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Single-region sequencing  

UCHIME is designed for experiments that perform community sequencing of a single region such as the 

16S rRNA gene or fungal ITS region, as illustrated in Figs. S1 and S2. While UCHIME may prove useful 

in other contexts, at the present time UCHIME has been validated only on 16S rRNA. Changes to the 

algorithm or parameters may give better results on other regions. 

Classification and ROC analysis 

Receiver-operator characteristic (ROC) curves (Mason and Graham, 2002) are used to summarize the 

performance of a binary classifier that computes a real-valued score and predicts a true/false result by 

testing whether the score exceeds a fixed threshold. With such a classifier, the sensitivity and error rate 

can be adjusted by changing the score threshold. To generate a ROC plot, the classifier is run on a test 

dataset where the correct classifications are known. For each unique value of the score obtained on the 

test set, the number of true positives and false positive results that would be obtained using that value as a 

threshold are recorded and displayed on a graph in which the X-axis is the percentage of true positives 

(sensitivity) and the Y-axis is the percentage of false positives (error rate). UCHIME, ChimeraSlayer and 

Perseus can all be interpreted as binary classifiers of this type. UCHIME uses the h score, ChimeraSlayer 

uses a bootstrap confidence percentage (BS), and Perseus uses a probability (P) that the query sequence is 

chimeric. The default thresholds are h=0.28, BS=90% and P=0.5 respectively. It should be noted that 

while UCHIME and ChimeraSlayer use a single score (h and BS, respectively) for classification, there are 

other parameters of these programs that also affect sensitivity and error rate. For example, both impose a 

threshold for the divergence between a chimeric alignment and the closest candidate parent (--mindiv 

option of UCHIME, -R option of ChimeraSlayer). Different ROC curves are obtained if these parameters 

are varied, and the maximum sensitivity obtained by varying the threshold while keeping all other 

parameters fixed therefore does not indicate the highest possible sensitivity achievable with these 

algorithms. 

ROC curves for UCHIME reference mode and ChimeraSlayer 

ROC plots for UCHIME and ChimeraSlayer on a representative set chosen from SIM2 are shown in Fig. 

S3. We observe that the UCHIME curve is above the ChimeraSlayer curve, indicating better accuracy for 

UCHIME. This means that for a given error rate, UCHIME has higher sensitivity, and for a given 

sensitivity, UCHIME has a lower error rate. On this particular set, the error rate of UCHIME is higher 

than ChimeraSlayer with default parameters, though the average UCHIME error rate over all SIM2 sets is 

lower than ChimeraSlayer (see Table S1). 



ROC curve for Global-X vs. Local-X 

ROC curves for UCHIME Global-X search (the default) and Local-X search on the same subset of SIM2 

presented in Fig. S4. Since Global-X is a special case of Local-X, the maximum sensitivity of Local-X is 

necessarily greater than or equal to the maximum sensitivity of Global-X. However, this ROC analysis is 

typical in that we usually find Local-X to have error higher rates at a given sensitivity when error rates are 

in a practically useful range (say, <5%). 

ROC curves for UCHIME de novo mode and Perseus 

ROC plots for UCHIME, PerseusD and Perseus are shown in Fig. S5. PerseusD is a variant of the original 

Perseus algorithm that follows UCHIME by only testing parents that have been classified as non-chimeric 

and are at least twice as abundant as the query. 

Fraction of chimeras in published datasets 

We used UCHIME and ChimeraSlayer to screen selected published 16S-based sequencing surveys 

obtained from the RDP database (Cole et al, 2009) for the presence of chimeras; results are shown in Fig. 

S6. We chose to use the same datasets previously analyzed in (Haas et al, 2011). We observe an increase 

in the number of chimeras predicted by UCHIME, consistent with the increase in sensitivity over 

ChimeraSlayer found using simulated data (see main text). 

