Supporting Information

Öjemalm et al. 10.1073/pnas.1100120108

SI Text

Compound Characterization. ¹H NMR and ¹³C NMR were measured on a Bruker AV300 spectrometer. Chemical shifts are expressed in ppm downfield from internal standard (tetramethylsilane, 0.00 ppm), and coupling constants are reported as hertz. Splitting patterns are indicated as follows: br, broad; s, singlet; d doublet; t, triplet; q, quartet; m, multiplet. High-resolution mass spectra (HRMS) were obtained with Thermo Exactive spectrometer.

General Procedure for the Synthesis of Amino Acids with 3,5-Dinitrobenzyl Ester (Procedure A). (S)-3,5-Dinitrobenzyl 2-Amino-3-Cyclopropylpropanoate Hydrochloride (for the Introduction of Three-Membered-Ring Side Chain). The following is a representative experimental procedure of procedure A: To a solution of 2-amino-3-cyclopropylpropanoic acid (30 mg, 0.23 mmol) and Boc₂O (61 mg, 0.28 mmol) in dioxane (0.4 mL) and aqueous 1 M NaOH (0.4 mL), NaHCO₃ (48 mg, 0.57 mmol) was added at room temperature. After stirring for 5 h, the reaction mixture was diluted by adding ethyl ethanoate (EtOAc). The mixture was washed by saturated aqueous KHSO₄ and extracted with EtOAc (x3). The combined organic extracts were washed with brine, dried $(MgSO_4)$, and concentrated in vacuo. To a solution of this crude mixture in dimethylformamide (DMF) (0.8 mL), 2, 4-dinitrobenzylchloride (65 mg, 0.30 mmol), and diisopropylethylamine (42 mg, 0.057 mL, 0.42 mmol) were added at room temperature. After stirring for 16 h, the reaction was quenched by adding saturated aqueous KHSO₄, and mixture was extracted with Et₂O (x2). The combined organic extracts were washed with water (x2), saturated NaHCO₃ (x2) and brine, dried (MgSO₄), and concentrated in vacuo. The residue was purified by preparative thinlayer chromatography (PTLC) (hexane/acetone = 4/1) to afford 3,5-dinitrobenzylester (DNB) derivative (40 mg, 44%). To a solution of DNB derivative (20 mg, 0.051 mmol) in EtOAc (0.5 mL), 4 M HCl in EtOAc (2 mL) was added at 0 °C. After stirring for 10 h, starting material was disappeared and the reaction mixture was concentrated in vacuo (16 mg, 95%). ¹H NMR (300 MHz, acetone-d₆/D₂O, 10/1, vol/vol) & 0.11-0.18 (m, 2H), 0.40-0.53 (m, 2H), 0.82-0.95 (m, 1H), 1.85-1.96 (m, 2H), 4.38 (t, 1H, J = 6.3 Hz), 5.58 (d, 1H, J = 14.1 Hz), 5.62 (d, 1H, J = 14.1 Hz), 8.75 (d, 2H, J = 2.4 Hz), 8.87 (t, 1H, J = 2.4 Hz); ¹³C NMR (75 MHz, acetone-d₆/D₂O, 10/1, vol/vol) δ 4.88, 5.02, 7.24, 35.8, 54.3, 66.3, 119.2, 129.4, 140.9, 149.5, 170.2; HRMS electrospray ionization (ESI) calculated for $C_{13}H_{15}N_3O_6$: ([M + H^{+} m/z 310.1034, found: m/z 310.1032

(*s*)-3,5-Dinitrobenzyl 2-Amino-3-Cyclopentylpropanoate Hydrochloride (for the Introduction of Five-Membered-Ring Side Chain). The compound was obtained according to procedure A described above. ¹H NMR (300 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 1.06–1.22 (m, 2H), 1.41–1.63 (m, 4H), 1.75–1.89 (m, 2H), 1.96–2.08 (m, 1H), 4.22 (t, 2H, J = 7.5 Hz), 5.56 (d, 1H, J = 14.1 Hz), 5.61 (d, 1H, J = 14.1 Hz), 8.73 (d, 2H, J = 2.1 Hz), 8.89 (t, 1H, J = 2.1 Hz); ¹³C NMR (75 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 25.4, 25.5, 32.8, 33.1, 36.8, 37.8, 53.5, 66.2, 119.2, 129.3, 140.9, 149.5, 170.9; HRMS (ESI) calculated for C₁₅H₁₉N₃O₆: ([M + H]⁺)m/z 338.1347, found: m/z338.1344

