Inverse Electron Demand Diels–Alder Reactions of 1,2,3-Triazines: Pronounced Substituent Effects on Reactivity and Cycloaddition Scope

Erin D. Anderson and Dale L. Boger*

Department of Chemistry and the Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, California 92037

1.2.3-Triazine (1).^{S1,S2} Hydroxylamine-O-sulfonic acid (43.3 g, 383 mmol) was added to a stirring solution of pyrazole (5, 8.68 g, 128 mmol) in 3.7 M NaOH (207 mL). The internal reaction temperature was monitored and kept below 60 °C. After 30 min, the reaction mixture was extracted with CH_2Cl_2 (3 × 70 mL). The combined organic layers were washed with saturated aqueous NaCl (75 mL), dried (Na₂SO₄) and concentrated on a rotary evaporator. The concentrated product was taken up in CH_2Cl_2 (352 mL). H_2O (132 mL) was added and the reaction mixture was cooled to 0 °C. NaIO₄ (54.5 g, 255 mmol, 2.0 equiv) was added and the reaction mixture was stirred at 0 °C for 12 h. After 12 h. the reaction mixture was allowed to warm to room temperature. The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 50 mL). The combined organic layers were washed with saturated aqueous NaCl (100 mL), dried (Na₂SO₄), and concentrated on a rotary evaporator. Recrystallization (ether) provided 1 (2.54 g, 25%) as a light brown or tan solid: mp 66 °C (ether) (literature 70 °C)^{S2}; ¹H NMR (CDCl₃, 400 MHz) δ 9.08 (d, J = 5.2 Hz, 2H), 7.44 (t, J = 5.6 Hz, 1H); ¹³C NMR (CDCl₃, 400 MHz) & 149.8, 117.8; IR v_{max} 3107, 3048, 1542, 1409, 1333, 979, 934, 817, 765, 651 cm⁻¹; ESI-TOF HRMS m/z 82.0400 ([M + H]⁺, C₃H₃N₃ + H⁺ requires 82.0400).

5-Bromo-1,2,3-triazine (4).^{S3} Hydroxylamine-*O*-sulfonic acid (2.54 g, 22.5 mmol) was added to a stirring solution of 4-bromopyrazole (7, 1.10 g, 7.48 mmol) in 3.7 M NaOH (12 mL). The internal reaction temperature was monitored and kept below 60 °C. After 30 min, the reaction mixture was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layers were washed with saturated aqueous NaCl (25 mL), dried (Na₂SO₄) and concentrated on a rotary evaporator. The concentrated product was taken up in CH₂Cl₂ (20 mL). H₂O (7.6 mL) was added and the reaction mixture was cooled to 0 °C. NaIO₄ (2.94 g, 13.7 mmol, 2.0 equiv) was added and the reaction mixture was stirred at 0 °C for 12 h. After 12 h, the reaction mixture was allowed to warm to room temperature. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were washed with saturate and the aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were washed with saturated and the saturated aqueous NaCl (25 mL) of CH₂Cl₂ (3 × 10 mL). The combined organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were washed with saturated aqueous NaCl (25 mL),

dried (Na₂SO₄), and concentrated on a rotary evaporator. Flash chromatography (SiO₂, 20% EtOAc/hexanes) provided **4** (1.06 g, 89%) as a light brown solid: mp 112 °C (EtOAc) (violent decomposition) (literature 125–126 °C)^{S3}; ¹H NMR (CDCl₃, 400 MHz) δ 9.19 (s, 2H); ¹³C NMR (CDCl₃, 400 MHz) δ 151.8, 123.7; IR v_{max} 3062, 2998, 1504, 1350, 1321, 1142, 1005, 952, 934, 853, 796, 759, 733, 657, 602, 431 cm⁻¹; ESI-TOF HRMS *m/z* 159.9498 ([M + H]⁺, C₃H₂BrN₃ + H⁺ requires 159.9505).

4-Bromo-1-trityl-1*H***-pyrazole (8)**. *t*-BuOK (1.38 g, 12.3 mmol, 1.2 equiv) and TrtCl (3.15 g, 11.3, mmol, 1.1 equiv) were added sequentially to a stirring solution of 4-bromopyrazole, (7, 1.51 g, 10.3 mmol) in DMF (14.4 mL) under Ar at 0 °C. The reaction mixture was warmed to room temperature and was stirred for 1 h. The reaction mixture was poured into EtOAc/H₂O (50 mL/50 mL). The aqueous layer was extracted with EtOAc (50 mL), and the combined organic layers were washed with saturated aqueous NaCl, dried (Na₂SO₄), and concentrated on a rotary evaporator. Recrystallization (THF/hexanes) provided **9** (3.55 g, 89%) as a white crystalline solid: mp 186–188 °C (hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 7.62 (d, *J* = 0.8 Hz, 1H), 7.39 (d, *J* = 0.8 Hz, 1H), 7.32 (m, 9H), 7.13 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 142.6, 140.2, 132.3, 130.1, 127.9, 127.8, 92.4, 79.34; IR ν_{max} 1443, 952, 745, 696, 634, 606 cm⁻¹; ESI-TOF HRMS *m/z* 411.0471 ([M + Na]⁺, C₂₂H₁₇BrN₂ + Na⁺ requires 411.0467).

4-Phenyl-1-trityl-1*H***-pyrazole (10)**. PhB(OH)₂ (0.477 g, 3.91 mmol, 1.1 equiv), Pd(PPh₃)₄ (0.416 g, 0.36 mmol, 0.1 equiv), and 5 M aqueous K₂CO₃ (1.42 mL, 7.12 mmol, 2.0 equiv) were added sequentially to a stirring solution of **9** (1.39 g, 3.56 mmol) in DME/H₂O (18 mL/8 mL) under Ar. The reaction mixture was warmed at 85 °C and stirred for 12 h. After 12 h, the reaction mixture was concentrated on a rotary evaporator. The residue was taken up in EtOAc (50 mL), washed with H₂O (15 mL) and saturated aqueous NaCl (15 mL), dried (Na₂SO₄) and concentrated on a rotary evaporator. Recrystallization (THF/hexanes) provided **10** (1.30 g, 94%) as a white crystalline solid: mp 155–156 °C (hexanes) (literature 149 °C)^{S9}: ¹H NMR (acetone-*d*₆, 400 MHz) δ 8.80 (s, 1H), 7.67 (s, 1H), 7.47 (d, *J* = 7.2 Hz, 2H), 7.36 (m, 11H), 7.25 (m, 6H); ¹³C NMR (acetone-*d*₆, 400 MHz) δ 143.1, 137.2, 132.6, 130.2, 129.1, 128.8, 127.7, 126.3, 125.5, 121.6, 78.8; IR *v*_{max} 1487, 1443, 1358, 1157, 902, 872, 747, 692, 668, 640, 623, 501 cm⁻¹; ESI-TOF HRMS *m/z* 409.1676 ([M + Na]⁺, C₂₈H₂₂N₂ + Na⁺ requires 409.1675).

4-Phenyl-1*H***-pyrazole (11)**. Compound **10** (293 mg, 0.76 mmol) was stirred in 1.25 M HCl in MeOH:CH₂Cl₂ (4.4 mL: 3.7 mL) at 40 °C for 1 h. After 1 h, toluene (2 mL) was added and the reaction mixture was concentrated. Recrystallization (THF/hexanes) provided **11** (103 mg, 94%) as a white crystalline solid: mp 228–230 °C (hexanes) (literature 234–235 °C)^{S10}; ¹H NMR (acetone-*d*₆, 400 MHz) δ 8.06 (s, 2H), 7.62 (m, 2H), 7.36 (m, 2H), 7.21 (m, 1H); ¹³C NMR (acetone-*d*₆, 400 MHz) δ 132.5, 130.6, 128.7, 125.9, 125.0, 121.2; IR *v*_{max} 2660, 869, 819, 755, 688, 502 cm⁻¹; ESI-TOF HRMS *m/z* 145.0754 ([M + H]⁺, C₉H₈N₂ + H⁺ requires 145.0760).