UCHIME in practice 

Reference database methods vs. de novo methods 

Reference-based and de novo methods have different requirements and assumptions and in general are not 

directly comparable. De novo mode requires estimated amplicon sequences and abundances obtained by a 

single amplification stage, while reference database mode can operate on any type of sequence. It is not 

possible to evaluate a de novo method on the SIM2 benchmark because amplification is not simulated, so 

abundances are not available. While it is possible to use a reference-based method on the mock datasets, 

results will vary depending on which reference database is chosen. In real experiments, the reference 

database will probably be incomplete due to unknown species and unknown copies of the gene in known 

species, and tests of reference-based methods on mock datasets may therefore tend to report 

unrealistically high sensitivity. 

Reference database mode 

The reference database mode of UCHIME implicitly assumes that the database contains high-quality 

sequences close to the true biological sequences in the sample. The most common problems with a 



reference database approach are: (i) the lack of a suitable reference database, (ii) inadequate phylogenetic 

coverage of the community being studied in available databases, and (iii) poor-quality sequences in 

available databases.  

 

In practice, reference databases will usually be incomplete, and false negatives should be expected due to 

missing parents. Unknown species will of course be absent. Even if a given species has a high-quality 

reference sequence, it may have additional copies of the sequenced gene due to copies (paralogs, pseudo-

genes or segmental duplications) that are absent from the database.  Phylogenetic coverage should 

therefore be not understood not just in terms of species, but also considering of all sequences in the 

community that are homologous to the gene and match the chosen primers. 

 

A false negative will occur if the query sequence is a chimera and the database contains a sufficiently 

similar chimera. Noisy reference sequences can cause both false negatives and false positives. Noise can 

reduce the score of a valid chimeric model below the h threshold, creating a false negative. To see how 

noisy sequences can produce false positives, let X be a correct biological sequences, XL be a prefix of X, 

XR be a suffix of X and X' be a "noisy" copy of X, i.e. a copy of X with spurious substitutions and/or 

indels. Suppose there are two noisy copies of X
1
 and X

2
 in the database with asymmetric noise, such that 

X
1
 has more noise on the left and X

2
 has more noise on the right, i.e. X

1
 = X'LXR, X

2
 = XLX'R. Then a 

good copy of X may appear to be a chimera X = X
2

RX
1
L formed from parents X

1
 and X

2
. If X' and a 

chimera C = XLY'R are present in the reference database, but not Y, this can cause a false positive 

identification of Y, which may appear to be a chimera formed as Y = X'LCR. 

 

Correct sequences in the reference database may give rise to false positives if evolutionary rates in 

different regions of the gene vary in different lineages. Suppose the gene contains two regions r1 and r2, 

and there are three lineages A, B and C where r1 evolves faster in A than in B or C, and r2 evolves faster 

in B than in A or C. Now suppose the database contains A and B but not C, then C may appear to be a 

chimera formed from A and B. 

 

These considerations present conflicting goals in the design of a reference database: high phylogenetic 

coverage and high-quality sequences. Increased phylogenetic coverage generally requires incorporating 

sequences from unfinished genomes and/or from environmental sequencing studies, both of which tend to 

have higher error rates than finished genomes. This can be mitigated by using the reference database 

mode of UCHIME to check a candidate reference database against itself using self mode, as described in 

the next section.  



Self mode for database screening 

The self mode (--self option) is used when the same file is used for both query and reference. This can be 

used to screen databases for chimeras. This option causes the query sequence to be excluded as a possible 

parent, otherwise all sequences would trivially be annotated as non-chimeric due to self-matches. Hits 

reported using --self are 3-way alignments in which either one or two of the sequences are putative 

chimeras. It should not be assumed that the query sequence is the chimera in this case. Further evidence is 

required to determine which, if any, of the sequences in the 3-way alignment are PCR artifacts. For 

example, if two of the sequences are derived from high-quality, finished genomes and the third is from an 

environmental sequencing study, then the third is most likely to be an artifact and should be discarded 

from the database. Any remaining sequences found in 3-way alignments can be annotated as unresolved. 

