting primary care with an ILI and seroconverting
in the serology—questionnaire study;

Njg = the number of people infected and seroconverting in the serology—questionnaire
study;

NY{,, = the number of people visiting primary care with an ILI in the population on day ¢;

N7, = the number of infected people visiting primary care with an ILI in the population
on day t;

N7\, = the number of infected people visiting primary care with an ILI in the population
over the course of the study;

N7 = the number of people infected in the population.

Observed:

L}, = the number of people sampled for lab testing that test positive in week w;

L, = the number of people sampled for lab testing that test negative in week w;

N§ = the number of people seroconverting in the serology—questionnaire study;

N3¢ = the number of people seroconverting and visiting primary care with an ILI in the
serology—questionnaire study;

m = 1/2486 the proportion of primary care consultations attributable to a single GP in our
study—assumed known;

NP = the number of people in the population (we restrict attention to resident adults
throughout);

D, = the daily number of ILIs reported on day ¢;
F; = the number of GPs faxing or emailing a report on day t;

w(t) = the week that contains day ¢.



Full model for data and parameters:

LY ~ Bin(LL, o)
LI~ Bin(L} + Ly, pow)
oPCR ~ Be(731,62)

Njs ~ Bin(N;j,o%°)

(N§ = Nys) ~ Bin(Nig— Niyg,0™)

Nivs ~ Bin(Nyg,0%")
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Simplified representation of model:
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e The sensitivity findings generalise to the lab samples.

e Our cohort is a random sample from the population.

e The GPs in the surveillance network are representative.

e Observed ILIs in the GP study an any particular day given the number of ILIs in the
community on that day are Poisson.

e Lab samples were randomly drawn from the population of ILI cases.

e Independence of lab samples, seroconversions, infection status of patients consulting for

ILI between and within days.

e The proportion of ILIs with HIN1 infection is piece-wise constant and changes only on

Sundays with the beginning of a new e-week.

Estimation:

A three stage procedure is used. In the first round, the joint distribution of (po,
is sampled using MCMC and the lab data.

In the second round, the joint distribution of
(p1,p2,0%™, Nj, N},,) is sampled (as in method 3) using Markov chain Monte Carlo. In the
final round, the posterior distribution for all other estimands is sampled by Monte Carlo simula-
tion, exploiting conjugacy to obtain beta posteriors for p; and gamma posteriors for Ni,,. The
posterior distributions for all other terms can be sampled directly.
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Table 4: Posterior mean and 95% credible intervals for parameters of method 4. Estimands that
vary with time are not shown.

Parameter | Estimate Lower bound Upper bound
oPCR 0.92 0.90 0.94
osere 0.79 0.77 0.82
D1 0.20 0.13 0.28
D2 0.67 0.47 0.86
N7y 24 20 31
N} 124 113 138
N7, 61 000 57000 64 000
N? 317000 216 000 499 000
D 0.12 0.08 0.18

Age stratified analyses

We undertook analyses of the infection rate in two ways:

e age stratified, in which infection rates in five age groups (20-24, 25-34, 3544, 45-54 and
55 or over) were analysed independently. For methods using GP ILI consults, we assumed
all ages had the same probability of consulting with an ILI when infected and that the
proportion of ILIs due to HIN1 infection were the same for all ages. This assumption was
needed since there was insufficient information on these proportions when the serological
questionnaire was divided by age groups, as the number of ILI cases among seroconvertors
within any particular age group was too small to obtain usable estimates. All other pa-
rameters were estimated using data from the subset of the data corresponding to that age
group only.

e non-age stratified, in which we derived estimates of the adult infection rate under the
assumption that infection rates are constant for all age groups. The motivation for this as-
sumption is that for some of the age groups, there is considerable uncertainty on the model
parameters, which can only be reduced by pooling information. An obvious, though com-
plicated and computer-intensive, alternative to this homogeneity assumption that would
also provide narrower estimates would be to develop an hierarchical model (see e.g. (1)) or
to introduce a functional form for the effect of age on infection rates as part of a regression
analysis.
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