5-Phenyl-1,2,3-triazine (2).⁸⁴ Hydroxylamine-O-sulfonic acid (587 mg, 5.19 mmol, 3.0 equiv) in H₂O (1.6 mL) was added dropwise to a stirring solution of **11** (251 mg, 1.73 mmol) in 3.7 M NaOH (2.8 mL) and EtOH (13 mL). The internal reaction temperature was monitored and kept below 60 °C. The reaction mixture was stirred for 30 min at room temperature. After 30 min, the reaction mixture was extracted with CH_2Cl_2 (2 × 10 mL). The combined organic layers were washed with saturated aqueous NaCl (10 mL), dried (Na₂SO₄) and concentrated on a rotary evaporator. The concentrated product was taken up in CH₂Cl₂ (5.1 mL). H₂O (1.8 mL) was added and the reaction mixture was cooled to 0 °C. NaIO₄ (740 mg, 3.46 mmol, 2.0 equiv) was added and the reaction mixture was stirred at 0 °C for 12 h. After 12 h, the reaction mixture was allowed to warm to room temperature and extracted with CH_2Cl_2 (2 × 10 mL). The combined organic layers were washed with saturated aqueous NaCl (10 mL), dried (Na₂SO₄), and concentrated on a rotary evaporator. Flash chromatography (SiO₂, 50% EtOAc/hexanes) provided 2 (247 mg, 91%) as a tan solid: mp 139-140 °C (ether) (literature 139-141 °C)^{S4a}; ¹H NMR (CDCl₃, 400 MHz) δ 9.31 (s, 2H), 7.73 (m, 2H), 7.60 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) & 147.3, 131.3, 130.9, 130.0, 129.6, 127.2; IR v_{max} 3049, 1562, 1514, 1494, 1450, 1365, 1353, 1319, 1304, 1001, 985, 944, 919, 777, 697, 664, 628, 551, 480 cm⁻¹; ESI-TOF HRMS m/z 158.0716 ([M + H]⁺, C₉H₇N₃ + H⁺ requires 158.0713).

This procedure was carried out on scales up to 3.5 g with yields from 82-91%.

Methyl 1-Trityl-1*H***-pyrazole-4-carboxylate (13).** A solution of 1.7 M *t*-BuLi in pentane (4.4 mL, 6.6 mmol, 2.2 equiv) was added to a stirring solution of **9** (1.17 g, 3.02 mmol) in THF (30 mL) under Ar at -78 °C. The resulting bright orange solution was immediately quenched with methyl chloroformate (0.627 g, 6.64 mmol, 2.2 equiv). The reaction mixture was allowed to warm to room temperature, diluted with EtOAc (60 mL), washed with saturated aqueous NaCl (25 mL), dried (Na₂SO₄), and concentrated on a rotary evaporator. Recrystallization (THF/hexanes) provided **13** (0.525 g, 47%) as a white solid: mp 164–165 °C (hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 8.05 (d, *J* = 0.8 Hz, 1H), 7.93 (d, *J* = 0.4 Hz, 1H), 7.32 (m, 9H), 7.13 (m, 6H), 3.80 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 163.6, 142.4, 135.7, 130.1, 128.0, 127.9, 113.5, 79.5, 51.4; IR *v*_{max} 1721, 1552, 1442, 1244, 1212, 1153, 1016, 872, 761, 745, 696, 670, 635 cm⁻¹; ESI-TOF HRMS *m/z* 391.1413 ([M + Na]⁺, C₂₄H₂₀N₂O₂ + Na⁺ requires 391.1417).

Methyl 1*H*-Pyrazole-4-carboxylate (14). Compound 13 (1.34 g, 3.64 mmol) was stirred in 1.25 M HCl in MeOH:CH₂Cl₂ (21 mL:18 mL) at 40 °C for 3 h. After 3 h, toluene (10 mL) was added and the reaction mixture was concentrated. Trituration with toluene provided 14 (417 mg, 91%) as a white crystalline solid: mp 128–130 °C (toluene) (literature 136–137 °C)^{S11}; ¹H NMR (CDCl₃, 400 MHz) δ 8.08 (s, 2H), 3.85 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 163.5, 136.5, 114.8, 51.5; IR v_{max} 2837, 1707, 1527, 1436, 1399, 1326, 1241, 1195, 1153, 999, 946, 885, 849, 796, 762, 604, 502 cm⁻¹; ESI-TOF HRMS *m*/*z* 127.0505 ([M + H]⁺, C₅H₆N₂O₂ + H⁺ requires 127.0502). This compound is also now commercially available.

Methyl 1-Amino-1*H***-pyrazole-4-carboxylate (15).** NaH (60% dispersion in mineral oil, 55.2 mg, 1.38 mmol, 1.2 equiv) was added to a stirring solution of **14** (145 mg, 1.15 mmol) in DMF (2.7 mL). The resulting grey suspension was stirred at room temperature for 45 min. After 45 min, NH₂Cl^{S6} (ca. 0.15 M in ether, 10.7 mL) was added to the reaction mixture while maintaining an Ar sparge. The reaction mixture was stirred at room temperature for 30 min. After 30 min, the reaction was quenched with the addition of saturated aqueous Na₂S₂O₄ (3 mL), diluted with water (25 mL), and extracted with ether (5 × 10 mL). The combined organic layers were dried (Na₂SO₄) and concentrated on a rotary evaporator. Flash chromatography (SiO₂, ether) provided **15** (151 mg, 93%) as a white solid: ¹H NMR (CDCl₃, 400 MHz) δ 7.89 (s, 1H), 7.80 (s, 1H), 5.33 (bs, 2H), 3.82 (s, 3H); ESI-TOF HRMS *m*/*z* 142.0615 ([M + H]⁺, C₅H₇N₃O₂ + H⁺ requires 142.0611).

Amination with *O*-(4-nitrobenzoyl)hydroxylamine: A solution of KOBu^t (174 mg, 1.55 mmol, 1.1 equiv) in NMP (1.7 mL) was added to a stirring solution of **14** (177 mg, 1.41 mmol) in NMP (18.7 mL). The resulting light pink solution was stirred at room temperature for 20 min. After 20 min, a solution of *O*-(4-nitrobenzoyl)hydroxylamine (182 mg, 1.62 mmol, 1.15 equiv) in NMP (11.0 mL) was added to the reaction mixture. The reaction mixture was stirred at room temperature for 2 h. After 2 h, the reaction mixture was treated with saturated aqueous NaCl (7%, 60 mL) and ethyl acetate (60 mL). The organic layer was separated and the aqueous layer was extracted with ethyl acetate (60 mL). The combined organic layers were washed with aqueous sodium bicarbonate (5%, 45 mL), H₂O (45 mL), dried (Na₂SO₄), and concentrated on a rotary evaporator. Flash chromatography (SiO₂, ether) provided **15** (149 mg, 75%) as a white solid.

Methyl 1,2,3-Triazine-5-carboxylate (3).^{S5} Compound **15** (335 mg, 2.37 mmol) was taken up in CH₂Cl₂ (50 mL) and cooled to 0 °C. NaIO₄ (1.02 g, 4.75 mmol, 2.0 equiv) in H₂O (50 mL) was cooled to 0 °C and added to the stirring solution of **15** at 0 °C. The reaction mixture was warmed to room temperature and stirred for 2 h. After 2 h, the organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (2 × 25 mL). The combined organic layers were washed with saturated aqueous NaCl (30 mL), dried (Na₂SO₄) and concentrated on a rotary evaporator. Compound **16** was extremely sensitive to moisture and was handled only in oven-dried glassware under an atmosphere of Ar. Flash chromatography (oven-dried SiO₂, ether) provided **3** (272 mg, 81%) as a yellow oil: ¹H NMR (acetone-*d*₆, 400 MHz) δ 9.53 (s, 2H), 4.05 (s, 3H); ¹³C NMR (acetone-*d*₆, 125 MHz) δ 178.7, 149.8, 130.1, 54.8; IR *v*_{max} 2953, 1712, 1626, 1562, 1435, 1396, 1366, 1293, 1232, 1197, 1143, 1030, 1011, 963, 916, 839, 802, 768 cm⁻¹; ESI-TOF HRMS *m*/*z* 140.0454 ([M + H]⁺, C₅H₅N₃O₂ + H⁺ requires 140.0454).

2-Diethylamino-3-methylpyridine (17). Compound **16a**^{S7} (100 mg, 0.90 mmol) was added to a stirring solution of **1** (48.7 mg, 0.60 mmol) in CHCl₃ (0.6 mL) at 25 °C. The reaction mixture was stirred at 60 °C for 3 h, concentrated and purified by column chromatography (SiO₂, 30% EtOAc/hexanes) to afford **17** (63.4 mg, 64%) as a yellow oil: ¹H NMR (CDCl₃, 400 MHz) δ 8.15 (dd, J = 4.8, 1.2 Hz, 1H), 7.38 (ddd, J = 7.3, 1.9, 0.7 Hz, 1H), 6.80 (dd, J = 7.3, 4.8 Hz, 1H), 3.19 (q, J = 6.8 Hz, 4H), 2.25 (s, 3H), 1.07 (t, J = 6.8 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 161.5, 144.9, 139.0, 125.9, 117.0, 45.0, 18.8, 13.1; IR v_{max} 2968, 1586, 1469, 1448, 1422, 1376, 1354, 1254, 1193, 1102, 779 cm⁻¹; ESI-TOF HRMS *m/z* 165.1392 ([M + H]⁺, C₁₀H₁₆N₂ + H⁺ requires 165.1386).