Hits to experimental data that have an unresolved parent can be treated differently. Whether they should 

be included or discarded depends on the goals of the study, which will determine the relative importance 

of sensitivity and specificity of chimera detection. Discarding questionable hits will tend to improve 

specificity at the expense of sensitivity; including them will tend to improve sensitivity at the expense of 

specificity. 

 

It is often the case that a reference database contains full-length sequences while a shorter region is 

sequenced. Here it may be advantageous to trim the database to the shorter region. This can improve 

computational efficiency because the time required to make a dynamic programming alignment scales 

with the square of the sequence length (Durbin et al, 1998). This may also reduce the number of false 

negatives due to failures to identify the correct parent which may be caused by the word-counting 

heuristic filter (Edgar, 2010) that is used to increase search speed in both the public-domain and 

USEARCH implementations of UCHIME. 

De novo mode 

The de novo mode of UCHIME assumes (i) input sequences correspond to unique sequences in the 

amplified sample, (ii) the abundances of those sequences have been estimated with sufficient accuracy, 

(iii) errors due to amplification and sequencing can be neglected, i.e. are adequately suppressed 

preprocessing of the sequences and/or by the UCHIME scoring function, and (iv) chimeras have 

abundance less than their parents, as specified by the abundance skew parameter. At the present time, it is 

not known how well these assumptions hold in practice, except for the mock communities described in 

the main text. It is an open research problem to determine how predictive these mock communities are of 

experiments on natural communities. 

 



An advantage of the de novo approach is that we expect most or all parent sequences to be present in the 

reads, which may enable higher sensitivity to be achieved compared with a pre-existing reference 

database, which will generally be incomplete. A disadvantage of de novo mode is that an estimate of 

unique amplicon abundances is required, which may not be readily available. 

 

The process of estimating unique amplicon sequences and their abundances from a set of reads is called 

denoising. Denoising is a challenging algorithmic problem in itself, and is a rapidly moving target as 

sequencing technologies evolve. Currently available methods for denoising include PyroNoise (Quince et 

al., 2009) or AmpliconNoise (Quince et al., 2011) for 454 flowgrams, or clustering methods such as 

UCLUST (Edgar, 2010) which can be applied to any set of reads. 

Consistency check 

Where possible, we recommend that the reference database mode and de novo modes be used to check 

each other. We would consider hits found by both methods to be more reliable than hits reported only by 

one method, though this assumption has not yet been validated. While the mock communities considered 

in the main test could potentially have been used to test this idea, it turns out that they have too few false 

positives to give statistically informative results.  

 

A hit found by the reference database mode but not by de novo mode can be investigated by searching the 

estimated amplicons for the putative parent sequences. If these are present in the reads, then this is 

probably a false negative by the de novo mode, which could be due to poor estimates of amplicon 

sequences or abundances, a preceding false positive that incorrectly identified a parent as a chimera, or a 

violation of the assumption that the parents have higher abundance. If the parents are not found in the 

reads, then this could be a false positive by the reference database mode (see previous discussion of 

causes of false positives in this mode). 

 

A hit found by de novo mode but not by reference database mode may be explained by a missing parent 

sequence in the reference database, which can be verified by searching the reference database for the 

parents predicted by de novo mode. 

Sensitivity vs. specificity 

The user can trade sensitivity against specificity by adjusting the score threshold (h parameter, --minh 

command line option). It is difficult to predict the sensitivity or specificity that will be obtained for a 

given experiment with a given score threshold. When considering whether sensitivity or specificity is 

more important in a given experiment, it should be noted that while chimeric amplicons may be relatively 



rare in the amplicon pool, they may represent a large fraction of unique amplicon sequences. For 

example, in the Uneven1 mock community described in the main text, chimeras accounted for 898/992 = 

91% of the unique sequences after denoising. This can arise because there are many possible pairs of 

parent sequences, and each pair could potentially combine in many different ways to create distinct 

chimeras. While 91% may not be representative of results obtained with natural communities, we would 

still expect a substantial fraction of the unique sequences to be chimeric. This is supported by our 

observation that up to 32% of the sequences in selected RDP datasets are predicted to be chimeric by 

UCHIME (Fig. S6). 

