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Analyticity and the Operator Expansion. We begin by deriving the
form of the optimal estimator. Applying the product rule of
probability to compute the conditional mean, we obtain

EψðtÞjfVg½ _ψjfVg�
¼ EψðtÞjfVg½ECðθ; tÞjfVg;ψðtÞ½ _ψðtÞjfVg; ψðtÞ�jfVg�
¼ ECðθ; tÞ;ψðtÞjfVg½ _ψðtÞjfVg�:

[S1]

Bayes theorem and our noise model imply

P½C; ψjfVg� ¼ PGauss½fVgjC; ψ�Pprior½C; ψ�
P½fVg�

¼
Pprior½C; ψ�exp

"
−∑N

n¼1

ð
dω
2π

jVnðωÞ− �VnðωjC; ψÞj2

2NðωÞ

#

~Z½fVg�
;

[S2]

where ~Z½fVg� normalizes the probability. Expanding the com-
plex square and absorbing terms independent of C, ψ into ~Z, we
obtain

_ψeðtÞ¼
1

~~Z½fVg�
EC;ψ _ψðtÞ

× exp

"
−∑

N

n¼1

ð
dω
2π

 
j�VnðωjC; ψÞj2

2NðωÞ −
ReðVnðωÞ�V �

nðωjC; ψÞÞ
NðωÞ

!#
;

[S3]

where Re(z) denotes the real part of the complex variable z and
~~Z is a new normalization function.
Eq. S3 differs from the main text because of the second term

within the exponential. However, because the relevant {Vn(ω)}
correspond to real-valued {Vn (t)}, we have

V �
n ðωÞ ¼ Vnð−ωÞ: [S4]

An identical argument applies to �Vn and δVn. This argument
implies

ImðVn �V
�
nÞðωÞ ¼ − ImðVn �V

�
nÞð−ωÞ: [S5]

Thus, ImðVn �V
�
nÞ=N is an odd function of ω, and its integral is

zero. This result implies that the integral of ReðVn
�V �
nÞ can be

replaced with one of Vn �V
�
n once we restrict to real-valued vol-

tages in the time domain.
When we perform the functional expansion, we seem to be

claiming that _ψe is analytic at all points V = (V1(ω), . . . , VN (ω)).
Indeed, because Z[{V}] is nonzero, holomorphy (and thus ana-
lyticity) for the function defined in the text follows easily from
the Cauchy–Riemann equations. However, the optimal estimator
properly defined by Eq. S3 is nonholomorphic due to its de-
pendence on fV�

nðωÞg: This result implies that although the ex-
pansion is not valid for arbitrary {Vn(ω)}, it is valid for {Vn(ω)}
with real Fourier transforms. In other words, the optimal esti-
mator given by Eq. S3 reduces to the equation in the text for
real-valued {Vn (t)}, so whereas the optimal estimator is not

analytic over the entire input space, it can be represented with
a functional expansion in the relevant subspace.

Time-Invariant Priors and the Volterra Series. If the prior is invariant
to {C(θ, t), ψ(t)} → {C(θ, t + Δ), ψ(t + Δ)} for arbitrary Δ,
then the system possesses time-translation symmetry, and the
series of multipoint correlators is a Volterra series. In this
context, time-translation symmetry implies that the statistical
properties of expected stimuli do not vary over time. Violations
of time-translation symmetry may occur due to adaptation if
the organism updates its expectations to improve motion esti-
mation. Nevertheless, many situations of interest have time-
translation symmetry. Because our theory is carried out in the
frequency domain, we obtain a definition of the Volterra series
in this domain by Fourier transforming the time-domain Vol-
terra series. Comparing it to the functional expansion, we
conclude that our theory is a Volterra series when it can be
written in the form

_ψe; i1; ...; iljV¼0 ¼ e− i∑jωj tκðlÞi1; ...; ilðω1; . . . ; ωlÞ; [S6]

where {κ} are arbitrary time-independent functions.
We will see that the time variance of the estimator is de-

termined by the time variance of the priors. Because _ψe; i1; ...; il is a
product of Ψ, Z, and the derivatives, we examine their form at
zero voltage. First, note that

fΔðtÞ ¼ f ðtþ ΔÞ⇒ fΔðωÞ ¼ e− iωΔ f ðωÞ: [S7]