2-Diethylamino-3-methyl-5-phenylpyridine (18). Compound **16a** (35.6 mg, 0.32 mmol) was added to a stirring solution of **2** (33.2 mg, 0.21 mmol) in CHCl₃ (0.2 mL) at 25 °C. The reaction mixture was stirred at room temperature for 3 h, concentrated, and purified by flash chromatography (SiO₂, 30% EtOAc/hexanes) to provide **18** (35.0 mg, 69%) as a yellow oil: ¹H NMR (CDCl₃, 500 MHz) δ 8.41 (d, *J* = 2.0 Hz, 1H), 7.61 (m, 1H), 7.55 (m, 2H), 7.33 (m, 1H), 3.27 (q, *J* = 6.8 Hz, 4H), 2.33 (s, 3H), 1.13 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 160.7, 143.0, 138.3, 137.8, 129.8, 128.8, 127.0, 125.3, 45.0, 19.0, 13.2; IR *v*_{max} 2967, 1600, 1470, 1427, 1376, 1256, 1126, 898, 756, 694 cm⁻¹; ESI-TOF HRMS *m/z* 241.1701 ([M + H]⁺, C₁₆H₂₀N₂ + H⁺ requires 241.1699).

Methyl 6-(Diethylamino)-5-methylnicotinate (19). Compound **16a** (17.8 mg, 0.16 mmol) was added to a stirring solution of **3** (15.0 mg, 0.11 mmol) in CHCl₃ (0.1 mL). The reaction mixture was stirred for 5 min at room temperature, concentrated, and purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **19** (17.2 mg, 72%) as a yellow oil: ¹H NMR (CDCl₃, 500 MHz) δ 8.72 (d, *J* = 2.0 Hz, 1H), 7.89 (dd, *J* = 2.2, 0.4 Hz, 1H), 3.89 (s, 3H), 3.41 (q, *J* = 6.8 Hz, 4H), 2.31 (s, 3H), 1.17 (t, *J* = 6.8 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 166.6, 163.4, 147.3, 140.3, 121.1, 117.2, 51.7, 44.3, 20.1, 13.4; IR *v*_{max} 2360, 2340, 1717, 1602, 1291, 1265, 420 cm⁻¹; ESI-TOF HRMS *m/z* 223.1447 ([M + H]⁺, C₁₂H₁₈N₂O₂ + H⁺ requires 223.1441).

5-Bromo-2-Diethylamino-3-methylpyridine (20). Compound **16a** (32.2 mg, 0.29 mmol) was added to a stirring solution of **4** (30.8 mg, 0.19 mmol) in CHCl₃ (0.2 mL). The reaction mixture was stirred for 15 min at room temperature, concentrated, and purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **20** (43.4 mg, 93%) as a yellow oil: ¹H NMR (CDCl₃, 500 MHz) δ 8.70 (s, 1H), 7.87 (s, 1H), 3.87 (s, 3H), 3.38 (q, *J* = 7.2 Hz, 4H), 2.28 (s, 3H), 1.14 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 160.2, 145.5, 141.3, 127.5, 112.1, 45.0, 18.8, 13.11; IR *v*_{max} 2970, 1469, 1424, 1378, 1355, 1258, 1133 cm⁻¹; ESI-TOF HRMS *m/z* 243.0492 ([M + H]⁺, C-¹⁰H₁₅N₂Br + H⁺ requires 243.0491).

2-Dibenzylamino-3-methylpyridine (21). Compound **16b** (221 mg, 0.94 mmol) was added to a stirring solution of **1** (50.9 mg, 0.63 mmol) in CHCl₃ (0.6 mL) at 25 °C. The reaction mixture was stirred at 60 °C for 12 h, concentrated and purified by column chromatography (SiO₂, 40% EtOAc/hexanes) to afford **21** (72.5 mg, 40%) as a yellow oil: ¹H NMR (CDCl₃, 400 MHz) δ 8.20 (ddd, J = 4.8, 1.9, 0.5 Hz, 1H), 7.46 (ddd, J = 7.3, 1.9, 0.8 Hz, 1H), 7.34–7.24 (m, 10H), 6.88 (dd, J = 7.3, 4.8 Hz, 1H), 4.40 (s, 4H), 2.45 (s, 3H); ¹³C NMR (CDCl₃, 400 MHz) δ 161.3, 145.2, 139.4, 139.0, 128.2, 128.1, 126.7, 125.6, 118.0, 54.5, 18.7; IR v_{max} 1584, 1446, 1418, 1358, 1220, 784, 736, 694 cm⁻¹; ESI-TOF HRMS *m/z* 289.1693 ([M + H]⁺, C₂₀H₂₀N₂ + H⁺ requires 289.1699).

2-Dibenzylamino-3-methyl-5-phenylpyridine (22). Compound **16b** (127 mg, 0.54 mmol) was added to a stirring solution of **2** (56.2 mg, 0.36 mmol) in CHCl₃ (0.4 mL). The reaction mixture was stirred at 60 °C for 3 h, concentrated, and purified by flash chromatography (SiO₂, 40% EtOAc/hexanes) to provide **22** (86.5 mg, 66%) as a light yellow solid: mp 56–60 °C (EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 8.45 (d, *J* = 2.5 Hz, 1H), 7.69 (dd, *J* = 2.5, 1.0 Hz, 1H), 7.59 (m, 2H), 7.47 (m, 2H), 7.39–7.32 (m, 9H), 7.27 (m, 2H), 4.46 (s, 4H), 2.52 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 160.5, 143.3, 139.0, 138.1, 138.0, 130.7, 128.8, 128.21, 128.19, 127.2, 126.8, 126.5, 125.0, 54.4, 18.9; IR *v*_{max} 1450, 1358, 1214, 903, 739, 694, 519 cm⁻¹; ESI-TOF HRMS *m/z* 365.2002 ([M + H]⁺ C-₂₆H₂₄N₂ + H⁺ requires 365.2012).

Methyl 6-(Dibenzylamino)-5-methylnicotinate (23). Compound **16b** (37.7 mg, 0.16 mmol) was added to a stirring solution of **3** (15.2 mg, 0.11 mmol) in CHCl₃ (0.1 mL). The reaction mixture was stirred for 15 min at room temperature, concentrated, and purified by flash chromatography (SiO₂, 30% EtOAc/hexanes) to provide **23** (31.6 mg, 83%) as a dark yellow oil: ¹H NMR (CDCl₃, 500 MHz) δ 8.76 (d, *J* = 2.5 Hz, 1H), 7.99 (s, 1H), 7.30 (m, 10H), 4.59 (s, 4H), 3.92 (s, 3H), 2.44 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 166.4, 163.5, 147.5, 140.9, 138.4, 128.4, 127.9, 127.0, 121.4, 118.5, 53.3, 51.8, 19.8; IR *v*_{max} 1716, 1600, 1430, 1297, 1227, 698 cm⁻¹; ESI-TOF HRMS *m/z* 347.1758 ([M + H]⁺, C₂₂H₂₂N₂O₂ + H⁺ requires 347.1754).

2-Dibenzylamino-5-bromo-3-methylpyridine (24). Compound **16b** (49.0 mg, 0.21 mmol) was added to a stirring solution of **4** (22.1 mg, 0.14 mmol) in CHCl₃ (0.6 mL). The reaction mixture was stirred for 15 min at room temperature, concentrated, and

purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **24** (13.1 mg, 25%) as a yellow oil: ¹H NMR (CDCl₃, 400 MHz) δ 8.13 (s, 1H), 7.50 (s, 1H), 7.24 (m, 10H), 4.29 (s, 4H), 2.35 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 160.0, 145.9, 141.6, 138.6, 128.25, 128.18, 127.4, 126.9, 113.2, 54.5, 18.7; IR ν_{max} 2361, 2340, 1453, 1421, 1360, 1222, 741, 698 cm⁻¹; ESI-TOF HRMS *m/z* 367.0801 ([M + H]⁺, C₂₀H₁₉BrN₂ + H⁺ requires 367.0804).