Computational efficiency 

Community sequencing experiments often produce very large numbers of reads that can be 

computationally expensive to process. It is generally recommended that the number of sequences be 

reduced before running UCHIME in order to save computational resources. Preprocessing steps can 

include dereplication (removing identical sequences), denoising (attempting to correct sequencing error) 

and data reduction (clustering at, say, 98% identity to reduce experimentally irrelevant variation in the 

sequences), as illustrated in Fig. S2. 

 

In the case of de novo mode, preprocessing of raw reads is always required in order to estimate amplicon 

sequences and abundances. The estimated number of unique amplicons is usually much smaller than the 

number of reads, reducing the computational cost of downstream stages in an analysis pipeline, such as 

UCHIME. 

 

Computational cost can also be significantly reduced by using the USEARCH (Edgar, 2010) 

implementation of the UCHIME algorithm. The most expensive step in UCHIME is generally searching 

the reference database. The implementation of UCHIME in the usearch package 

(http://drive5/com/usearch) exploits the highly optimized USEARCH algorithm for the database search 

step, which often results in significantly improved execution times. As noted in the main text, UCHIME 

results are generally not sensitive to the details of the database search method, and the USEARCH 

implementation therefore gives very similar results to the public-domain version. 

 

In reference database mode, execution time for UCHIME scales approximately linearly with the reference 

database size and number of query sequences, and like the square of the sequence length (due to the 

dynamic programming step required for alignment). In de novo mode, time scales linearly with the 

http://drive5/com/usearch


number of query sequences, linearly with the number of non-chimeric sequences identified in the input, 

and with the square of the sequence length. 

Paired-end reads 

At the time of writing, UCHIME does not explicitly support paired-end reads. Work is in progress to add 

support for pair-end reads in a future version of the algorithm. 

 

Providing that the gap between the ends is short, a reasonable strategy would be to concatenate the two 

ends. Longer gaps are likely to result in substantially increased false negative rates. It is not recommended 

to use the common practice of representing the gap between the ends using the corresponding number of 

Ns as UCHIME will consider these to be differences between the chimera and the parents which will 

usually result in a false negative. An alternative would be to fill the gap with a consensus sequence 

obtained by a multiple alignment of the top hits to the query sequence. Note that by default, gapped 

positions are not considered differences, and simple concatenation without using Ns may therefore be 

more effective. 

Parameter tuning 

As noted in the main text, the scoring function used in UCHIME is ad hoc. It was initially developed by 

seeking a simple, closed-form analytic function that approximated the bootstrap sampling method in 

ChimeraSlayer which had previously been shown to perform well on simulated chimeras. No explicit 

strategies are employed to suppress particular types of false positive. It is possible that improved 

performance might be achieved via explicit modeling of a particular experimental protocol, e.g. of site-

specific rates in the sequenced gene, error characteristics of the chosen sequencing technology (e.g., read-

position-specific base call and homopolymer error rates), etc. The default parameters of UCHIME were 

tuned to give lower error rates and higher sensitivity than ChimeraSlayer on the SIM2 benchmark. This 

strategy was chosen in order to demonstrate that UCHIME has better performance than ChimeraSlayer on 

a published benchmark (Haas et al., 2011) on which ChimeraSlayer was shown to be superior to previous 

methods and thereby establish that UCHIME is superior to all previously published methods. We believe 

that while these parameters probably represent reasonable default settings, different parameters may be 

optimal in some applications. It should be noted that the ChimeraSlayer validation emphasized sensitivity 

to closely related parents: the divergence measure used by Haas et al. is the distance D between the 