(S)-3,5-Dinitrobenzyl 2-Amino-3-Cyclohexylpropanoate Hydrochloride (for the Introduction of Six-Membered-Ring Side Chain). The compound was obtained according to procedure A described above. ¹H NMR (300 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 0.85–1.03 (m, 2H), 1.05–1.32 (m, 3H), 1.52–1.69 (m, 4H), 1.72–1.85 (m, 2H), 1.85–2.03 (m, 2H), 4.30 (t, 1H, J = 7.2 Hz), 5.57 (d, 1H, J = 13.8 Hz), 5.62 (d, 1H, J = 13.8 Hz), 8.77 (d, 2H, J = 2.1 Hz), 8.90 (t, 1H, J = 2.1 Hz); ¹³C NMR (75 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 26.5, 26.6, 26.9, 33.3, 33.6, 34.3, 51.7, 66.2, 119.2, 129.4, 141.0, 149.5, 170.8; RMS (ESI) calculated for C₁₆H₂₁N₃O₆: ([M + H]⁺) m/z 352.1503, found: m/z 352.1497

(*s*)-3,5-Dinitrobenzyl 2-Aminobutanoate Hydrochloride (for the Introduction of Two-Carbon Side Chain). The compound was obtained according to procedure A described above. ¹H NMR (300 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 1.09 (t, 3H, J = 7.2 Hz), 2.05–2.22 (m, 2H), 4.35 (t, 1H, J = 6.3 Hz), 5.62 (d, 1H, J = 13.8 Hz), 5.67 (d, 1H, J = 13.8 Hz), 8.78 (d, 2H, J = 1.8 Hz), 8.94 (t, 1H, J = 1.8 Hz); ¹³C NMR (75 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 9.62, 24.3, 54.8, 66.4, 119.2, 129.4, 140.8, 149.4, 170.0; HRMS (ESI) calculated for C₁₁H₁₃N₃O₆: ([M + H]⁺)m/z 284.0877, found: m/z 284.0877

(*S*)-3,5-Dinitrobenzyl 2-Aminopentanoate Hydrochloride (for the Introduction of Three-Carbon Side Chain). The compound was obtained according to procedure A described above. ¹H NMR (300 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 0.97 (t, 3H, J = 7.2 Hz), 1.39–1.69 (m, 2H), 1.98–2.16 (m, 2H), 4.38 (t, 1H, J = 6.3 Hz), 5.62 (d, 1H, J = 13.5 Hz), 5.67 (t, 1H, J = 13.5 Hz), 8.93 (t, 1H, J = 2.1 Hz); ¹³C NMR (75 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 13.8, 18.8, 32.9, 53.6, 66.4, 119.1, 129.3, 140.9, 149.5, 170.1; HRMS (ESI) calculated for C₁₂H₁₅N₃O₆: ([M + H]⁺) m/z 298.1034, found: m/z 298.1031

(*S*)-3,5-Dinitrobenzyl 2-Aminohexanoate Hydrochloride (for the Introduction of Four-Carbon Side Chain). The compound was obtained according to procedure A described above. ¹H NMR (300 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 0.88 (t, 3H, J = 7.2 Hz), 1.30–1.63 (m, 4H), 2.09–2.14 (m, 2H), 4.31 (t, 1H, J = 6.3 Hz), 5.63 (s, 2H), 8.81 (d, 2H, J = 2.4 Hz), 8.92 (t, 1H, J = 2.4 Hz); ¹³C NMR (75 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 13.3, 22.8, 27.7, 30.7, 53.7, 66.2, 119.2, 129.5, 141.0, 148.6, 169.1; HRMS (ESI) calculated for C₁₃H₁₇N₃O₆: ([M + H]⁺)*m/z* 312.1190, found: *m/z* 312.1189

(*S*)-3,5-Dinitrobenzyl 2-Aminoheptanoate Hydrochloride (for the Introduction of Five-Carbon Side Chain). The compound was obtained according to procedure A described above. ¹H NMR (300 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 0.84 (t, 3H, J = 6.6 Hz), 1.19–1.56 (m, 6H), 2.01–2.16 (m, 2H), 4.38 (t, 1H, J = 6.3 Hz), 5.61 (d, 1H, J = 13.2 Hz), 5.69 (d, 1H, J = 13.2 Hz), 5.61 (d, 1H, J = 13.2 Hz), 5.69 (d, 1H, J = 13.2 Hz), 8.78 (s, 2H), 8.94 (s, 1H); ¹³C NMR (75 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 14.3, 23.0, 25.4, 29.3, 30.9, 32.0, 53.7, 66.4, 119.2, 129.4, 140.9, 149.4, 170.1; HRMS (ESI) calculated for C₁₆H₂₃N₃O₆: ([M + H]⁺) m/z 326.1347, found: m/z 326.1342

