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METHODS AND MODELS 
 
Plasmodium falciparum (Pf) parasitized red blood cells (Pf-RBCs) and their external/internal 
fluids are modeled with the Dissipative Particle Dynamics (DPD) method (1,2). 

 
RBC membrane model 
 
The RBC membrane is constructed by vN  particles }{ 1...= vNix which correspond to a two-

dimensional triangulated network (3,4) on the RBC surface measured (5) and is given by  
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where 7.82=0D  m  is the average diameter, 0.0518=0a , 2.0026=1a , and 4.491=2 a . The 

surface area and volume of this RBC are equal to 135 2m  and 94 3m , respectively. 

    The vertices of the network are connected by sN  springs with the following potential energy  
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 where jl  is the length of the spring j , ml  is the maximum spring extension, mjj llx /= , p  is the 

persistence length, TkB  is the energy unit, pk  is the spring constant, and n  is a power. The 

above equation consists of the attractive wormlike chain potential and a repulsive potential for 
0>n  such that a non-zero equilibrium spring length can be imposed. 

    Membrane viscosity is incorporated into the RBC model through a dissipative force for each 
spring. The general framework of the fluid particle model (6) allows us to define dissipative  

D
ijF  and random R

ijF  forces, which satisfy the fluctuation-dissipation balance providing 

consistent temperature of the RBC membrane in equilibrium. The forces are as follows  
 ,)(= ijijij

C
ij

TD
ij eevvF    (3) 

  

 ,1
3

][
322= ij

ijTCS
ij

T
B

R
ij

dtr
dTkdt e

W
WF 








   (4) 

 where T  and C  are dissipative parameters, ijv  is the relative velocity of spring ends, ][ ijdtr W  

is the trace of a random matrix of independent Wiener increments ijdW , and 

]1/3[= S
ij

S
ij

S
ij dtrdd WWW   is the traceless symmetric part. 

     The bending resistance of the RBC membrane is modeled by  
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 where bk  is the bending constant, j  is the instantaneous angle between two adjacent triangles 

having the common edge j , and 0  is the spontaneous angle. 

     Moreover, the RBC model requires the area and volume conservation constraints, which 
mimic area-incompressibility of the lipid bilayer and incompressibility of a cytosol, respectively. 
Such constraints are imposed as follows  
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where tN  is the number of triangles in the membrane network, 0A  is the triangle area, and dk , 

ak  and vk  are the local area, global area and volume constraint coefficients, respectively. The 

terms A  and V  are the total RBC area and volume, while totA0  and totV0  are the specified total 

area and volume, respectively. 
 

Membrane macroscopic properties 
 

Linear analysis of a regular hexagonal network allows us to uniquely relate the model parameters 
and the network macroscopic elastic properties (shear, area-compression, and Young's moduli), 
see (4,7) for details. Thus, the membrane shear modulus is given by  
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where 0l  is the equilibrium spring length and mllx /= 00 . The area-compression K  and Young's 

0Y  moduli are equal to da kk 02  and )/(4 00  KK , respectively. 

     The relation between the model bending coefficient bk  and the macroscopic bending rigidity 

ck  of the Helfrich model (8) can be derived as 3/2= cb kk  for a spherical membrane (4,9). This 

expression describes bending contribution of the energy in equation (5),  but may not fully 
represent actual bending resistance of the RBC membrane since membrane bending may also 
result in local in-plane deformations. 
     The membrane shear viscosity m  is related to the dissipative parameters T , C  as 

/4)(3= CT
m   . Here T  accounts for a large portion of viscous contribution, and hence C  

is set to /3T  in all simulations. 
     In practice, the given macroscopic RBC properties serve as an input to be used to calculate 
the necessary mesoscopic model parameters from the equations above without any manual 
adjustment. A simulation of a RBC in equilibrium shows that the membrane may develop local 
bumps due to stress anomalies in a membrane triangulation since a network on a closed surface 
cannot consist of triangles whose edges have the same lengths. Such local stress artifacts depend 
on the network regularity and the ratio of the membrane elastic and bending contributions given 

by the Föppl-von Kármán number ckRY /= 2
00 , where )/(4= 00 totAR . To eliminate the stress 



artifacts we employ a  ``stress-free'' model obtained by computational annealing. Thus, the 
equilibrium length il0  of each spring is set to the edge length after triangulation for sNi ,1,=  . 