parents A and B (D = 100% – id(A,B)), while in this work we use the identity T between the chimera Q 

and the closest parent (T = 100% – max { id(Q,A), id(Q, B) } in the case of bimeras). Generally we 

expect that T ≤ D/2 since at last half of the bimera will be identical to the closer parent. In many 

experiments, it is T rather than D that indicates whether the chimera is experimentally relevant. For 



example, if the goal is to identify OTUs by clustering at 97%, and a parent is successfully identified as the 

representative sequence for a cluster, then a chimera with T ≤ 3% should be assigned to the parent cluster 

and will not create a spurious OTU. Such a chimera could have D ≥ 6%, and conversely a chimera with 

D=6% could have arbitrarily small T and thus fall inside a 3% cluster radius. By default, the minimum T 

divergence, set by the --mindiv option of UCHIME, is set to 0.8% to allow detection of chimeras with 

small D, which is required to achieve good performance on SIM2. Chimeras with divergence T ≳ 0.8% 

may have very small numbers of diffs and hence be difficult to discriminate from false positives, 

requiring a higher h threshold to suppress errors. These considerations suggest that in a typical OTU 

clustering experiment, higher sensitivity to experimentally relevant chimeras could be achieved with 

acceptable false positive rates by increasing --mindiv and reducing h (--minh option) and/or β (--xn 

option). In addition, SIM2 has no multimeras and adds simulated noise that is designed to indicate the 

general impact of sequencing error and natural variation on performance rather than to accurately model 

errors due to a given sequencing technologies or to model natural biological variation that can cause a 

reference sequence to differ from the true parent sequence. Ideally, parameters would be re-tuned on a 

benchmark that is tailored to the details of a particular experiment, including simulated errors based on 

estimates of error rates of the chosen sequencing technology. Designing and implementing such a 

benchmark would be challenging. Further work is needed to determine whether and how parameters 

should be varied according to the details of a particular experiment. 
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Supplemental Tables 

 

Len     Evo  CS Sens  UC Sens     Diff   CS Err   UC Err     Diff 
---  ------  -------  -------  -------  -------  -------  ------- 
200       -     70.7%    72.7%    +2.8%     1.6%     1.1%    +0.5% 
200     mm1     38.6%    69.6%   +80.2%     0.3%     0.7%    -0.4% 
200     mm2     24.6%    65.9%  +168.4%     0.1%     0.6%    -0.5% 
200     mm3     16.6%    61.7%  +271.6%     0.0%     0.6%    -0.6% 
200     mm4      9.6%    57.9%  +500.8%     0.0%     0.4%    -0.4% 
200     mm5      5.9%    53.1%  +797.3%     0.0%     0.3%    -0.3% 
200    ind1     60.4%    66.6%   +10.4%     1.4%     0.6%    +0.8% 
200    ind2     52.2%    59.9%   +14.8%     0.8%     0.6%    +0.3% 
200    ind3     40.8%    51.3%   +25.7%     0.8%     0.4%    +0.5% 
200    ind4     30.3%    41.1%   +35.6%     0.4%     0.3%    +0.1% 
200    ind5     20.7%    29.6%   +43.0%     0.4%     0.3%    +0.2% 
 
300       -     77.5%    81.3%    +4.9%     1.9%     1.9%    +0.0% 
300     mm1     55.5%    78.5%   +41.4%     0.4%     1.4%    -1.0% 
300     mm2     45.0%    74.8%   +66.1%     0.2%     1.0%    -0.9% 
300     mm3     37.1%    71.8%   +93.5%     0.1%     0.8%    -0.7% 
300     mm4     28.1%    67.8%  +141.1%     0.0%     0.5%    -0.5% 
300     mm5     20.5%    64.4%  +213.8%     0.0%     0.4%    -0.4% 
300    ind1     66.6%    76.4%   +14.8%     1.9%     1.3%    +0.6% 
300    ind2     62.1%    70.3%   +13.2%     1.4%     0.9%    +0.5% 
300    ind3     57.2%    64.0%   +11.9%     1.2%     0.6%    +0.7% 
300    ind4     49.4%    56.1%   +13.7%     0.9%     0.3%    +0.6% 
300    ind5     38.8%    46.6%   +20.4%     0.7%     0.4%    +0.3% 
 