Methyl 6-Ethoxynicotinate (27). From alkyne 25: Compound 25 (45 μL, 0.25 mmol, 50% w/w in hexanes) was added to a stirring solution of **3** (7.0 mg, 0.05 mmol) in xylenes (0.1 mL). The reaction mixture was warmed to 140 °C for 24 h, cooled, and concentrated. Flash chromatography (SiO₂, 20% EtOAc/hexanes) provided 27 (5.6 mg, 62%) as an off-white solid: mp 48–50 °C (EtOAc) (literature 51–52 °C)^{S12}; ¹H NMR (CDCl₃, 500 MHz) δ 8.78 (d, J = 1.5 Hz, 1H), 8.11 (dd, J = 8.8, 2.5 Hz, 1H), 6.70 (d, J = 9.0 Hz, 1H), 4.40 (q, J = 7.0 Hz, 2H), 3.87 (s, 3H), 1.38 (t, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 166.5, 165.8, 150.0, 139.4, 119.3, 110.6, 62.4, 51.9, 14.4; IR v_{max} 2990, 2360, 1713, 1601, 1492, 1438, 1288, 1124, 848, 778 cm⁻¹; ESI-TOF HRMS *m/z* 182.0805 ([M + H]⁺, C₉H₁₁NO₃ + H⁺ requires 182.0812).

From ketene acetal **38**: Hunig's base (25 μ L, 0.15 mmol, 0.8 equiv) and compound **38** (25 μ L, 0.19 mmol, 1.0 equiv) were added sequentially to a stirring solution of **3** (26.0 mg, 0.19 mmol) in dioxane at 60 °C under Ar. The reaction mixture was stirred at 60 °C for 30 min and then purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **27** (33.7 mg, 99%) as an off-white solid.

Methyl 6-Phenylnicotinate (28). From alkyne **26**: Compound **26** (77 µL, 0.7 mmol) was added to a stirring solution of **3** (20.0 mg, 0.14 mmol) in xylenes (0.2 mL). The reaction mixture was warmed to 140 °C, stirred for 24 h, cooled, and concentrated. Flash chromatography (SiO₂, 40% EtOAc/hexanes) provided **28** (18.0 mg, 59%) as a tan solid: mp 108–110 °C (literature 118 °C)^{S13}; ¹H NMR (CDCl₃, 400 MHz) & 9.29 (s, 1H), 8.35 (dd, J = 8.4, 2.0 Hz, 1H), 8.06 (dd, J = 8.0, 1.6 Hz, 2H), 7.82 (d, J = 8.4 Hz, 1H), 7.50 (m, 3H), 3.98 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) & 165.9, 160.9, 150.9, 138.3, 137.9, 129.9, 128.9, 127.3, 124.2, 119.8, 52.3; IR v_{max} 1715, 1596, 1438, 1288, 1268, 1118, 752 cm⁻¹; ESI-TOF HRMS *m/z* 214.0866 ([M + H]⁺, C₁₃H₁₁NO₂ + H⁺ requires 214.0863).

From enol ether **39**: Compound **39** (162 μ L, 0.79 mmol) was added to a stirring solution of **3** (22.0 mg, 0.16 mmol) in xylenes (0.2 mL). The reaction was warmed to 140 °C, stirred for 24 h, and purified by flash chromatography (SiO₂, 40% EtOAc/hexanes) to yield **28** (16.1 mg, 48%) as a tan solid.

From enol ether 40: Compound 40 (134 μ L, 0.5 mmol, 0.5 M in CH₂Cl₂) was added to a stirring solution of 3 (14.0 mg, 0.1 mmol) in xylenes (0.2 mL). The reaction was warmed to 140 °C, stirred for 24 h, and purified by flash chromatography (SiO₂, 40% EtOAc/hexanes) to yield 28 (10.5 mg, 49%) as a tan solid.

Cyclopenta[*b*]**pyridine (30).** Compound **29a** (160 µL, 1.10 mmol) was added to a stirring solution of **1** (59.5 mg, 0.73 mmol) in CHCl₃ (1 mL). The reaction mixture was stirred at 25 °C for 5 min and then warmed at 60 °C for 14 h. The reaction mixture was concentrated and purified by flash chromatography (SiO₂, 40% EtOAc/hexanes) to afford **30** (42.1 mg, 48%) as a yellow oil: ¹H NMR (CDCl₃, 500 MHz) δ 8.22 (d, *J* = 5.0 Hz, 1H), 7.36 (d, *J* = 9.0 Hz, 1H), 6.89 (m, 1H), 2.90 (t, *J* = 9.0 Hz, 2H), 2.81 (t, *J* = 8.5 Hz, 2H), 2.00 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 165.3, 147.2, 136.6, 131.7, 120.7, 34.0, 30.5, 22.8; IR *v*_{max} 2953, 1577, 1418, 1089, 786, 722 cm⁻¹; ESI-TOF HRMS *m*/z 120.0810 ([M + H]⁺, C₈H₉N + H⁺ requires 120.0808).

3-Phenylcyclopenta[*b*]**pyridine (31).** Compound **29a** (35 µL, 0.24 mmol) was added to a stirring solution of **2** (24.8 mg, 0.16 mmol) in CHCl₃ (0.3 mL). The reaction mixture was stirred at room temperature for 5 min, and then warmed to 60 °C for 14 h. After 14 h, the reaction mixture was concentrated and purified by flash chromatography (SiO₂, 40% EtOAc/hexanes) to provide **31** (27.2 mg, 88%) as an off-white solid: mp 76–77 °C (EtOAc) (literature 82–83 °C)^{S14}; ¹H NMR (CDCl₃, 500 MHz) δ 8.56 (s, 1H), 7.67 (s, 1H), 7.55 (d, *J* = 7.5 Hz, 2H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.36 (t, *J* = 7.5 Hz, 1H), 3.05 (t, *J* = 7.5 Hz, 2H), 2.99 (t, *J* = 7.5 Hz, 2H), 2.17 (q, *J* = 7.5 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 164.6, 146.2, 138.5, 137.0, 134.3, 130.6, 128.9, 127.5, 127.1, 33.8, 30.6, 23.3; IR v_{max} 1460, 1447, 1385, 907, 761, 693, 507 cm⁻¹; ESI-TOF HRMS *m*/*z* 196.1126 ([M + H]⁺, C₁₄H₁₃N + H⁺ requires 196.1121).

Methyl Cyclopenta[b]pyridine-3-carboxylate (32). Compound 29a (29 μ L, 0.20 mmol) was added to a stirring solution of 3 (18.7 mg, 0.13 mmol) in CHCl₃ (0.2 mL). The reaction mixture was stirred at room temperature for 5 min and then warmed to 45 °C for 30 min. After 30 min, the reaction mixture was concentrated and purified by flash chromatography (SiO₂, 30% EtOAc/hexanes) to provide 32 (20.0 mg, 84%) as a tan solid: mp 45–47 °C (EtOAc): ¹H NMR (CDCl₃, 500 MHz) δ 8.96 (s, 1H), 8.07 (s, 1H), 3.92 (s, 3H), 3.06 (t, *J* = 9.5 Hz, 2H), 2.98 (t, *J* = 9.0 Hz, 2H), 2.17 (q, *J* = 9.5 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 170.6, 166.4, 149.3, 137.0, 132.8, 123.8, 52.2, 34.4, 30.4, 23.1; IR -

 v_{max} 2951, 1710, 1596, 1431, 1392, 1315, 1287, 1270, 1191, 1115, 771 cm⁻¹; ESI-TOF HRMS *m/z* 178.0864 ([M + H]⁺, C₁₀H₁₁NO₂ + H⁺ requires 178.0863).

3-Bromocyclopenta[*b*]**pyridine (33).** Compound **29a** (46 µL, 0.32 mmol) was added to a stirring solution of **4** (34.1 mg, 0.21 mmol) in CHCl₃ (0.4 mL) at 0 °C. The reaction was stirred at 0 °C for 5 min and then warmed to 45 °C. After 45 min, the reaction mixture was concentrated and purified by flash chromatography (SiO₂, 30% EtOAc/hexanes) to provide **33** (16.7 mg, 40%) as a tan solid: mp 65–67 °C (EtOAc): ¹H NMR (CDCl₃, 500 MHz) δ 8.39 (s, 1H), 7.61 (d, *J* = 1.0 Hz, 1H), 2.94 (q, *J* = 9.5 Hz, 4H), 2.14 (q, *J* = 9.5 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 164.3, 148.3, 139.2, 134.7, 118.2, 33.6, 30.6, 23.4; IR *v*_{max} 2951, 2923, 1428, 1384, 1202, 1115, 1084, 895, 875, 704, 647, 517, 420 cm⁻¹; ESI-TOF HRMS *m/z* 197.9907 ([M + H]⁺, C₈H₈BrN + H⁺ requires 197.9913).