(*s*)-3,5-Dinitrobenzyl 2-Aminooctanoate Hydrochloride (for the Introduction of Six-Carbon Side Chain). The compound was obtained according to procedure A described above. ¹H NMR (300 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 0.83 (t, 3H, J = 6.9 Hz), 1.13– 1.63 (m, 8H), 2.02–2.15 (m, 2H), 4.38 (t, 1H, J = 6.3 Hz), 5.61 (d, 1H, J = 13.5 Hz), 5.70 (d, 1H, J = 13.5 Hz), 8.78 (d, 2H, J = 2.4 Hz), 8.94 (t, 1H, J = 2.4 Hz); ¹³C NMR (75 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 14.3, 23.0, 25.4, 29.3, 30.9, 32.0, 53.7, 66.4, 119.2, 129.4, 140.9, 149.4, 170.1; HRMS (ESI) calculated for $C_{16}H_{23}N_3O_6$: $([M + H]^+)m/z$ 340.1503, found: m/z 340.1495

(*S*)-3,5-Dinitrobenzyl 2-Aminononanoate Hydrochloride (for the Introduction of Seven-Carbon Side Chain). The compound was obtained according to procedure A described above. ¹H NMR (300 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 0.80 (t, 3H, J = 6.9 Hz), 1.19–1.32 (m, 12H), 4.10 (t, 1H, J = 6.3 Hz), 5.48 (d, 1H, J = 12.9 Hz), 5.52 (d, 1H, J = 12.9 Hz), 8.71 (s, 2H), 8.89 (s, 1H); ¹³C NMR (75 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 14.3, 23.2, 25.8, 29.7, 29.9, 32.4, 32.8, 54.2, 65.7, 119.1, 128.5, 129.2, 141.4, 149.5; HRMS (ESI) calculated for C₁₆H₂₃N₃O₆: ([M + H]⁺)*m/z* 354.1660, found: *m/z* 354.1657

(*s*)-3,5-Dinitrobenzyl 2-Aminodecanoate Hydrochloride (for the Introduction of Eight-Carbon Side Chain). The compound was obtained according to procedure A described above. ¹H NMR (300 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 0.688 (t, 3H, J = 7.2 Hz), 0.95–1.33 (m, 12H), 1.90 (dt, 2H, J = 9.3, 6.0 Hz), 4.21 (t, 1H, J = 6.0 Hz), 5.39 (d, 1H, J = 13.2 Hz), 5.54 (d, 1H, J = 13.2 Hz), 8.65 (d, 2H, J = 1.8 Hz), 8.96 (t, 1H, J = 1.8 Hz); ¹³C NMR (75 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 13.4, 22.0, 23.9, 28.1, 28.28, 28.35, 29.7, 31.1, 52.7, 65.7, 119.0, 128.8, 139.2, 148.4, 169.8; HRMS (ESI) calculated for C₁₇H₂₅N₃O₆: ([M + H]⁺) m/z 368.1816, found: m/z 368.1812

General Procedure for the Synthesis of Amino Acids with Cyanomethyl Ester (CME) (Procedure B). (S)-Cyanomethyl 2-Amino-3-(1-Methyl-1H-indol-3-yl) Propanoate Trifluoroacetate (for the Introduction of *Me-Trp*). The following is a representative experimental procedure of Procedure B: To a solution of 2-amino-3-(1-methyl-1H-indol-3-yl)propanoic acid (50 mg, 0.23 mmol) and N-[2-(trimethylsilyl) ethoxycarbonyl-oxy]succinimide (79 mg, 0.31 mmol) in H₂O (0.4 mL) and THF (0.4 mL), NaHCO₃ (48 mg, 0.57 mmol) was added at room temperature. After stirring for 5 h, the reaction mixture was diluted by adding EtOAc. The mixture was washed by saturated aqueous KHSO₄ and extracted with EtOAc (x3). The combined organic extracts were washed with brine, dried (MgSO₄), and concentrated in vacuo. To a solution of this crude mixture in DMF (0.8 mL), chloroacetonitrile (25 mg, 0.021 mL, 0.33 mmol) and triethylamine (76 mg, 0.10 mL, 0.75 mmol) were added at room temperature. After stirring for 16 h, the reaction was quenched by adding saturated aqueous KHSO₄, and mixture was extracted with Et_2O (x2). The combined organic extracts were washed with water (x2), saturated NaHCO₃ (x2) and brine, dried (MgSO₄), and concentrated in vacuo. The residue was purified by PTLC (hexane/EtOAc = 2/1) to afford CME derivative (72 mg, 78%). To a solution of DNB derivative (20 mg, 0.051 mmol) in EtOAc (0.5 mL), CME derivative (72 mg, 78%). To a solution of CME derivative (13 mg, 0.032 mmol) in CH_2Cl_2 (1 mL) was added trifluoroacetic acid (2 mL) at 0 °C. After stirring for 10 h, starting material was disappeared. The reaction mixture was concentrated in vacuo (13 mg, quantitative). ¹H NMR (300 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 3.50 (dd, 1H, J = 6.6, 2.4 Hz), 3.79 (s, 3H), 4.60 (t, 1H, J = 6.6 Hz), 4.97 (d, 1H, J = 15.9 Hz), 5.57 (d, 1H, J = 15.9 Hz), 7.18 (ddd, 1H, J = 8.1, 7.2, 0.9 Hz), 7.24 (s, 1H), 7.30 (ddd, 1H, J = 8.1, 7.2, 0.9 Hz), 7.46 (d, 1H, J = 8.1 Hz), 7.62 (d, 1H, J = 8.1 Hz); ¹³C NMR (75 MHz, acetone-*d*₆/D₂O, 10/1, vol/vol) δ 25.7, 32.2, 50.2, 53.2, 104.7, 110.1, 114.7, 116.6 (q, 1C, J = 288 Hz), 118.2, 119.6, 122.2, 127.0, 129.5, 137.1, 161.9 (q, 1C, J = 35 Hz), 168.5; HRMS (ESI) calculated for $C_{14}H_{15}N_3O_2$: $([M + H]^+)m/z$ 258.1237, found: m/z 258.1227