 FL       -     90.3%    90.8%    +0.5%     1.0%     0.3%    +0.7% 
 FL     mm1     87.4%    90.4%    +3.3%     0.4%     0.2%    +0.3% 
 FL     mm2     83.9%    89.9%    +7.2%     0.4%     0.1%    +0.3% 
 FL     mm3     82.2%    89.3%    +8.7%     0.2%     0.0%    +0.2% 
 FL     mm4     79.8%    87.2%    +9.2%     0.2%     0.0%    +0.1% 
 FL     mm5     77.9%    83.8%    +7.6%     0.1%     0.0%    +0.1% 
 FL    ind1     83.6%    94.3%   +12.7%     0.9%     0.3%    +0.6% 
 FL    ind2     81.4%    90.3%   +10.9%     0.8%     0.1%    +0.7% 
 FL    ind3     79.5%    84.6%    +6.4%     0.7%     0.0%    +0.7% 
 FL    ind4     75.4%    77.2%    +2.3%     0.5%     0.0%    +0.5% 
 FL    ind5     72.5%    70.1%    -3.3%     0.4%     0.0%    +0.4% 
------------------------------------------------------------------- 
Total           54.6%    70.6%    +129%    0.62%    0.49%   +0.13% 
 

 

Table S1. UCHIME and ChimeraSlayer results on the SIM2 benchmark 

The SIM2 benchmark was used to train both UCHIME and ChimeraSlayer. Columns are: Len=sequence 

length, FL=full-length 16S genes; Evo=added mutations, subn means n% substitutions, indn means n% 

indels were added; CSSens=ChimeraSlayer sensitivity; UCSens=UCHIME sensitivity; UC/CS = 100% × 

UCSens/CSSens; CSErr=ChimeraSlayer error rate; UCErr=UCHIME error rate; CS-UC= CSErr – 

UCErr. The total average error rate of UCHIME is slightly lower than ChimeraSlayer (0.49% vs. 0.62%), 

while the average sensitivity is 16% higher (70.6% vs. 54.6%), with higher sensitivity on all individual 

sets except one: full-length sequences 5% added indels.  



 

             _______M2______   _______M3______   _______M4______   ______All_M____ 
 Div.  Evo       CS       UC       CS       UC       CS       UC       CS       UC 
-----  ---   ------  -------   ------  -------   ------  -------   ------  ------- 
97-99    -     64.0     89.0     26.0     55.0     12.0     34.0     34.0     59.3 
97-99   i1     59.0     77.0     21.0     47.0     11.0     29.0     30.3     51.0 
97-99   i2     51.0     57.0     24.0     30.0     10.0     24.0     28.3     37.0 
97-99   i3     37.0     45.0     21.0     32.0      9.0     14.0     22.3     30.3 
97-99   i4     35.0     23.0     15.0     16.0      8.0      7.0     19.3     15.3 
97-99   i5     25.0     21.0     12.0     15.0      7.0      6.0     14.7     14.0 
97-99   m1     27.0     83.0     10.0     52.0      8.0     31.0     15.0     55.3 
97-99   m2     13.0     73.0      9.0     48.0      3.0     23.0      8.3     48.0 
97-99   m3      6.0     66.0      5.0     38.0      1.0     21.0      4.0     41.7 
97-99   m4      7.0     53.0      2.0     27.0      3.0     18.0      4.0     32.7 
97-99   m5      1.0     42.0      1.0     20.0      0.0     15.0      0.7     25.7 
 