This results in an individual maximum spring extension 00= xll ii
m   ( 0x  is a constant) and the 

spring parameters calculated for each spring using equation (7) for given 0 . This modification 

provides a network free of local stress anomalies. 
 

RBC-solvent boundary conditions 
 

The RBC membrane encloses a volume of fluid and is itself suspended in a solvent. In particle 
methods, such as DPD, fluids are represented as a collection of interacting particles. Thus, in 
order to impose appropriate boundary conditions (BCs) between the membrane and the 
external/internal fluids two matters need to be addressed:   
 
    i) enforcement of membrane impenetrability to prevent mixing of the inner and the outer fluids,  
 ii) no-slip BCs imposed through pairwise point interactions between the fluid particles and the 
membrane vertices.  

 
    Membrane impenetrability is enforced by imposing bounce-back reflection of fluid particles at 
the moving membrane triangular plaquettes. The bounce-back reflection enhances the no-slip 
boundary conditions at the membrane surface as compared to specular reflection; however, it 
does not guarantee no-slip. Additional dissipation enhancement between the fluid and the 
membrane is required to achieve no-slip at the membrane boundary. For this purpose, the DPD 
dissipative force between fluid particles and membrane vertices needs to be properly set based on 
the idealized case of linear shear flow over a flat plate. In continuum, the total shear force 
exerted by the fluid on the area A  is equal to  A , where   is the fluid's viscosity and   is the 
local wall shear-rate. In DPD, we distribute a number of particles on the wall to mimic the 
membrane vertices. The force on a single wall particle exerted by the sheared fluid can be found 
as follows  
 

 ,)(= dVFrngF D

hVv   (8) 

 
where DF  is the DPD dissipative force (6) between fluid particles and membrane vertices, n  is 
the fluid number density, )(rg  is the radial distribution function of fluid particles with respect to 

the wall particles, and hV  is the half sphere volume of fluid above the wall. Here, the total shear 

force on the area A  is equal to vAFN , where AN  is the number of wall particles enclosed by A . 

The equality of  AFN vA =  results in an expression of the dissipative force coefficient in terms 

of the fluid density and viscosity, and the wall density AN A/ , while under the assumption of 
linear shear flow the shear rate   cancels out. This formulation results in satisfaction of the no-
slip BCs for the linear shear flow over a flat plate. It also serves as an excellent approximation 
for no-slip at the membrane surface in spite of the assumptions made. Note that in the absence of 
conservative interactions between fluid and wall particles 1=)(rg . 



 

 
Adhesion model 

 
Adhesion of Pf-RBCs to coated surfaces is mediated by the interactions between receptors and 
ligands which are the adhesion sites distributed on a cell and a surface, respectively. A potential 
bond between a receptor and a ligand may be formed only if the receptor is close enough to the 
free ligand, which is characterized by the reactive distance ond . A ligand is called free if it is not 

bound to any receptors. During the time a receptor is within the distance ond  to a free ligand, a 

bond can be formed with on-rate onk . Reversely, existing bonds are ruptured with off-rate offk  or 

if their length exceeds the rupture distance offd . The rates onk  and offk  are defined as follows  
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where 0

onk  and 0
offk  are the reaction rates at the distance 0= ll  between a receptor and a ligand 

with the equilibrium spring length 0l  defined below. The effective on and off strengths on  and 

off  define a decrease or an increase of the corresponding rates within the interaction lengths 

ond  and offd , and TkB  is the unit of energy. The force exerted on the receptors and ligands by an 

existing bond is given by  
 ),)((=)( 0llklF ws   (10) 

 where )( wsk   is the spring parameter; here we will represent it as a linear and non-linear 

function of the wall-shear-stress (WSS) w . The probabilities of bond formation and dissociation 

are defined as )(exp1= tkP onon   and )(exp1= tkP offoff  , where t  is the time step in 

simulations. This adhesion model is a modification of the well-known adhesive dynamics model 
developed by Hammer and Apte (10).  In their model tson  =  and tssoff k  = , where ts  is 

the transition state spring parameter and sk  is a constant. 