5,6,7,8-Tetrahydroquinoline (34). Compound **29b** (162 μ L, 1.01 mmol) was added to a stirring solution of **1** (54.0 mg, 0.67 mmol) in CHCl₃ (1.3 mL). The reaction mixture was stirred at room temperature for 5 min and then warmed to 60 °C for 14 h. After 14 h, the reaction mixture was concentrated and purified by flash chromatography (SiO₂, 50% ether/hexanes) to provide **34** (25.4 mg, 29%) as a yellow oil: ¹H NMR (CDCl₃, 500 MHz) δ 8.29 (dd, *J* = 5.0, 1.0 Hz, 1H), 7.29 (d, *J* = 9.5 Hz, 1H), 6.96 (m, 1H), 2.88 (t, *J* = 8.0 Hz, 2H), 2.71 (t, *J* = 8.0 Hz, 2H), 1.86 (m, 2H), 1.75 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 157.2, 146.6, 136.6, 132.1, 120.7, 32.4, 28.6, 22.9, 22.6; IR *v*_{max} 2930, 1573, 1446, 1423, 182, 727 cm⁻¹; ESI-TOF HRMS *m/z* 134.0962 ([M + H]⁺, C₉H₁₁N + H⁺ requires 134.0964).

3-Phenyl-5,6,7,8-tetrahydroquinoline (35). Compound **29b** (35 µL, 0.22 mmol) was added to a stirring solution of **2** (22.6 mg, 0.14 mmol) in CHCl₃ (0.3 mL). The reaction mixture was stirred at room temperature for 5 min and then warmed to 60 °C for 14 h. After 14 h, the reaction mixture was concentrated and purified by flash chromatography (SiO₂, 5% acetone/toluene) to provide **35** (15.0 mg, 50%) as a yellow oil: ¹H NMR (CDCl₃, 500 MHz) δ 8.59 (s, 1H), 7.56 (m, 3H), 7.46 (m, 2H), 7.38 (m, 1H), 2.98 (t, *J* = 6.5 Hz, 2H), 2.84 (t, *J* = 6.5 Hz, 2H), 1.93 (m, 2H), 1.86 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 156.2, 145.0, 138.1, 135.2, 134.0, 132.1, 128.9, 127.7, 127.0, 32.1, 28.9, 23.1,

22.7; IR v_{max} 2931, 1460, 763, 697 cm⁻¹; ESI-TOF HRMS *m/z* 210.1281 ([M + H]⁺, C₁₅H₁₅N + H⁺ requires 210.1277).

Methyl 5,6,7,8-Tetrahydroquinoline-3-carboxylate (36). Compound 29b (68 μL, 0.42 mmol) was added to a stirring solution of 3 (39.0 mg, 0.28 mmol) in CHCl₃ (0.6 mL). The reaction mixture was stirred at room temperature for 5 min and then warmed to 60 °C and stirred for 14 h. After 14 h, the reaction mixture was concentrated and purified by flash chromatography (SiO₂, EtOAc) to provide 36 (48.0 mg, 90%) as a yellow oil: ¹H NMR (CDCl₃, 500 MHz) δ 8.90 (d, J = 2.0 Hz, 1H), 7.93 (d, J = 1.0 Hz, 1H), 3.89 (s, 3H), 2.94 (t, J = 8.0 Hz, 2H), 2.78 (t, J = 7.5 Hz, 2H), 1.88 (m, 2H), 1.80 (m, 2H); ^{`13}C NMR (CDCl₃, 125 MHz) δ 166.1, 162.8, 147.7, 137.5, 132.0, 123.3, 32.7, 28.5, 22.7, 22.4; IR v_{max} 2900, 1720, 1600, 1433, 1403, 1294, 1272, 1217, 1151, 1109, 767 cm⁻¹; ESI-TOF HRMS *m/z* 192.1021 ([M + H]⁺, C₁₁H₁₃NO₂ + H⁺ requires 192.1019).

3-Bromo-5,6,7,8-tetrahydroquinoline (37). Compound **29b** (51 µL, 0.32 mmol) was added to a stirring solution of **4** (33.8 mg, 0.21 mmol) in CHCl₃ (0.4 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 5 min and then warmed to 45 °C for 30 min. After 30 min, the reaction mixture was concentrated and purified by flash chromatography (SiO₂, 50% EtOAc/hexanes) to provide **37** (30.3 mg, 68%) as a yellow oil: ¹H NMR (CDCl₃, 500 MHz) δ 8.39 (d, *J* = 2.5 Hz, 1H), 7.50 (t, *J* = 1.5 Hz, 1H), 2.86 (t, *J* = 8.5 Hz, 2H), 2.75 (t, *J* = 8.0 Hz, 2H), 1.88 (m, 2H), 1.80 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 156.0, 147.6, 138.9, 134.2, 117.2, 32.0, 28.6, 22.8, 22.3; IR *v*_{max} 2935, 2860, 1445, 1394, 987 cm⁻¹; ESI-TOF HRMS *m/z* 212.0065 ([M + H]⁺, C₉H₁₁BrN + H⁺ requires 212.0069).

2-Ethoxy-5-phenylpyridine (41). Compound **38** (175 µL, 1.3 mmol, 5.0 equiv) was added to a stirring solution of **2** (41.9 mg, 0.27 mmol) in xylenes. The reaction mixture was warmed to 140 °C, stirred for 24 h, and purified by flash chromatography (SiO₂, CH₂Cl₂) to provide **41** (50.4 mg, 95%) as a light yellow oil: ¹H NMR (CDCl₃, 400 MHz) δ 8.40 (dd, J = 2.6, 0.8 Hz, 1H), 7.81 (dd, J = 8.6, 2.4 Hz, 1H), 7.55 (2H, m), 7.47 (2H, m), 6.83 (dd, J = 8.8, 0.8 Hz, 1H), 4.44 (q, J = 6.8 Hz, 2H), 1.46 (t, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 163.3, 145.0, 138.0, 137.4, 130.0, 128.9, 127.2, 126.6, 110.9, 61.8, 14.7; IR v_{max} 1601, 1468, 1283, 1037, 767, 694 cm⁻¹; ESI-TOF HRMS *m/z* 200.1072 ([M + H]⁺ C₁₃H₁₃NO + H⁺ requires 200.1070).

5-Bromo-2-ethoxypyridine (42). Compound **38** (270 µL, 2.06 mmol) was added to a stirring solution of **4** (66.0 mg, 0.41 mmol) in dioxane (0.4 mL). The reaction mixture was warmed to 100 °C and stirred for 24 h. After 24 h, the reaction mixture was concentrated and purified by flash chromatography (SiO₂, 40% EtOAc/hexanes) to provide **42** (32.9 mg, 39%) as a light brown solid: mp 25 °C (EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 8.17 (d, *J* = 3.0 Hz, 1H), 7.61 (dd, *J* = 9.0, 3.0 Hz), 6.62 (d, *J* = 9.0 Hz, 1H), 4.31 (q, *J* = 7.0 Hz, 2H), 1.37 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 500 MHz) δ 162.7, 147.5, 141.0, 112.7, 111.4, 62.1, 14.5; IR *v*_{max} 1583, 1301, 1372, 1349, 1278, 1243, 1035, 824 cm⁻¹; ESI-TOF HRMS *m/z* 201.9861 ([M + H]⁺, C₇H₈BrNO + H⁺ requires 201.9862).

Amidines. The free base of dienophile **44a** was obtained by treatment of the HCl salt with NaOMe in MeOH.^{S8}

The free base of dienophiles 44b-44m were obtained by treating a solution of the HCl salt in CH₂Cl₂ with aqueous KOH (2.0 M). The aqueous layer was extracted with CH₂Cl₂, dried (Na₂SO₄) and concentrated.

2-Methylpyrimidine (45). Compound **44a** (78.0 mg, 1.34 mmol) was added to a stirring solution of **1** (99.0 mg, 1.22 mmol) in CD₃CN (0.6 mL). Rapid gas evolution followed the addition of **44a**. The reaction mixture was stirred for 5 min at 25 °C to afford **45** (93%). Because of the volatility of **45**, the conversion was determined by integral ratios of ¹H NMR in CD₃CN relative to the integral value of the internal standard (anisole). ¹H NMR (CD₃CN, 400 MHz) δ 8.65 (d, *J* = 4.8 Hz, 2H), 7.21 (t, *J* = 4.4 Hz, 1H), 2.70 (s, 3H); ¹³C NMR (CD₃CN, 400 MHz) δ 168.3, 157.4, 117.8, 25.0; ESI-TOF HRMS *m/z* 95.0608 ([M + H]⁺, C₅H₆N₂ + H⁺ requires 95.0604).

Compound **44b** (70 μ L, 0.7 mmol) was added to a stirring solution of **1** (51.2 mg, 0.63 mmol) in CD₃CN (0.2 mL). The reaction mixture was warmed to 80 °C and stirred for 24 h to afford **45** (63%, 99% brsm).