95-97    -     91.0    100.0     58.0     79.0     29.0     62.0     59.3     80.3 
95-97   i1     88.0    100.0     53.0     71.0     23.0     50.0     54.7     73.7 
95-97   i2     78.0     94.0     46.0     57.0     23.0     44.0     49.0     65.0 
95-97   i3     77.0     79.0     38.0     50.0     21.0     36.0     45.3     55.0 
95-97   i4     56.0     64.0     35.0     40.0     18.0     26.0     36.3     43.3 
95-97   i5     46.0     54.0     26.0     35.0     16.0     19.0     29.3     36.0 
95-97   m1     59.0     99.0     28.0     74.0     17.0     58.0     34.7     77.0 
95-97   m2     37.0     98.0     14.0     70.0      5.0     49.0     18.7     72.3 
95-97   m3     19.0     92.0     10.0     63.0      5.0     40.0     11.3     65.0 
95-97   m4     17.0     90.0      3.0     56.0      1.0     40.0      7.0     62.0 
95-97   m5      8.0     84.0      0.0     51.0      0.0     35.0      2.7     56.7 
 
90-95    -     98.0    100.0     88.0     93.0     67.0     88.0     84.3     93.7 
90-95   i1     93.0     97.0     85.0     87.0     60.0     86.0     79.3     90.0 
90-95   i2     90.0     97.0     78.0     82.0     56.0     73.0     74.7     84.0 
90-95   i3     87.0     96.0     67.0     74.0     47.0     69.0     67.0     79.7 
90-95   i4     74.0     92.0     52.0     70.0     43.0     58.0     56.3     73.3 
90-95   i5     58.0     81.0     37.0     62.0     26.0     49.0     40.3     64.0 
90-95   m1     93.0    100.0     72.0     89.0     49.0     86.0     71.3     91.7 
90-95   m2     74.0    100.0     60.0     87.0     45.0     77.0     59.7     88.0 
90-95   m3     72.0    100.0     38.0     86.0     27.0     74.0     45.7     86.7 
90-95   m4     45.0     98.0     32.0     80.0     23.0     73.0     33.3     83.7 
90-95   m5     36.0     96.0     31.0     79.0     11.0     73.0     26.0     82.7 
 
=====  ===   ======  =======   ======  =======   ======  =======   ======  ======= 
90-99    -     84.3     96.3     57.3     75.7     36.0     61.3     59.2     77.8 
90-99   i1     80.0     91.3     53.0     68.3     31.3     55.0     54.8     71.6 
90-99   i2     73.0     82.7     49.3     56.3     29.7     47.0     50.7     62.0 
90-99   i3     67.0     73.3     42.0     52.0     25.7     39.7     44.9     55.0 
90-99   i4     55.0     59.7     34.0     42.0     23.0     30.3     37.3     44.0 
90-99   i5     43.0     52.0     25.0     37.3     16.3     24.7     28.1     38.0 
90-99   m1     59.7     94.0     36.7     71.7     24.7     58.3     40.3     74.7 
90-99   m2     41.3     90.3     27.7     68.3     17.7     49.7     28.9     69.4 
90-99   m3     32.3     86.0     17.7     62.3     11.0     45.0     20.3     64.4 
90-99   m4     23.0     80.3     12.3     54.3      9.0     43.7     14.8     59.4 
90-99   m5     15.0     74.0     10.7     50.0      3.7     41.0      9.8     55.0 

 

Table S2. UCHIME and ChimeraSlayer results on the SIMM dataset. 

The SIMM dataset contains 900 simulated m-meras, divided into three divergence bins (97-99%, 95-97% 

and 90-95%) and by m (m=2, 3 and 4) for a total of nine bins, each with 100 simulated m-meras. Ten 



modified versions of this dataset were created with from 1% to 5% substitutions and indels, respectively. 

