

Supplemental figure 1: CO₂ receptors are highly conserved in insects.

a, Alignment of the amino acid sequences of CO_2 receptor orthologs using ClustalW from *D*. *melanogaster* (Dmel), *A. gambiae* (Agam), *A.aegypti* (Aaeg) and *C. quinquefasciatus* (Cpip). Recreated using sequences from Robertson et. al. 2009. **b**, Mean spikes per second of cpA neuron for 3-sec stimulus of 0.15% CO₂ overlayed with 0.5-sec odour, counted in 100-msec bins, n=5, error bars=s.e.m.

Supplemental figure 2: Volatility and solubility of CO₂ response inhibitors

Percentage inhibition of the CO₂ response as a function of **a**, vapor pressure, or **b**, solubility. Information obtained using Scifinder Scholar. Differing shapes indicate same compounds across different insects; *A. gambiae* (\Box), *A. aegypti* (\blacktriangle), C. *quinquefascitus* (\frown), *D. melanogaster* (\Diamond). Differing colors indicate chemical class; alcohol (red), aldehyde (orange), ester (pink), alkane (blue), ketone (green), acid (purple). n=3.

Supplemental figure 3: Butanone activates cpA neuron in mosquito and mimics CO₂. a, Representative trace from *A. gambiae* peg sensillum to a 1-sec stimulus of solvent (PO) or 2butanone (10^{-1} dilution). b, Mean responses of the cpA neuron to 1-sec 2-butanone at indicated dilutions on *A. gambiae* (Ag), *A. aegypti* (Ae), and *C. quinquefasciatus* (Cx). n=5, error bars=s.e.m.

b

Г

3-s PO

t=0

d

250

200

Supplemental Figure 4: Effect of individual odor mixture components on ultra-prolonged activation.

a, Mean responses of the cpA neuron to 1-sec 2,3-butanedione at indicated dilutions on A. gambiae (Ag), A. aegypti (Ae), and C. quinquefasciatus (Cx). n=5. error bars=s.e.m. b, Schematic of odour exposure sequence. c, Mean response of A. aegypti cpA neuron to a 1-sec CO_2 stimulus after pre-exposure as indicated on X-axis with odorants at t=0 and t=15 sec. d, Representative traces (left) from peg sensillum and mean responses (right) from the cpA neurons to 0.15% and 0.33% CO₂ after a pretreatment to 3-min of paraffin oil, or individual odor mixture components indicated. n=5, error bars=s.e.m.

Supplemental figure 5: Long-term Inhibition of CO₂ response in *A. aegypti* after preexposure to combinations of odorants.

Mean increase in frequency of response of the cpA neuron to stimulus of 1-sec 0.15% CO₂ applied approx. every 30-sec, following a 3-sec pre-exposure to odor mixtures (10^{-2} dilution) or paraffin oil (PO). d4on=2,3-butanedione, 4al=butanal, 5al=pentanal, 6ol=hexanol. n=5, error bars=s.e.m. Spontaneous activity subtracted.

a, Scatterplot of time elapsed from start of assay required to find CO_2 source for individual female *Aedes* mosquitoes according to the various ultra-prolonged blend treatments as indicated. Mosquitoes that did not find source are not included. Mean times and s.e.m. are indicated with line and error bars. **b**, Mean flight-time (after takeoff from holding cage) to the half-way point, and **c**, mean flight-time (after takeoff from holding cage) to the CO_2 source. Error bars =s.e.m. Note the data for the 10^{-1} pre-exposure for 60-sec and 180-sec are severely skewed since very few individuals performed the behaviour, only 1 in the last condition. N=26 individuals for each condition were tested.

Supplemental Figure 7: a,b Schematic diagram of the components of the stainless steel repellency chamber and use for the DEET avoidance assay.

Supplemental Figure 8:

Schematic and pictures of the **a**, experimental hut inside MalariaSphere with close-up pictures of the one-way entry traps installed in the eaves and TimeMist odour; **b**, remote mosquito release system; **c**, counter-flow geometry trap.

Supplemental Figure 9:

Pharmacophores of **a**, antagonists (1-hexanol, 1-pentanol, 1-butanal, 1-butanoic acid), and **b**, agonists (2-butanone and 2,3-butanedione). Pharmacophores are shown in two orientations at right-angles. Grey=hydrophobic, green=acceptors. Pharmacophores generated using PharmaGist program as described in Inbar, Y., et. al.. Deterministic Pharmacophore Detection via Multiple Flexible Alignment of Drug-Like Molecules. In Proc. of RECOMB (2007), vol. 3692 of Lecture Notes in Computer Science, pp. 423-434. Springer Verlag.

Treatment	Solvent	2,3-butanedione	2,3-butanedione	CO_2	
	(Paraffin oil)	(0.1%)	(0.01%)	(250ml/min)	
Percentage of released mosquitoes trapped	19.2±5.7%	14±3%	9.2±2.3%	63.7±8.8%	

Table 1a: Greenhouse Counter-flow Trapping Assay

Table 1b: Wind Tunnel Assay

Treatment	Solvent	2,3-butanedione	CO ₂
	(Paraffin oil)	(0.1%)	(1%)
Percentage of mosquitoes finding CO ₂ source	0%	0%	100%

Supplemental Table 1:

a, Percentage of female *C. quinquifasciatus* mosquitoes trapped overnight in a counter-flow geometry trap using the indicated lures. N=5 trials per lure treatment, 50 mosquitoes/trial. **b**, Percentage of female *C. quinquifasciatus* mosquitoes flying through the odor emitting ring upwind in wind-tunnel assays. N= 20 per trial.