During the course of a simulation the receptor/ligand interactions are considered every 
time step. First, all existing bonds between receptors and ligands are checked for a potential 
dissociation according to the probability offP . A bond is ruptured if offP<  and left unchanged 

otherwise, where   is a random variable uniformly distributed on [0,1] . If a bond is ruptured the 
corresponding ligand is available for new binding. Second, all free ligands are examined for 
possible bond formations. For each free ligand we loop over the receptors within the distance 

,ond  and bond formation is attempted for each found receptor according to the probability onP . 

This loop is terminated when a bond is formed. Finally, the forces of all remaining bonds are 
calculated and applied. 

Note that this algorithm permits only a single bond per ligand, while receptors may 
establish several bonds if several ligands are free within their reaction radius. This provides an 
additional capability for the adhesive dynamics model compared with that employing one-to-one 



interactions between receptors and ligands. Also, this assumption appears to furnish a more 
realistic representation of adhesive interactions of Pf-RBCs with a coated surface. Pf-RBCs 
display a number of parasitic nanometer-size protrusions or knobs on the membrane surface (11-
13), where receptors that mediate RBC adherence are clustered. 
 
 
Scaling of model and physical units 
 
Scaling between DPD model units ( M ) and physical units ( P ) adopts the following length and 
time scales  
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where Mr  is the model unit of length, 0D  is the cell diameter, m  stands for meters, and   is the 

characteristic viscosity (e.g., internal/external fluids or membrane). Additionally, we can define 
scaling of the energy per unit mass ( TkB ) and of the force unit (“ N ” denotes Newton) as 
follows  
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    In general, there are no limits for the proposed scaling, however close attention has to be paid 
to the choice of DPD parameters and to the limits of the DPD method. For example, DPD 
simulations may have a certain limit on the flow velocity due to fluid compressibility (14). Let us 
select arbitrarily the RBC and fluid properties in model units and calculate the space and time 
scaling to the corresponding properties in physical units according to equations above. Then, to 
simulate a flow with some characteristic shear rate in a physical system, we can calculate the 
shear rate which has to be imposed in the modeled domain according to the scaling. If the shear 
rate in model units is too high, we may encounter the well-known DPD problems such as fluid 
compressibility, varying viscosity, and temperature elevation. A proper choice of the DPD 
parameters (e.g., increase of fluid viscosity, decrease of RBC Young's modulus) will allow us to 
stay within the limits of the DPD method, where the aforementioned artifacts can be neglected. 
 
MODEL PARAMETERS 
 
Here we present a complete set of model parameters used for the simulations in the paper. 
 
Simulation parameters for the default case 

 
    A Pf-RBC is modeled using the stress-free model described above with the following 
parameters: 1000=0 , 2.2=0x , 50000=ak , 1000=dk , 50000=vk , and 2=n . DPD 

parameters of interactions among external solvent ( oS ), internal fluid ( iS ), RBC vertices (V ), 

and wall (W ) particles are shown in table 1. Pair interactions which are not specified in table 1 
are switched off. The number density of both internal and external fluids is equal to 3. The 
Schmidt number (Sc) of both fluids is equal to 4828, which is close to that of real fluids. Here, 



 , where D is the coefficient of self-diffusion, and is the kinematic viscosity. 
 

  
Interaction a    

cr  )( envelopeDPDk  

oo SS  , WSo   4.0  10.0  1.5  0.25 

ii SS   4.0  10.0  1.5  0.25 

VSo  , VSi  , VW   2.0  20.0  1.5  0.25 

VV   100.0 10.0  0.75 0.25 
Table  1: DPD parameters used in the simulations of RBC adhesive dynamics in malaria. 
Parameters a  and   are the conservative and dissipative force coefficients, cr  is the cutoff 

radius, and k  is the exponent for the DPD envelope. 
 
    Initially, an infected RBC is placed between two walls at the distance of 100  nm  away from 
the lower wall. The cell has 500=rN  receptors, while ligands on the lower wall are distributed 
on the square lattice with lattice constant 0.5=d  m . The shear flow is generated by moving 
the upper wall. Table 2 presents default simulation parameters in model units and the 
corresponding physical parameters in SI units.  
 