Thus,

Ψ; i1 ; ...; il jV¼0 ¼ ECðθ; tÞ;ψðtÞexp

"
− ∑

N

n¼1

ð
dω
2π

j�VnΔðωjC; ψÞj2

2NðωÞ

#

× e− i∑jωjΔ _ψðtÞ
ð2πÞl

�V
�
i1Δðω1jC; ψÞ . . . �V

�
ilΔðωljC; ψÞ

Nðω1Þ . . .NðωlÞ
:

[S8]

Because �Vn is time invariant, its time translation is equivalent to
time translating its inputs,

Ψ; i1; ...; iljV¼0¼ECðθ; tÞ;ψðtÞexp

"
−∑

N

n¼1

ð
dω
2π

j�VnðωjCΔ; ψΔÞj
2

2NðωÞ

#

× e− i∑jωjΔ _ψΔðt−ΔÞ
ð2πÞl

�V
�
i1ðω1jCΔ; ψΔÞ. . . �V

�
ilðωljCΔ;ψΔÞ

Nðω1Þ . . .NðωlÞ
:

[S9]

If the prior is time-translation invariant, we can replace expect-
ations over C, ψ with expectations over CΔ, ψΔ:

Ψ; i1; ...; iljV¼0ðtÞ ¼ e− i∑jωjΔΨ; i1; ...; iljV¼0ðt−ΔÞ: [S10]

This equation must hold for all t and Δ. If we define some
constant reference time t0, then
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Ψ; i1 ; ...; il jV¼0ðtÞ ¼ e− i∑jωjðt− t0ÞκðlÞi1; ...; ilðω1; . . . ; ωlÞ; [S11]

where

κðlÞi1 ; ...; ilðω1; . . . ; ωlÞ

¼ ECðθ; tÞ;ψðtÞ
_ψðt0Þ
ð2πÞl

exp

"
− ∑

N

n¼1

ð
dω
2π

j�VnðωjC; ψÞj2

2NðωÞ

#

×
�V
�
i1ðω1jC; ψÞ . . . �V

�
ilðωljC; ψÞ

Nðω1Þ . . .NðωlÞ
:

[S12]

The identical argument leading to Eq. S9 can be applied to write

Z; i1; ...; il jV¼0 ¼ ECðθ; tÞ;ψðtÞexp

"
− ∑

N

n¼1

ð
dω
2π

j�VnðωjCΔ; ψΔÞj
2

2NðωÞ

#

×
1

ð2πÞl
e− i∑jωjΔ

�V
�
i1ðω1jCΔ; ψΔÞ . . . �V

�
ilðωljCΔ; ψΔÞ

Nðω1Þ . . .NðωlÞ
:

[S13]

Assuming that P[C, ψ] is time-translation invariant, we may re-
place the expectation over C, ψ with an expectation over CΔ, ψΔ
and obtain that either Z; i1; ...; iljV¼0 ¼ 0 or ∑jωj ¼ 0. In either
case,

Z; i1; ...; iljV¼0

¼ e− i∑jωj tECðθ; tÞ;ψðtÞ
1

ð2πÞl
exp

"
− ∑

N

n¼1

ð
dω
2π

j�VnðωjC; ψÞj2

2NðωÞ

#

×
�V
�
i1ðω1jC; ψÞ . . . �V

�
ilðωljC; ψÞ

Nðω1Þ . . .NðωlÞ
:

[S14]

Because both Eqs. S11 and S14 have the prefactor e− i∑jωj t; Eq.
S6 holds when the prior is time-translation invariant.
Note that assuming white noise (N(ω) ≡ N ) and time-trans-

lation symmetry, the derivatives are simple in the time domain,

Ψ; i1; ...; ilðt1; . . . ; tlÞ ¼ ECðθ; tÞ;ψðtÞexp

"
− ∑

n

ð
dt
ð�VnðtjC; ψÞÞ2

2N

#

×
1

N l
_ψðt0Þ�V i1 ðt0 − t1Þ . . . �V ilðt0 − tlÞ

[S15]

and

Z; i1; ...; ilðt1; . . . ; tlÞ ¼ ECðθ; tÞ;ψðtÞexp

"
− ∑

n

ð
dt
ð�VnðtjC; ψÞÞ2

2N

#

×
1

N l
�V i1ðt0 − t1Þ�Vi2ðt0 − t2Þ . . . �Vilðt0 − tlÞ:

[S16]

Because t0 is arbitrary, it is convenient to average over it when
computing the temporal domain Volterra kernels. Intuitively,
Eq. S15 computes correlations between the velocity and the
stimulus whereas Eq. S16 computes pure stimulus correlations.
Clearly, if the system is not time-translation invariant, then this
procedure to obtain the time-domain kernels would not apply.

Photovoltage Expectations.
In the main text we applied some basic facts regarding the
structure of

EfV ðtÞgjCðθ; tÞ;ψðtÞVi1ðω1Þ . . .VilðωlÞ: [S17]

This section discusses how functional integral methods borrowed
from physics allow the evaluation of these expectations.
First, it is worth pointing out a source of potential confusion.

Given a single Gaussian-distributed complex variable,

PðzÞ ¼ 1
2 π σ2

exp

"
−
jzj2

2σ2

#
; [S18]

it is straightforward to show that

E zjzj2 ¼ 2σ2 [S19]

E zz2¼ 0: [S20]

From Eq. S20, one might expect that Eq. S17 be exactly
�V i1ðω1Þ . . . �V ilðωlÞ with the noise playing no role. This conclusion
would be incorrect because we must take all expectations over
{V(t)} rather than {V(ω)}.
To work with zero-mean Gaussian distributions we begin by

rewriting Eq. S17 as

EfδV ðtÞgð�Vi1ðω1jC; ψÞ þ δVi1ðω1ÞÞ . . . ð�VilðωljC; ψÞ þ δVilðωlÞÞ:
[S21]

After expanding this product, each term will contain a variable
number of �V s (that can be factored out of the expectation) to-
gether with noise terms. For now, we ignore copies of �V and
evaluate expectations of the form

EfδV ðtÞgδVi1ðω1Þ . . . δVimðωmÞ; [S22]

where 0 ≤ m ≤ l.
To evaluate these expectations, we use the method of func-

tional integration and rewrite S22 as

ð
DfδVnðtÞg δVi1 ðω1Þ . . . δVimðωmÞexp

"
−∑n

ð
dω
2π

jδVnðωÞj2

2NðωÞ

#
ð
DfδVnðtÞgexp

"
−∑n

ð
dω
2π

jδVnðωÞj2

2NðωÞ

# :

[S23]

These are Gaussian functional integrals and can be exactly
evaluated. The denominator is evaluated to give

ð
DfδVnðtÞgexp

"
− ∑

n

ð
dω
2π

jδVnðωÞj2

2NðωÞ

#
¼
�
∏
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πVNðωÞ

p �N
;

[S24]

where N is the number of photoreceptors and V is a constant
arising from a discrete approximation to the functional integral.
To evaluate the general form of the numerator, it is important to
note that because the noise has zero mean, the m = 1 case
vanishes. The m = 2 case can be evaluated as
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ð
DfδVnðtÞgδVi1ðω1ÞδVi2ðω2Þexp

"
− ∑

n

ð
dω
2π

jδVnðωÞj2

2NðωÞ

#

¼ δi1 ; i2δðω1 þ ω2ÞNðω1Þ
�
∏
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πVNðωÞ

p
ÞN :

[S25]

Note that the last factor in Eq. S25 cancels the denominator and
removes the dependence on the discrete approximation. There-
fore, we take the continuum limit and find

EfδV ðtÞgδVi1ðω1ÞδVi2ðω2Þ ¼ δi1; i2δðω1 þ ω2ÞNðω1Þ [S26]

as intuitively expected. This result consequently provides

EfV ðtÞgjCðθ; tÞ;ψðtÞVi1ðω1ÞVi2 ðω2Þ
¼ �V i1ðω1jC; ψÞ�V i2ðω2jC; ψÞ þ δi1 ; i2δðω1 þ ω2ÞNðω1Þ:

[S27]

Whenm > 2, the functional integral is zero unless each index can
be paired with another index (as in Eq. S25). Such a pairing is
referred to as a contraction. Generally,

EfδV ðtÞgδVi1ðω1Þ . . . δVimðωmÞ

¼
�
0; m odd
sum over all contractions; m even:

[S28]

Eq. S28 is best demonstrated by example on the quartic expec-
tation,

EfδV ðtÞgδVi1 ðω1ÞδVi2 ðω2ÞδVi3ðω3ÞδVi4ðω4Þ
¼ δi1; i2δðω1 þ ω2ÞNðω1Þδi3; i4δðω3 þ ω4ÞNðω3Þ

þ δi1 ; i3δðω1 þ ω3ÞNðω1Þδi2 ; i4δðω2 þ ω4ÞNðω2Þ
þ δi1 ; i4δðω1 þ ω4ÞNðω1Þδi2 ; i3δðω2 þ ω3ÞNðω2Þ:

[S29]

and,

EfV ðtÞgjCðθ; tÞ;ψðtÞVi1ðω1ÞVi2ðω2ÞVi3ðω3ÞVi4ðω4Þ
¼ �Vi1ðω1jC; ψÞ�Vi2ðω2jC; ψÞ�Vi3ðω3jC; ψÞ�Vi4ðω4jC; ψÞ
þ �Vi1ðω1jC; ψÞ�Vi2ðω2jC; ψÞδi3 ; i4δðω3 þ ω4ÞNðω3Þ
þ �Vi1ðω1jC; ψÞ�Vi3ðω3jC; ψÞδi2 ; i4δðω2 þ ω4ÞNðω2Þ
þ �Vi1ðω1jC; ψÞ�Vi4ðω4jC; ψÞδi2 ; i3δðω2 þ ω3ÞNðω2Þ
þ �Vi2ðω2jC; ψÞ�Vi3ðω3jC; ψÞδi1 ; i4δðω1 þ ω4ÞNðω1Þ
þ �Vi2ðω2jC; ψÞ�Vi4ðω4jC; ψÞδi1 ; i3δðω1 þ ω3ÞNðω1Þ
þ �Vi3ðω3jC; ψÞ�Vi4ðω4jC; ψÞδi1 ; i2δðω1 þ ω2ÞNðω1Þ
þ δi1; i2δðω1 þ ω2ÞNðω1Þδi3; i4δðω3 þ ω4ÞNðω3Þ
þ δi1; i3δðω1 þ ω3ÞNðω1Þδi2; i4δðω2 þ ω4ÞNðω2Þ
þ δi1; i4δðω1 þ ω4ÞNðω1Þδi2; i3δðω2 þ ω3ÞNðω2Þ:

[S30]

All other expectations can be written in the same manner.

Features of the lth Derivatives. It is important to verify the three
conditions that were used in the symmetry arguments in the main
text: (i) the denominator of ψe; i1; ...; il is Z

2l , (ii) the numerators
sum terms that distribute l derivatives among Ψ and Z, and (iii)
each term in the numerator multiplies 2l copies of Ψ, Z, or their
derivatives.

We proceed by induction. The base case is apparent. Suppose
that all three claims are true for the (l – 1)st derivatives and
write

_ψe; i1; ...; il− 1
¼ Mðl− 1Þ

Z2l− 1 ; [S31]

where M(l−1) satisfies the second and third conditions. Taking
one more derivative we obtain

_ψe; i1; ...; il ¼
Mðl− 1Þ

; il Z2l− 1 −Mðl− 1Þ2l− 1Z2l− 1 − 1Z; il

ðZ2l− 1Þ2
: [S32]

From this expression we can verify all three conditions: (i) The
new denominator is explicitly Z2l− 12 ¼ Z2l . (ii) In the first term in
the numerator, because each term in M(l−1) distributes l – 1 de-
rivatives across Ψ and Z, Mðl− 1Þ

