Supporting Information

del Barco Barrantes et al. 10.1073/pnas.1015013108

Fig. S1. Modulation of cardiac gene expression and apoptosis. Expression of the indicated genes was analyzed by quantitative RT-PCR in biological triplicates of the following genotypes: wild-type (WT), $p38\alpha^{(\Delta/\Delta)} Sox2$ -*Cre* ($p38\alpha$ KO), $p38\alpha^{(\Delta/\Delta)} p38\beta^{(+/-)} Sox2$ -*Cre* ($p38\alpha$ KO- β het), $p38\beta^{(-/-)}$ ($p38\beta^{(-/-)} g38\beta^{(\Delta/\Delta)} p38\beta^{(-/-)} Sox2$ -*Cre* ($p38\alpha$ KO- β het), $p38\alpha^{(\Delta/\Delta)} p38\beta^{(-/-)} g38\alpha^{(\Delta/\Delta)} p38\beta^{(-/-)} Sox2$ -*Cre* ($p38\alpha$ KO- β het), $p38\alpha^{(\Delta/\Delta)} p38\beta^{(-/-)} g38\alpha^{(\Delta/\Delta)} p38\beta^{(-/-)} Sox2$ -*Cre* ($p38\alpha$ KO- β het), $p38\alpha^{(\Delta/\Delta)} p38\beta^{(-/-)} Sox2$ -*Cre* ($p38\alpha$ KO- β het), $p38\alpha^{(\Delta/\Delta)} p38\beta^{(-/-)} g38\alpha^{(\Delta/\Delta)} p38\beta^{(-/-)} g38\beta^{(\Delta/\Delta)} p38\beta^{(-/-)} g38\beta^{(\Delta/\Delta)} p38\beta^{(-/-)} g38\beta^{(\Delta/\Delta)} p38\beta^{(-/-)} g38\beta^{(\Delta/\Delta)} p38\beta^{(\Delta/\Delta)} p38\beta^{(\Delta/\Delta)} p38\beta^{(\Delta/\Delta)} p38\beta^{(\Delta/\Delta)} p38\beta^{(\Delta/\Delta)} p$

Fig. 52. Generation of the $p38\beta Kl\alpha$ allele. (A) Strategy for targeting the $p38\alpha$ locus. The genomic structure, targeting vector, and targeted allele for $p38\beta Kl\alpha$ are shown. The construct consisted of an in-frame-cloned $p38\beta$ cDNA fused to a SV40 polyA sequence followed by a *loxP*-flanked neomycin resistance cassette, a 3.3-kb 5' homology arm, and a 7.9-kb 3' homology arm. The A subunit of diphtheria toxin was used as a counter selection marker. Heterozygous $p38\alpha^{(\beta K/\ell)}$ mice were intercrossed with the CMV-Cre transgenic line to remove the neomycin resistance cassette. (*B*) ES cells were electroporated, and correct recombination events were verified by Southern blot analysis of genomic DNA digested with EcoRV (EV) using external probes. The wild-type band migrates at 14.6 kb, and the mutant band migrates at 6 kb (5' probe) or 9 kb (3' probe).

Fig. S3. Expression of p38 β under control of the endogenous p38 α promoter. (*A*) Quantitative RT-PCR analysis of *p38* β mRNA expression in the indicated adult tissues of mice wild-type (WT), *p38* $\beta^{(-/-)}$ (p38 β KO), and *p38\alpha^{(\beta K/I+)}p38\beta^{(-/-)}* (KIp38 β KO). (*B*) Immunoblot analysis of p38 β protein expression in brain and spleen obtained from the indicated adult mice.

Table S1. Expected and observed frequencies of genotypes and phenotypes from breeding $p38\alpha^{(lox/lox)}p38\beta^{(+/-)}$ and $p38\alpha^{(\Delta/+)}p38\beta^{(\Delta/+)}Sox2$ -Cre mice

E13 E

	E15.5								
		Phenotypes			E16.5		E18.5		
Genotype*	Expected	Observed	SB	E	VSD	Expected	Observed	Expected	Observed
Wild-type	7/112	6/112	0/8	0/8	0/3	3/48	4/48	3/48	3/48
$p38\alpha^{het} p38\beta^{wt}$	14/112	15/112	0/14	0/14	0/3	6/48	5/48	6/48	7/48
p38α ^{KO} p38β ^{wt}	7/112	6/112	0/6	0/6	0/3	3/48	3/48	3/48	4/48
$p38\alpha^{KO} p38\beta^{het}$	14/112	13/112	0/13	0/13	0/3	6/48	5/48	6/48	5/48
p38α ^{wt} p38β ^{het}	14/112	16/112	0/15	0/15	0/3	6/48	6/48	6/48	7/48
p38α ^{wt} p38β ^{KO}	7/112	8/112	0/7	0/7	0/3	3/48	4/48	3/48	3/48
$p38\alpha^{het} p38\beta^{KO}$	14/112	16/112	0/14	0/14	0/3	7/48	8/48	7/48	6/48
$p38\alpha^{het} p38\beta^{het}$	28/112	26/112	0/13	0/13	0/3	12/48	11/48	12/48	12/48
p38α ^{KO} p38β ^{KO}	7/112	6/112	7/7	2/7	4/4	3/48	2/48	3/48	0 [†] /48