  Parameters   Simulations   Physical  
 RBC diameter ( 0D )   7.82    6107.82   m   

 Young's modulus ( 0Y )   3926   51016.8   mN/   

 bending rigidity ( ck )   8.66    19103.7   J   

 shear rate ( )   0.3333   33.33 1s   
 wall shear stress ( w )   7.3326    0.317  Pa   

 temperature (T )   0.1   310 K   
 external fluid viscosity ( o )   22    3109.5   sPa    

 internal fluid viscosity ( i )   22    3109.5   sPa    

 spring constant ( sk )   400    5101.71   mN/   

 equilibrium spring length ( 0l )   0.0    0.0  m   

 reactive distance ( ond )   0.35   7103.5   m   

 rupture distance ( offd )   0.35   7103.5   m   

 on strength ( on )   1.0    8104.28   mN/   

 off strength ( off )   0.3333   8101.43   mN/   

 unstressed on rate ( 0
onk )   116.67    11667  1s   

 unstressed off rate ( 0
offk )   1.0    100  1s   

 receptor density ( rn )   4.0    4.0  2/ mmol    

 ligand density ( ln )   4.0    4.0  2/ mmol    



Table  2: Default simulation (in DPD units) and physical (in SI units) parameters for RBC 
adhesive dynamics in malaria. 
 
 
The default parameters correspond to the schizont stage of intra-cell parasite development with 
the Young's modulus approximately ten times larger than that of healthy RBCs. 
     We verified that relevant physical properties are faithfully represented in our simulations. The 
fluid viscosity and temperature remain constant for all modeled shear rates, which is mainly 
achieved through a relatively high fluid viscosity and Sc number in comparison with the common 
DPD parameters (2) which result in both and Sc to be on the order of O(1). The 
compressibility effects are also negligible due to a low fluid velocity next to the cell membrane 
and the wall, where problems can be expected. 
 
 
Simulations with varying spring constant 
 
We considered a linear and a non-linear dependence of the spring constant sk  on the wall shear 

stress (WSS) w . For the linear case sk  is proportional to the WSS as follows  

 
 ).inSIunits(  105.46=)(         ),tsinmodeluni(  54.6=)( 5

wwswws kk    (13) 

 
The case of a non-linear dependence of sk  on w  is presented in table 3.  Initial guess for sk  was 

guided by the experimental data of Ania et al. (15)  assuming linear behavior of sk  and the 

average flipping velocity with respect to w . However, a second correction for sk  in most of the 

simulations was necessary, because the dependence of these parameters may be non-linear with 
respect to w . 

 

w  (model units) 3.62 5.84 8.18  11.68 17.53 23.37  29.21 

w  (Pa) 0.155
 

0.25 0.35 0.5 0.75 1.0  1.25  

sk (model units) 200 340 460  572 1116 1660 2300  

sk  ( mN/ ) 8.56  14.55
 

19.68 24.48  47.76  71.034  98.42 

Table  3: Non-linear dependence of sk  on the wall-shear-stress (WSS) w . 

 
 

Simulations with explicit parasite modeling 
 

The parasite was modeled by a collection of DPD particles within the cylindrical volume with 
3.3=R  m  and 0.2=L  m . These particles were placed inside the Pf-RBC and constrained to 

undergo rigid motion. In order to prevent the parasite body from crossing the RBC membrane, 
we introduce Lennard-Jones interactions between the parasite body particles and membrane 



vertices given by the potential  
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where   and MD  are energy and length characteristic parameters, respectively. These 

parameters were set to 1.0=  and 0.5=MD . The parasite was allowed to swim freely in the 
RBC cytosol, while the number of DPD particles that represents the RBC cytosol was reduced 
according to the volume occupied by the parasite body. The simulation parameters for the 
membrane and adhesive interactions were the same as in table 2. 
 