; il distributes the l derivatives ap-
propriately. The second term is already in the desired form. (iii)
The first term in the numerator mutiplies 2l−1 + 2l−1 = 2(l–1)2 = 2l

terms whereas the second term multiplies 2l−1 + 2l−1 – 1 + 1 = 2l

terms.
These conditions were used in the development of the main text

to conclude the following: (i) Because Z[V]|V=0 ≠ 0, the de-
nominator is nonzero. Thus, a vanishing numerator implies the
whole expression vanishes. (ii) Because the number of derivatives
in a term must sum to l, if l is odd then the lth derivative can’t be
written as the product of only even-ordered derivatives. (iii) If the
number of factors in the numerator were different from the
number in the denominator, then all functional integrals would
diverge or vanish. Numerically, we evaluated the first three ker-
nels according to equations in the text and

_ψe; i1; i2; i3 ¼
1
Z8ðΨ; i1; i2; i3Z

7 −Ψ; i1; i2Z; i3Z
6

−Ψ; i1 ; i3Z; i2Z
6 −Ψ; i2 ; i3Z; i1Z

6 −Ψ; i1Z; i2; i3Z
6

−Ψ; i2Z; i1; i3Z
6 −Ψ; i3Z; i1; i2Z

6 þ 2Ψ; i1Z; i2Z; i3Z
5

þ2Ψ; i2Z; i1Z; i3Z
5 þ 2Ψ; i3Z; i1Z; i2Z

5 −ΨZ; i1; i2; i3Z
6

þ2ΨZ; i1Z; i2; i3Z
5 þ 2ΨZ; i2Z; i1; i3Z

5 þ 2ΨZ; i3Z; i1 ; i2Z
5

− 6ΨZ; i1Z; i2Z; i3Z
4Þ:

[S33]

Linear Motion Estimation. The discussion in the main text shows
that to support a linear term in the expansion, there must be
a nonzero average image < C(k, t) > in P. It is important to
realize that as a function this is not constrained to be zero. Be-
cause we separated self-motion from the dynamics of the world,
nonzero < C(k, t) > does not imply that photoreceptors expe-
rience a nonzero average contrast. Because nonzero < C(k, t) >
does not seem likely for a static prior, linear estimators may be
more appealing for adaptive motion estimation.
This section shows how linear estimators may arise with an

example. We consider an arbitrary static stimulus, C(θ). For
simplicity, we suppose that the animal rotates with constant
speed in either direction. Then time-reversal symmetry is satis-
fied and the prior takes the form

P½Cðθ; tÞ; ψðtÞ� ¼1
2
δ½Cðθ; tÞ− CðθÞ�

× ðδ½ψðtÞ−ω0t� þ δ½ψðtÞ þ ω0t�Þ:
[S34]

Because of time-reversal symmetry, Ψ{V}=0 = 0 and
j�VnðωjCðθÞ; ω0tÞj2 ¼ j�VnðωjCðθÞ; −ω0tÞj2, and it is simple to
evaluate the required derivatives,
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ZfVg¼0 ¼ exp

"
− ∑

n

ð
dω
2π

j�VnðωjCðθÞ; ω0tÞj2

2NðωÞ

#
[S35]

Ψiðω1ÞfVg¼0 ¼ exp

"
− ∑

n

ð
dω
2π

j�VnðωjCðθÞ; ω0tÞj2

2NðωÞ

#

×
ω0

4πNðω1Þ
ð�V �

i ðω1jCðθÞ; ω0tÞ− �V �
i ðω1jCðθÞ; −ω0tÞÞ:

[S36]

This calculation immediately gives the linear estimation kernel as

kð1Þi ðω1Þ ¼
ω0

4πNðω1Þ
ð�V �

i ðω1jCðθÞ; ω0tÞ− �V �
i ðω1jCðθÞ; −ω0tÞÞ:

[S37]

Note that the linear kernel is proportional to the speed.
Because the image is static, it is straightforward to evaluate the

average voltages. Performing first the time integral,

�V iðω1jC; ±ω0tÞ ¼ Tðω1Þ
ð
dteiω1t

ð
dk
2π

e− ikðθi∓ω0tÞMð− kÞCðkÞ

¼ Tðω1Þ
ð
dk
2π

e− ikθiMð− kÞCðkÞδðω1 ± kω0Þ:

[S38]