2-Methyl-5-phenylpyrimidine (46). Compound **44a** (47.9 mg, 0.83 mmol) was added to a stirring solution of **2** (61.0 mg, 0.75 mmol) in CH₃CN (0.5 mL). The reaction mixture was stirred at 5 min at room temperature and then warmed to 45 °C and stirred for 5 min. The reaction mixture was then concentrated and purified by flash

chromatography (SiO₂, CH₂Cl₂) to provide **46** (126 mg, 98%) as an off-white solid: mp 63 °C (CH₂Cl₂) (literature 57–58 °C)^{S15}: ¹H NMR (CDCl₃, 400 MHz) δ 8.80 (s, 2H), 7.52–7.39 (m, 5H), 2.75 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 166.7, 154.8, 134.3, 130.9, 129.1, 128.4, 126.6, 25.5; IR v_{max} 1581, 1540, 1443, 1377, 763, 749, 298, 651, 549, 493, 421 cm⁻¹; ESI-TOF HRMS *m*/*z* 171.0917 ([M + H]⁺ C₁₁H₁₀N₂ + H⁺ requires 171.0917).

Compound **44b** (73.8 mg, 0.85 mmol) was added to a stirring solution of **2** (121 mg, 0.77 mmol) in CH₃CN (0.5 mL). The reaction mixture was stirred at 5 min at room temperature and then warmed to 80 °C and stirred for 24 h. The reaction mixture was then concentrated and purified by flash chromatography (SiO₂, CH₂Cl₂) to provide **46** (124 mg, 94%) as an off-white solid.

Methyl 2-Methylpyrimidine-5-carboxylate (47). Compound **44a** (13.4 mg, 0.23 mmol) was added to a stirring solution of **3** (29.0 mg, 0.21 mmol) in CH₃CN (0.2 mL). The reaction mixture was stirred at room temperature for 10 min, concentrated, and then purified by flash chromatography (SiO₂, 50% EtOAc/hexanes) to provide **47** (19.5 mg, 62%) as a yellow solid: mp 54–56 °C (EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 9.16 (s, 2H), 3.96 (s, 3H), 2.81 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 171.9, 164.4, 158.1, 121.2, 52.5, 26.4; IR v_{max} 1714, 1587, 1555, 1428, 1301, 1256, 1126, 1031, 945, 763, 490 cm⁻¹; ESI-TOF HRMS *m/z* 153.0656 ([M + H]⁺ C₇H₈N₂O₂ + H⁺ requires 153.0659).

Compound **44b** (14.8 mg, 0.17 mmol) was added to a stirring solution of **3** (21.0 mg, 0.15 mmol) in CH₃CN (0.2 mL). The reaction mixture was stirred at room temperature for 15 min, concentrated, and then purified by flash chromatography (SiO₂, 50% EtOAc/hexanes) to provide **47** (15.6 mg, 68%) as a yellow solid.

5-Bromo-2-methylpyrimidine (48). Compound **44a** (12.2 mg, 0.21 mmol) was added to a stirring solution of **4** (31.2 mg, 0.20 mmol) in CH₃CN (0.2 mL). The reaction mixture was stirred at room temperature for 10 min, concentrated, and purified by flash chromatography (SiO₂, 30% EtOAc/hexanes) to provide **48** (15.7 mg, 47%) as a yellow solid: mp 59–60 °C (EtOAc): ¹H NMR (CDCl₃, 500 MHz) δ 8.69 (s, 2H), 2.70 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 166.4, 157.5, 117.5, 25.3; IR v_{max} 1539, 1428, 1261, 1114, 1009, 927, 739, 637, 470 cm⁻¹; ESI-TOF HRMS *m/z* 172.9716 ([M + H]⁺ C₅-H₅BrN₂ + H⁺ requires 172.9709).

2-Phenylpyrimidine (49). Compound **44c** (108 mg, 0.90 mmol) was added to a stirring solution of **1** (36.5 mg, 0.45 mmol) in dioxane (0.5 mL). The reaction was stirred at 25 °C for 6 h. The reaction mixture was concentrated and purified by flash chromatography (SiO₂, 10% EtOAc/hexanes) to afford **49** (64.3 mg, 91%) as a white solid: mp 34–36 °C (EtOAc) (literature 36–37 °C)^{S16}; ¹H NMR (CDCl₃, 400 MHz) δ 8.79 (d, *J* = 4.0 Hz, 2H), 8.45 (m, 2H), 7.50 (m, 3H), 7.16 (t, *J* = 4.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 164.7, 157.2, 137.5, 130.7, 128.5, 128.1, 119.0; IR *v*_{max} 1552, 1410, 1314, 1027, 824, 808, 739, 685, 637, 447 cm⁻¹; ESI-TOF HRMS *m/z* 157.0766 ([M + H]⁺, C₁₀H₈N₂ + H⁺ requires 157.0760).

Compound 44d (160 mg, 1.07 mmol) was added to a stirring solution of 1 (58.1 mg, 0.72 mmol) in DMF (0.7 mL). The reaction mixture was warmed to 100 °C and stirred for 6 h. The reaction mixture was concentrated and purified by flash chromatography (SiO₂, 10% EtOAc/hexanes) to afford 49 (18.1 mg, 16%) as a white solid.

2,5-Diphenylpyrimidine (50). Compound **44c** (32.4 mg, 0.27 mmol) was added to a stirring solution of **2** (38.5 mg, 0.24 mmol) in dioxane (0.3 mL). The reaction mixture was stirred at room temperature for 6 h. After 6 h, the reaction mixture was concentrated and purified by flash chromatography (SiO₂, 10% EtOAc/hexanes) to provide **50** (50.2, 88%) as an off-white solid: mp 177–180 °C (EtOAc) (literature 182–184 °C)^{S16}; ¹H NMR (CDCl₃, 400 MHz) δ 9.03 (s, 2H), 8.50 (m, 2H), 7.64 (m, 2H), 7.56–7.44 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 163.4, 155.2, 137.3, 134.5, 131.6, 130.7, 129.4, 128.7, 128.6, 128.1, 126.7; IR *v*_{max} 1536, 1433, 1376, 910, 741, 652, 571, 505 cm⁻¹; ESI-TOF HRMS *m/z* 233.1076 ([M + H]⁺, C₁₆H₁₂N₂ + H⁺ requires 233.1073).

Compound 44d (38.8 mg, 0.26 mmol) was added to a stirring solution of 2 (27.4 mg, 0.17 mmol) in DMF (0.2 mL). The reaction mixture was warmed to 100 °C and stirred for 24 h. After 24 h, the reaction mixture was purified by flash chromatography (SiO₂, 10% EtOAc/hexanes) to provide 50 (19.5 mg, 48%) as an off-white solid.

Methyl 2-Phenylpyrimidine-5-carboxylate (51). Compound 44c (18.5 mg, 0.15 mmol) was added to a stirring solution of 3 (20.0 mg, 0.14 mmol) in dioxane (0.2 mL). The reaction mixture was stirred at room temperature for 5 min, concentrated, and then

purified by flash chromatography (SiO₂, 30% EtOAc/hexanes) to provide **51** (30.5 mg, 99%) as a white solid: mp 159–161 °C (EtOAc) (literature 161–163 °C)^{S17}; ¹H NMR (CDCl₃, 500 MHz) δ 9.31 (s, 2H), 8.52 (m, 2H), 7.53 (m, 3H), 3.99 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 167.2, 164.4, 158.4, 136.6, 131.8, 129.0, 128.7, 121.5, 52.5; IR ν_{max} 2946, 1714, 1580, 1539, 1420, 1384, 1291, 1240, 1198, 1128, 958, 941, 824, 756, 743, 691, 649, 506 cm⁻¹; ESI-TOF HRMS *m/z* 215.0818 ([M + H]⁺, C₁₂H₁₀N₂O₂ + H⁺ requires 215.0815).

Compound **44d** (9.0 mg, 0.06 mmol) was added to a stirring solution of **3** (7.0 mg, 0.05 mmol) in DMF (0.1 mL). The reaction mixture was warmed to 100 °C, stirred for 24 h, concentrated, and then purified by flash chromatography (SiO₂, 30% EtOAc/hexanes) to provide **51** (7.5 mg, 70%) as a white solid.