*p38 α^{het} p38 β^{wt} include p38 $\alpha^{(\Delta/lox)}$ p38 $\beta^{(+/+)}$ and p38 $\alpha^{(\Delta/+)}$ p38 $\beta^{(+/+)}$ Sox2-Cre embryos; p38 α^{het} p38 β^{KO} include p38 $\alpha^{(\Delta/lox)}$ p38 $\beta^{(-/-)}$ and p38 $\alpha^{(\Delta/+)}$ p38 $\beta^{(-/-)}$ Sox2-Cre embryos; and p38 α^{het} p38 β^{het} include p38 $\alpha^{(\Delta/lox)}$ p38 $\beta^{(+/-)}$ and p38 $\alpha^{(\Delta/+)}$ p38 $\beta^{(+/-)}$ Sox2-Cre embryos.

[†]One embryo was reabsorbed.

PNAS PNAS

SB, spina bifida; E, exencephaly; VSD, ventricular septal defects.

Table S2. Expected and observed frequencies of phenotypes in embryos that express $p38\beta$ under control of the endogenous $p38\alpha$ promoter

Stage	Expected	Observed	Observed phenotype			
			Spina bifida	Exencephaly	Heart defects	
E13.5	12/48	13/48	1/13	0/13	7/9	
E18.5	14/58	12/58	0/12	0/12	N.A.	
P20	8/34	0/34	N.A.	N.A.	N.A.	

 $p38\alpha^{(\emptyset K I I \Delta)} p38\beta^{(-f-)} Sox2-Cre$ embryos were obtained from breeding $p38\alpha^{(\emptyset K I I \Delta)} p38\beta^{(+f-)} Sox2-Cre$ males with $p38\alpha^{(lox/lox)} p38\beta^{(+f-)}$ females. Note that the $p38\beta K I \alpha$ allele rescued the early lethality phenotype, but no $p38\alpha^{(\emptyset K I I \Delta)} p38\beta^{(-f-)} Sox2-Cre$ mice were found at weaning. Spina bifida and Exencephaly were also rescued whereas heart defects largely remained in $p38\alpha^{(\emptyset K I I \Delta)} p38\beta^{(-f-)} Sox2-Cre$ embryos. N.A., not analyzed.

Table S3. Primers used for quantitative RT-PCR

PNAS PNAS

Gene	5'-Forward primer-3'	5'-Reverse primer-3'	Anneal temperature, °C
ANF	gccctgagtgagcagactg	cggaagctgttgcagccta	60
BNP	ccggatcggatccgtcagtcgt	gttgtggcaagtttgtgctccaaga	60
Cdk4	ttgtacggctgatggatg	cggtcccattacttgtcac	60
CRT	aggctcctggaggatgatt	tcccactctccatccatctc	60
CyclinA1	gcggctggaaagaaagtgctctct	ctgaaccaaaatccgttgcttcctc	60
CyclinA2	gcagttttgaatcaccacatgc	tggctgcctcttcatgtaacc	60
CyclinD1	ctgcaaatggaactgcttctggtga	agcaggagaggaagttgttgggggct	60
CyclinD2	ggaactggtagtgttgggtaa	tgctgctcttgacggaactgc	60
CyclinD3	ttgcgcacgacttcctggcctt	cagacatagagcaggcgcctaggc	60
GADPH	cttcacaccatggaggaggc	ggcatggactgtggtcatgag	60
GATA4	ggttcccaggcctcttgcaatgcgg	agtggcattgctggagttaccgctg	60
GATA5	gtcaaccgaccgctagtgaggc	cattgccagtggccttggcac	60
GATA6	gccaactgtcacaccacaac	tgttaccggagcaagctttt	60
Hand1	ggatgcacaagcaggtgac	cactggtttagctccagcg	60
Hand2	ccgacaccaaactctccaag	tcttgtcgttgctgctcact	60
Mef2a	gtagcggagactcggaattg	atcttctttcgccccatttt	60
Mef2b	ctggagagaagctgctgagg	caaggtggcttggagagaag	60
Mef2c	tgccagttaccatcccagtgtccag	cgtggatccttccaacaccttgtga	60
Mef2d	cagcagccagcactacagag	acttggcagggatgactttg	60
MHC-α	tggtcaccaacaacccatacgact	tgtcagcttgtagacaccagcctt	60
ΜΗC-β	gccaacaccaacctgtccaagttc	tgcaaaggctccaggtctgagggc	60
Mlc2v	tgttcctcacgatgtttggg	ctcagtccttctctctccg	60
miR-1–1	cctgcttgggacacatacttc	cagtctggcgagagagttcc	60
miR-1–2	cattccatagcacgaatgttcata	ggctgcttcatgttttcaca	60
miR-133a-1	cattgaagaggcgatttggt	gagctgcaagaacagcagtg	60
miR-133a-2	agccaaatgctttgctgaag	tgcggcgtgatcaatg	60
p38α	gattctggattttgggctggctcg	atcttctccagtaggtcgacagcc	60
p38 β	atccatcgaggatttcagcg	cctccatgattcgcttcagc	60