We now recall that δ(αx) = δ(x)/|α| to convert the δ-functions
over ω1 to δ-functions over k. Then,

�Viðω1jC; ±ω0tÞ ¼ Tðω1Þ
2πω0

e± iω1θi=ω0Mð±ω1=ω0ÞCð∓ω1=ω0Þ:

[S39]

The first thing to note is that the linear estimator depends upon
the photoreceptor (i.e., it is not independent of θi). This de-
pendence is a reflection of the fact that the estimator needs the
appropriate phase to perform the motion estimation.
If, as above, the phase is known, we may compute the average

estimate of the velocity. For simplicity, suppose that the animal is
stimulated with positive angular frequency. Then,

〈 _ψð1Þ
e 〉ω0t ¼ ∑

i

ð
dωkð1Þi ðωÞ�V iðωjC;ω0tÞ

¼
ð
dω
2π

ω0

2NðωÞ

�
∑
i
j�ViðωjCðθÞ;ω0tÞj2

− ∑
i

�V i
�ðωjCðθÞ; −ω0tÞ�V iðωjCðθÞ; ω0tÞ

�
:

[S40]

However, consulting our equation for the average voltage, we see
that the second term is proportional to ∑ie

2iωθi=ω0 . This sum of
phases will largely cancel, making the second term small com-
pared with the first. For clarity we ignore it:

〈 _ψð1Þ
e 〉ω0t ¼

N
8π2ω0

ð
dω
2π

jTðωÞj2jMðω=ω0Þj2jCðω=ω0Þj2

NðωÞ : [S41]

This result is strictly positive. It is easy to see that when the
organism is stimulated with negative angular frequency, the
magnitude of the estimate is the same but the sign is reversed:

〈 _ψð1Þ
e 〉−ω0t ¼ −

N
8π2ω0

ð
dω
2π

jTðωÞj2jMðω=ω0Þj2jCðω=ω0Þj2

NðωÞ :

[S42]

As desired, the linear estimator on average estimates the sign of
the velocity correctly. This example shows that if an average image

can be inferred by the animal, linear motion estimators do in fact
exist to extract motion signals from this information. It remains
unclear whether a biological system can estimate an average
image over the relevant timescale to facilitate such a motion
estimation strategy.

When the Prior Matters. In this section we investigate the question
of when the prior significantly influences the estimation strategy.
At sufficiently low signal-to-noise ratio (SNR) the neural signals
are too noisy to provide a precise motion estimate and prior
expectations dominate the estimation strategy. Contrastingly,
at high SNR the prior is less important for estimation than the
high-fidelity signal. The prior and neural signals compete for
relevance in the crossover regime, where log½Pprior½C; ψ��≈

∑N
n

Z
dω
2π

j�VnðωjC; ψÞj2

2NðωÞ : If we assume white noise, then we may

rearrange this to read S½C; ψ�≈ 2 log½Pprior½C; ψ��
NT

; where S[C,ψ]
is the average SNR per photoreceptor per unit time, N is the
number of photoreceptors, and T is the time over which signal
power and noise power are integrated. At S, the signal and prior
have comparable influence on motion estimation. We refer to S
as the equivalent SNR. The equivalent SNR is a function and
should be interpreted as determining how important the prior
probability distribution is for assigning the appropriate weight
for the pair {C(θ, t), ψ(t)}. Whereas S is a random variable, if we
consider the simple example where there are R rotational states
per unit time and C contrast states per photoreceptor per unit
time and assume all states are equally probable, then the
equivalent SNR simplifies considerably, S ∼ log(R1/NC). When
the direction of motion is to be inferred from binary random
dots, R ∼ C ∼ 2. Assuming a one-dimensional fly eye, N ∼ 75, we
obtain S ∼ 0.7. Whereas the equivalent SNR depends weakly on
R, it increases faster with stimulus complexity, C ∼ 10 ⇒ S ∼ 2.3,
C ∼ 100 ⇒ S ∼ 4.6, C ∼ 1,000 ⇒ S ∼ 6.9. For naturalistic stimuli
we expect a large number of contrast states and the photore-
ceptor SNR may become comparable to the equivalent SNR (1).
In this scenario a prior is needed to successfully analyze natural
stimuli. On the other hand, many experiments operate in an
artificial signal-dominated regime that does not require the
prior. Overly simplistic stimuli may lead to errors and mis-
represent the animal’s ability to estimate motion.
The expectations that we need to evaluate can be written