5-Bromo-2-phenylpyrimidine (52). Compound **44c** (14.6 mg, 0.12 mmol) was added to a stirring solution of **4** (17.7 mg, 0.11 mmol) in CH₃CN (0.2 mL) at -20 °C. The reaction mixture was allowed to warm to room temperature and stirred for 10 min. After 10 min, the reaction mixture was concentrated and purified by flash chromatography (SiO₂, 20% EtOAc/hexanes) to provide **52** (10.4 mg, 40%) as a white solid: mp 83–84 °C (EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 8.84 (s, 2H), 8.41 (m, 2H), 7.50 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 162.9, 157.8, 136.4, 131.1, 128.7, 128.2, 118.3; IR *v*_{max} 2921, 1527, 1416, 1370, 1314, 1119, 1069, 1003, 922, 742, 690, 637, 470, 416 cm⁻¹; ESI-TOF HRMS *m/z* 234.9862 ([M + H]⁺ C₁₀H₇BrN₂ + H⁺ requires 234.9865).

2-(Pyridin-2-yl)pyrimidine (53). Compound **44e** (91.2 mg, 0.75 mmol) was added to a stirring solution of **1** (55.5 mg, 0.69 mmol) in dioxane (0.7 mL). The reaction was stirred at room temperature for 5 min and then warmed to 60 °C for 2 h, concentrated, and purified by PTLC (SiO₂, 10% MeOH/CH₂Cl₂) to afford **53** (104.8 mg, 98%) as an oil: ¹H NMR (CDCl₃, 400 MHz) δ 8.92 (d, *J* = 4.8 Hz, 2H), 8.85 (m, 1H), 8.52 (m, 1H), 7.87 (m, 1H), 7.41 (m, 1H), 7.32 (t, *J* = 4.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 163.5, 157.6, 154.5, 149.9, 136.9, 124.9, 123.4, 120.3; IR ν_{max} 1551, 1480, 758, 664, 634 cm⁻¹; ESI-TOF HRMS *m/z* 158.0713 ([M + H]⁺, C₉H₇N₃ + H⁺ requires 158.0713).

5-Phenyl-2-(pyridin-2-yl)pyrimidine (54). Compound **44e** (50.9 mg, 0.42 mmol) was added to a stirring solution of **2** (44.1 mg, 0.28 mmol) in dioxane (0.3 mL). The reaction was stirred at room temperature for 15 min, concentrated, and purified by PTLC (10% MeOH/CH₂Cl₂) to provide **54** (65.3 mg, 99%) as a white solid: mp 158–160 °C (CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 9.08 (d, *J* = 0.5 Hz, 2H), 8.83 (m, 1H), 8.52 (dd, *J* = 6.2, 0.8 Hz, 1H), 7.84 (m, 1H), 7.62 (m, 2H), 7.50 (m, 2H), 7.44 (m, 1H), 7.37 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 162.2, 155.4, 154.3, 150.1, 136.8, 134.1, 132.8, 129.3, 128.9, 126.8, 124.8, 123.3; IR *v*_{max} 1533, 1438, 1422, 1376, 759, 719, 694, 650, 617, 524 cm ⁻¹; ESI-TOF HRMS *m/z* 234.1026 ([M + H]⁺, C₁₅H₁₁N₃ + H⁺ requires 234.1026).

Methyl 2-(Pyridin-2-yl)pyrimidine-5-carboxylate (55). Compound **44e** (19.4 mg, 0.16 mmol) was added to a stirring solution of **3** (21.0 mg, 0.15 mmol) in dioxane (0.2 mL). The reaction mixture was stirred at room temperature for 5 min, concentrated, and purified by PTLC (EtOAc) to provide **55** (32.2 mg, 99%) as an off-white solid: mp 164 °C (EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 9.43 (s, 2H), 8.89 (m, 1H), 8.61 (m, 1H), 7.91 (m, 1H), 7.46 (m, 1H), 4.02 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 166.4, 164.6, 159.3, 154.1, 150.8, 137.6, 126.1, 124.9, 123.2, 53.2; IR v_{max} 1714, 1581, 1545, 1419, 1384, 1307, 1286, 1255, 1243, 1197, 1133, 1080, 1031, 990, 768, 646, 506 cm⁻¹; ESI-TOF HRMS *m/z* 216.0768 ([M + H]⁺, C₁₁H₉N₃O₂ + H⁺ requires 216.0767).

5-Bromo-2-(pyridin-2-yl)pyrimidine (56). Compound **44e** (24.2 mg, 0.2 mmol) was added to a stirring solution of **4** (29.8 mg, 0.18 mmol) in dioxane (0.2 mL). The reaction mixture was stirred at room temperature for 5 min, concentrated, and purified by PTLC (SiO₂, 90% EtOAc/hexanes) to provide **56** (43.9 mg, 99%) as a white solid: mp 124–126 °C (CH₂Cl₂); ¹H NMR (CDCl₃, 500 MHz) δ 8.95 (s, 2H), 8.84 (m, 1H), 8.50 (d, *J* = 10.0 Hz, 1H), 7.87 (m, 1H), 7.43 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 161.8, 158.3, 153.8, 150.3, 137.1, 125.3, 123.6, 120.0; IR *v*_{max} 2921, 1528, 1408, 1365, 1121, 1096, 1008, 991, 932, 759, 689, 636, 618, 489, 424, 409 cm⁻¹; ESI-TOF HRMS *m/z* 235.9818 ([M + H]⁺, C₉H₆BrN₃ + H⁺ requires 235.9818).

2-(4-Methoxyphenyl)pyrimidine (57). Compound **44f** (52.9 mg, 0.35 mmol) was added to a stirring solution of **1** (25.4 mg, 0.31 mmol) in CH₃CN (0.3 mL). The reaction mixture was stirred at 25 °C. Complete color change was observed 1 min after addition of **44f**. The reaction mixture was then warmed to 60 °C for 2 h, concentrated and purified by flash chromatography (SiO₂, 40% EtOAc/hexane) to afford **57** (53.9 mg, 93%) as a colorless oil: ¹H NMR (CDCl₃, 400 MHz) δ 8.73 (d, *J* = 4.5 Hz, 2H), 8.39 (d, *J* = 8.5 Hz, 2H), 7.08 (t, *J* = 5.0 Hz, 1H), 6.99 (d, *J* = 9.0 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 164.4, 161.9, 157.1, 130.2, 129.7, 118.3, 113.9, 55.3; IR *v*_{max} 1604, 1581, 1563, 1551, 1512, 1407, 1324, 1245, 1165, 1024, 848, 795, 641, 589 cm⁻¹; ESI-TOF HRMS *m/z* 187.0872 ([M + H]⁺, C₁₁H₁₀N₂O + H⁺ requires 187.0866).

2-(4-Bromophenyl)pyrimidine (58). Compound **44g** (89.7 mg, 0.45 mmol) was added to a stirring solution of **1** (33.2 mg, 0.41 mmol) in CH₃CN (0.5 mL). The reaction mixture was stirred at 25 °C. Complete color change was observed 20 min after addition of **44g**. The reaction mixture was then warmed to 60 °C for 4 h, concentrated and purified by flash chromatography (SiO₂, 40% EtOAc/hexane) to afford **58** (95.9 mg, 99%) as a white solid: mp 128–132 °C (EtOAc); ¹H NMR (CDCl₃, 400 MHz) δ 8.77 (d, *J* = 4.0 Hz, 2H), 8.31 (d, *J* = 8.0 Hz, 2H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.17 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 163.7, 157.2, 136.4, 131.7, 129.7, 125.5, 119.2; IR *v*_{max} 1563, 1550, 1406, 1171, 1064, 1006, 806, 785, 767, 707, 639, 621, 543, 440, 431 cm⁻¹; ESI-TOF HRMS *m/z* 234.9872 ([M + H]⁺, C₁₀H₇BrN₂ + H⁺ requires 234.9865).

2-(4-Fluorophenyl)pyrimidine (59). Compound **44h** (30.7 mg, 0.22 mmol) was added to a stirring solution of **1** (16.4 mg, 0.20 mmol) in CH₃CN (0.3 mL). The reaction mixture was stirred at 25 °C. Complete color change was observed 5 min after addition of **44h**. The reaction mixture was then warmed to 60 °C for 2 h, concentrated and purified by flash chromatography (SiO₂, 40% EtOAc/hexane) to afford **59** (34.8 mg, 99%) as a light yellow solid: mp 49–51 °C (EtOAc) (literature 54–56 °C)^{S16}; ¹H NMR (CDCl₃, 400 MHz) δ 8.78 (d, *J* = 4.8 Hz, 2H), 8.45 (m, 2H), 7.17 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 165.9, 163.8, 163.4, 157.2, 133.73, 133.70, 130.3, 130.2, 118.9, 115.6, 115.4; IR v_{max} 1601, 1552, 1510, 1412, 1213, 1154, 818, 791, 580 cm⁻¹; ESI-TOF HRMS *m/z* 175.0672 ([M + H]⁺, C₁₀H₇FN₂ + H⁺ requires 175.0666).