The above table shows the sensitivity of UCHIME (UC) and ChimeraSlayer (CS) on this data. Columns 

are: Div=divergence range, Evo=in means n% indels were added, mn means n% substitutions; CSm is the 

number of m-meras found by ChimeraSlayer,; UCm is the number of m-meras found by UCHIME; CSAll 

and UCAll are the total numbers found, and CSPct and UCPct are the totals found as a percentage. We 

observe that UCHIME has higher sensitivity in all cases, with increasing improvements in more 

challenging sets having larger m, smaller divergence and higher levels of noise. 
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Figure S1. Schematic summary of a typical 16S environmental sequencing experiment. 

Primers are used to extract a short segment of the 16S gene in an environmental sample. Primers are 

chosen to match highly conserved regions in the gene. The segment between the primers is short enough 

that the segment can be sequenced with a single read in a current “next-generation” sequencer, and 

includes variable regions that enable taxonomic identification. Chimeras form in the PCR stage used to 

amplify segments prior to sequencing. 

 

  



 

Figure S2. Schematic summary of a typical 16S sequence analysis pipeline with chimera filtering. 

Prior to chimera identification, raw reads are usually quality-filtered, dereplicated and denoised. Input to 

UCHIME de novo mode is a set of estimated amplicon sequences and abundances generated by the 

denoising stage. In reference database mode, input sequences could be chimera-filtered at any stage in the 

pipeline and abundances are not needed or used, though in practice chimera filtering would usually be 

done after denoising as the number of sequences is usually greatly reduced and the computational 

resources required to run UCHIME are correspondingly less. 

  



 

 

 

Figure S3. ROC curves for UCHIME and ChimeraSlayer on length 300 sets in SIM2 with 1% 

substitutions. 

ROC curves obtained on a representative SIM2 set. Horizontal axis is error rate (% false positives), 

vertical axis is sensitivity (% true positives). Open circles indicate the default score threshold (h=0.5 for 

UCHIME, 90% bootstrap confidence for ChimeraSlayer). We observe that the UCHIME curve is 

consistently above the ChimeraSlayer curve, indicating better accuracy for UCHIME. In this case, the 

error rate of UCHIME is higher than ChimeraSlayer with default parameters, though the average error 

rate over all of SIM2 is lower for UCHIME.  

  



 

Figure S4. ROC curves for UCHIME Global-X and Local-X on length 300 sets in SIM2 with 1% 

substitutions. 

ROC curves for UCHIME Global-X search (the default) and Local-X search on the same subset of SIM2 

presented in Fig. S2. The upper blue curve for UCHIME is thus the same in both figures, with the error 

range expanded here to show the intersection between the Global-X and Local-X curves. Since Global-X 

is a special case of Local-X, the maximum sensitivity of Local-X is necessarily greater than or equal to 

the maximum sensitivity of Global-X. However, this ROC curve is typical in that we usually find Local-

X to have error higher rates at a given sensitivity when error rates are in a practically useful range (say, 

<5%).  

 

  



 

Figure S5. ROC curves for UCHIME, PerseusD and Perseus on all MOCK datasets. 

These curves were obtained using UCHIME, Perseus and PerseusD on all MOCK datasets, some of 

which were used for training Perseus (UCHIME was trained on SIM2). Default parameters give (TP%, 

FP%): UCHIME 90.7%, 0.2%; PerseusD 90.5%, 0.6% and Perseus 86.7%, 1.8%. These results show that 

in the region with ≤ 1% errors, UCHIME and PerseusD have similar performance, while PerseusD is 

clearly better than Perseus. 

  



 

 

Figure S6. Fraction of chimeric sequences reported by UCHIME and ChimeraSlayer in selected 

datasets from the RDP database. 

Previously published nearly full-length 16S sequence data sets were obtained from the Ribosomal 

Database Project website (Cole et al, 2009) and examined for chimeras using UCHIME and 

ChimeraSlayer, using the same data previously analyzed by ChimeraSlayer and WigeoN as reported in 

(Haas et al. 2009), supplemental figure SS1. An increase in the number of predicted chimeras is observed, 

consistent with the improved sensitivity of UCHIME on simulated data (see main text). 

 