abstractly in the form, Y = EC,ψX [C, ψ]. The prior may have an
influence in the signal-dominated regime if it breaks the sym-
metry of X. Suppose T is a transformation that satisfies T 2 = Id
and X [T C, T ψ] = ± X [C, ψ]. When averaging over Pprior, the
weight of {C, ψ} and {T C, T ψ} will be Pprior[C, ψ] ± Pprior[T C,
T ψ]. If {C, ψ} is favored by the prior, the sum is essentially
Pprior[C, ψ], and if {T C, T ψ} is favored, it is ±Pprior[T C, T ψ].
At high SNR, the signal selects pairs of stimuli that cannot be
distinguished on the basis of neural signals whereas the prior
selects within pair. In particular, departures in the prior from the
symmetry can have a significant impact on the estimator by de-
stroying the cancellation facilitated by X.
We examine the magnitude of the effects produced by the

symmetry breaking, using a simple example. Suppose T is the
contrast inversion operator and consider a stimulus composed of
binary random dots. We numerically evaluate the second- and
third-order estimators (Pt = 0.01, Pv = 0.01) as a function of the
probability of a dark dot, Pdark, and quantify their performance
with the fraction of trials in which they properly distinguish left-
ward from rightward motion (Fig. S1A) and their correlation with
the true stimulus velocity (Fig. S1B). The Reichardt correlator
performs well independently of Pdark whereas the third-order
correlator requires asymmetry. For large asymmetries, both the
Reichardt and three-point correlators are suitable estimators.
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Their inclusion reliably decreases the squared error (Fig. S1C),
but they both underestimate the true velocity compared with the
full estimate (Fig. S1D). As SNR increases, the full estimator
improves, low-order estimators lose importance, and the benefit
from the three-point correlator becomes comparable to the
Reichardt correlator. We tested the estimators using 200-ms
probe stimuli (Pv=0). In Fig. S1, we used 10,000 simulations forA
and B, used 100 simulations for C and D, and compared the true
velocity to its estimate at 200 ms. We considered the kernels
fkð2Þi; iþ1; k

ð2Þ
i; iþ2; k

ð3Þ
i; iþ1; iþ2g and the full optimal estimator.

Despite the Reichardt correlator’s correlation with the velocity
and success in direction discrimination, it yields only a small
fraction of the true velocity (2) captured by the complete esti-
mator. The correlation implies that scaling the Reichardt output
would often produce a reasonable estimate of velocity. In fact,
experimental evidence suggests that this technique, termed

“contrast normalization”, may be used biologically to repair
some of the failures of pairwise models (3, 4). Because optimality
determines the size of each term in our theory, we cannot in-
clude contrast normalization explicitly in the model. However, it
should be noted that although scaling the response has been
shown to work for some stimuli, it does not apply generally (3).
Furthermore, our theory shows that quantitatively better per-
formance is obtained by including higher-order estimators and
long-range interactions. Even in simple situations, higher-order
statistics contain useful information that cannot be obtained by
two-point correlations alone, and more complex situations may
make higher-order statistics more prominent. Multipoint corre-
lators can also be used to estimate acceleration or translational
velocity, so if the organism estimates these complex parameters
directly (5), higher-order correlators may play a central role.
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Fig. S1. The onset of a three-point correlator. To test the estimators we numerically evaluated kð2Þ
i;iþ1; k

ð2Þ
i;iþ2; k

ð3Þ
i;iþ1;iþ2 for binary random dots rotating at 100°/s.

(A) The fraction of trials where the estimators correctly determined the motion direction as a function of the probability of dark dots. (B) The correlation
between estimated and true velocities. (C) The error reduces upon sequentially adding contributions from kð2Þ

i;iþ1;k
ð2Þ
i;iþ2;and kð3Þ

i;iþ1;iþ2: (D) The velocity estimates
from Reichardt and three-point correlators (left axis) are small compared with the full estimate (right axis).
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