2-(3-Nitrophenyl)pyrimidine (60). Compound **44i** (66.1 mg, 0.40 mmol) was added to a stirring solution of **1** (29.5 mg, 0.36 mmol) in CH₃CN (0.4 mL). Complete color change was observed 5 min after addition of **44i**. The reaction mixture was then warmed to 60 °C for 5 h, concentrated and purified by flash chromatography (SiO₂, 40% EtOAc/hexane) to afford **60** (72.9 mg, 99%) as a light yellow solid: mp 139–141 °C (EtOAc) (literature 143–144 °C)^{S16}; ¹H NMR (CDCl₃, 400 MHz) δ 9.27 (s, 1H), 8.82 (d, *J* = 4.8 Hz, 2H), 8.75 (d, *J* = 7.6 Hz, 1H), 8.28 (d, *J* = 8.0 Hz, 1H), 7.62 (t, *J* = 8.0 Hz, 1H), 7.25 (t, *J* = 4.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 162.4 157.4, 148.7, 139.3, 133.8, 129.5, 125.1, 123.2, 120.1; IR *v*_{max} 1564, 1518, 1477, 1412, 1346, 1320, 1073, 797, 782, 731, 685, 672, 633, 454 cm⁻¹; ESI-TOF HRMS *m/z* 202.0611 ([M + H]⁺, C₁₀H₇N₃O₂ + H⁺ requires 202.0611).

2-(2,6-Dichlorobenzyl)pyrimidine (61). Compound **44j** (70.5 mg, 0.35 mmol) was added to a stirring solution of **1** (25.6 mg, 0.32 mmol) in CH₃CN (0.6 mL). Complete color change was observed 5 min after addition of **44j**. The reaction mixture was then warmed to 60 °C for 2 h, concentrated and purified by flash chromatography (SiO₂, 40% EtOAc/hexane) to afford **61** (67.7 mg, 90%) as a yellow solid: mp 88–90 °C (EtOAc); ¹H NMR (CDCl₃, 400 MHz) δ 8.65 (s, 2H), 7.33 (m, 2H), 7.12 (m, 2H), 4.70 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 167.9, 157.1, 136.3, 134.3, 128.4, 128.0, 118.6, 40.8; IR *v*_{max} 1560, 1434, 1412, 1087, 926, 769, 629 cm⁻¹; ESI-TOF HRMS *m/z* 239.0140 ([M + H]⁺, C₁₁H₈Cl₂N₂ + H⁺ requires 239.0137).

2,2'-Bipyrimidine (62). Compound **44k** (32.0 mg, 0.26 mmol) was added to a stirring solution of **1** (19.3 mg, 0.24 mmol) in CH₃CN (0.3 mL). Complete color change was observed 10 min after addition of **44k**. The reaction mixture was then warmed to 60 °C for 5 h, concentrated and purified by PTLC (SiO₂, 10% MeOH/CH₂Cl₂) to afford **62** (37.4 mg, 99%) as a white solid: mp 103–105 °C (EtOAc) (literature 112–114 °C)^{S18}; ¹H NMR (CDCl₃, 400 MHz) δ 8.93 (d, *J* = 4.8 Hz, 4H), 7.36 (t, *J* = 4.8 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 162.0, 157.8, 121.4; IR *v*_{max} 1549, 1388, 1138, 816, 766, 636, 617, 506, 469, 423 cm⁻¹; ESI-TOF HRMS *m/z* 159.0669 ([M + H]⁺, C₈H₆N₄ + H⁺ requires 159.0665).

2-(Thiophen-2-yl)pyrimidine (63). Compound **441** (61.8 mg, 0.49 mmol) was added to a stirring solution of **1** (36.1 mg, 0.45 mmol) in CH₃CN (0.5 mL). Complete color change was observed 1 min after addition of **441**. The reaction mixture was then warmed to 60 °C for 2 h, concentrated and purified by flash chromatography (SiO₂, 40% EtOAc/hexane) to afford **63** (68.5 mg, 95%) as a white solid: mp 80–82 °C (EtOAc) (literature 79–80 °C)^{S19}; ¹H NMR (CDCl₃, 400 MHz) δ 8.67 (d, *J* = 4.8 Hz, 2H), 8.00 (dd, *J* = 2.8, 0.8 Hz, 1H), 7.47 (dd, *J* = 4.0, 1.2 Hz, 1H), 7.14 (m, 1H), 7.06 (t, *J* = 4.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 161.5, 157.1, 143.1, 129.9, 128.9, 128.3, 118.4; IR v_{max} 1551, 1527, 1432, 1396, 1209, 1048, 853, 809, 792, 703, 629 cm⁻¹; ESI-TOF HRMS *m/z* 163.0327 ([M + H]⁺, C₈H₆N₂S + H⁺ requires 163.0324).

2-Cyclopropylpyrimidine (64). Compound **44m** (20.5 mg, 0.24 mmol) was added to a stirring solution of **1** (18.0 mg, 0.22 mmol) in CH₃CN (0.3 mL). Complete color change was observed instantaneously after addition of **44m**. The reaction mixture was then warmed to 60 °C for 1 h, concentrated and purified by flash chromatography (SiO₂, 40% EtOAc/hexane) to afford **64** (25.4 mg, 95%) as a yellow oil: ¹H NMR (CDCl₃, 400 MHz) δ 8.54 (d, *J* = 4.4 Hz, 2H), 7.02 (t, *J* = 4.8 Hz, 1H), 2.22 (m, 1H), 1.12–1.04 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ 172.1, 156.7, 117.8, 18.2, 10.8; IR *v*_{max} 1559, 1440, 1371, 1230, 909, 795 cm⁻¹; ESI-TOF HRMS *m/z* 121.0763 ([M + H]⁺, C₇H₈N₂ + H⁺ requires 121.0760).

References

(S1) Okatani, T.; Koyama, J.; Tagahara, K. Heterocycles 1989, 9, 1809.

(S2) Neunhoeffer, H.; Clausen, M.; Vötter, H.; Ohl, H.; Krüger, C.; Angermund, K. Liebigs Ann. Chem. 1985, 1732.

(S3) ¹H NMR was consistent with previous report: Ohsawa, A.; Kaihoh, T.; Itoh, T.; Okada, M.; Kawabata, C.; Yamaguchi, Y.; Igeta, H. *Chem. Pharm. Bull.* **1988**, *36*, 3838.

(S4) ¹H NMR was consistent with previous reports: (a) Itoh, T.; Nagata, K.; Kaihoh, T.; Okada, M.; Kawabata, C.; Arai, H.; Ohnishi, H.; Yamaguchi, K.; Igeta, H.; Ohsawa, A.; Iitaka, Y. *Heterocycles* **1992**, *33*, 631. (b) Mättner, M.; Neunhoeffer, H. *Synlett* **2003**, 413.

(S5) ¹H NMR was consistent with previous reports: Neunhoeffer, H.; Bopp, R.; Diehl, W. *Liebigs Ann. Chem.* **1993**, 367.

(S6) Hynes, J.; Doubleday, W. W.; Dyckman, A. J.; Godfrey, J. D.; Grosso, J. A.; Kiau, S.; Leftheris, K. *J. Org. Chem.* **2004**, *69*, 1368.

(S7) Verkruijsse, H.; Bos, H.; de Noten, L.; Brandsma, L. J. Royal Netherlands Chem. Soc. 1981, 100, 244.

(S8) Crossland, I.; Grevil, F. Acta Chem. Scand. 1981, 35b, 605.

(S9) Ichikawa, H.; Ohno, Y.; Usami, Y.; Arimoto, M. Heterocycles 2006, 68, 2247.

(S10) Reger, D. L.; Gardinier, J. R.; Grattan, T. C.; Smith, M. R.; Smith, M. D. New J. Chem. 2003, 27, 1670.

(S11) Jones, R. G. J. Am. Chem. Soc. 1949, 71, 3994.

(S12) Newkome, G. R.; Kohli, D. K.; Kawato, T. J. Org. Chem. 1980, 45, 4509.

(S13) Bordin, F.; Baccichetti, F.; Gianfranco, F. Annali di Chimica 1965, 55, 882.

- (S14) Taylor, E. C. J. Org. Chem. 1991, 56, 1807.
- (S15) Majumder, S. Tetrahedron 2010, 66, 3152.
- (S16) Zheng, X.; Song, B.; Bin, X. Eur. J. Org. Chem. 2010, 23, 4376.
- (S17) Schwan, T. J. J. Heterocyclic Chem. 1977, 14, 695.
- (S18) Vlad, G.; Horvath I. T. J. Org. Chem. 2002, 67, 6550.
- (S19) Billingsley, K.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3358.