RESULTS AND DISCUSSION 
 
Adhesive dynamics of Pf-RBCs on mammalian CHO cells 
 
Antia et al. (15) examined adhesive dynamics of Pf-RBCs on a surface covered with grown 
mammalian CHO cells. Most of the infected RBCs showed persistent firm adhesion with 
infrequent complete detachment. This behavior was not attributed to the presence of any other 
types of ligands, which may be expressed by the mammalian CHO cells, since it is believed that 
they expose the same ligands as ICAM-1. The flow micro-environment was identified to 
potentially contribute to the difference in RBC adhesive dynamics on purified ICAM-1 and on 
mammalian CHO cells. 
    The adhesive behavior of Pf-RBCs, explored by means of numerical simulations for various 
parameters, revealed several types of cell dynamics such as firm adhesion, RBC peeling off the 
surface followed by flipping from its one side to the other or by detachment from the wall, and 
very slow slipping along the wall. However, the video containing an example of RBC adhesive 
dynamics on the mammalian CHO cells from experiments (15) shows firm adhesion of Pf-RBCs 
for some time followed by a sudden detachment. In contrast, firm adhesion in simulations 
appears to always be stable with no detachment within the simulated time of approximately 30  
s . Note that the RBC motion in experiments before the detachment displays very slow slipping 
along the surface due to the flow and random collisions with other flowing RBCs. Considering 
the RBC adhesive dynamics observed in simulations and experiments, it is likely that the sudden 
complete detachment from the wall in this case is caused by RBC slipping into a wall region 
with a limited number of ligands available for binding. 
    To verify this hypothesis we ran a simulation in which ligand sites were removed from the 
wall area between 30  m  and 40  m  in the x  direction. RBC slipping along the wall was 

achieved for the following simulation parameters: 18101.85= ck  J , 6103.42= sk  mN/ , and 

6.7=  1s , while the other parameters were the same as in the default case. Figure presents 
RBC displacement along the x  coordinate (a) and instantaneous velocity (b).  show membrane 
dynamics.   This plot illustrates that the membrane surface is much smoother than in the case of 
low bending rigidity in figure 1 of the paper. High bending rigidity is able to resist stresses 
exerted by the flow showing no local buckling of the membrane. However, the Pf-RBC 
experiences strong membrane deformations during the peeling stage of the flipping motion 
similar to those seen for RBCs with low bending resistance RBC displacement shows a slow 
slipping along the surface continued up to an x  coordinate between 30  m  and 40  m , where 



a complete cell detachment occurs due to no ligands present for binding. The corresponding cell 
velocity in figure 0b confirms the described dynamics. The simulation results are in good 
qualitative agreement with the RBC dynamics on the mammalian CHO cells found in 
experiments (14).  At this time, no other change in physical parameters of cell adhesion was 
found to be able to reproduce this dynamics. 

 
Dependence of RBC adhesive dynamics on membrane bending rigidity 

 
Membrane bending rigidity affects the adhesive dynamics of Pf-RBCs in shear flow. Figure 
presents several snapshots of a rolling RBC along a wall with the membrane bending rigidity 
five times larger than that for the default case. This plot illustrates that the membrane surface is 
much smoother than in the case of the low bending rigidity in figure 1 of the paper. High 
bending rigidity is able to resist stresses exerted by the flow showing no local buckling of the 
membrane. However, the Pf-RBC experences strong membrane deformations duriing the peeling 
stange of the flipping motion similar to those seen for RBCs with low benidng resistance. 

  

   
Figure S1: Displacement (a) and velocity (b) of a Pf-RBC along the wall for the case of 

sudden cell detachment.    
 
 
MOVIE DESCRIPTION 

 
Movie S1: Adhesive dynamics of a Pf-RBC at the schizont stage with explicit modeling of a 
parasite. The RBC membrane is partially transparent for visual clarity. 
Movie S2: Adhesive dynamics of Pf-RBCs in a microchannel. The lower wall is covered with 
ICAM-1 but the upper wall is not coated. Healthy RBCs are not shown. 

  
 

 



 
 
Figure S2: Top and side views of several snapshots of a rolling RBC with the bending 

rigidity 18101.85= ck  J . Coordinates along the wall for different snapshots are shifted in 

order to separate them for visual clarity. Blue particles are added as tracers during post-
processing to  

. 
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