(S)-Cyanomethyl 2-Amino-3-(1H-Indol-3-yl) Propanoate Trifluoroacetate (for the Introduction of Trp). The compound was obtained according to procedure B described above. ¹H NMR (300 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 2.78 (s, 1H), 3.54 (dd, 1H, J = 15.3, 6.6 Hz), 3.59 (dd, 1H, J = 15.3, 6.6 Hz), 4.63 (t, 1H, J = 6.6 Hz), 5.01 (d, 1H, J = 15.9 Hz), 5.07 (d, 1H, J = 15.9 Hz), 7.22 (ddd, 1H, J = 8.1, 6.9, 1.5 Hz), 7.31 (ddd, 1H, J = 8.1, 6.9, 0.9 Hz), 7.36 (s, 1H), 7.56 (dd, 1H, J = 6.9, 1.5 Hz), 7.65 (dd, 1H, J = 6.9, 1.5 Hz); ¹³C NMR (75 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 25.6, 50.3, 53.2, 105.7, 112.1, 116.4 (q, 1C, J = 290 Hz), 114.4, 117.9, 119.7, 122.3, 125.4, 126.4, 136.3, 168.6; HRMS (ESI) calculated for C₁₃H₁₃N₃O₂: ([M + H]⁺)m/z 244.1081, found: m/z 244.1080

(*s*)-*Cyanomethyl* 2-*Amino-3*-(4-*Methoxyphenyl*) Propanoate Trifluoroacetate (for the Introduction of Me-Tyr). The compound was obtained according to procedure B described above. ¹H NMR (300 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 3.16 (d, 1H, J = 6.6 Hz), 3.70 (s, 3H), 4.41 (t, 1H, J = 6.6 Hz), 4.90 (d, 1H, J = 15.9 Hz), 4.96 (d, 1H, J = 15.9 Hz), 6.86–6.89 (m, 2H), 7.10– 7.14 (m, 2H); ¹³C NMR (75 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 34.7, 50.3, 53.9, 55.3, 114.7, 116.4 (q, 1C, J = 290 Hz), 125.6, 130.8, 158.7, 162.7 (q, 1C, J = 35 Hz), 168.3; HRMS (ESI) calculated for C₁₂H₁₄N₂O₃: ([M + H]⁺)m/z 235.1077, found: m/z 235.1076

(*S*)-*Cyanomethyl 2-Amino-3-(4-Hydroxyphenyl) Propanoate Trifluoroacetate (for the Introduction of Tyr).* The compound was obtained according to procedure B described above. ¹H NMR (300 MHz, D₂O, the minor rotamer were marked with an asterisk) δ 3.03–3.25 (m, 2H), 4.27–4.44 (m, 1H), 4.48* (d, 0.3H, *J* = 14.4 Hz), 4.54* (d, 0.3H, *J* = 14.4 Hz), 4.91 (d, 0.7H, *J* = 15.9 Hz), 4.97 (d, 0.7H, *J* = 15.9 Hz), 6.75–6.82 (m, 2H), 7.03–7.11 (m, 2H); ¹³C NMR (75 MHz, D₂O) δ 34.6, 50.3, 53.9, 114.7, 115.89, 115.97, 116.2 (q, 1C, *J* = 290 Hz), 124.9, 130.77, 130.82, 155.3, 162.7 (q, 1C, *J* = 35 Hz), 168.3; HRMS (ESI) calculated for C₁₂H₁₄N₂O₃: ([M + H]⁺) *m/z* 221.0921, found: *m/z* 221.0933

(*s*)-*Cyanomethyl 2-Amino-3-(Benzo[b]thiophen-3-yl) Propanoate Trifluoroacetate (for the Introduction of Benzothiophene Side Chain).* The compound was obtained according to procedure B described above. ¹H NMR (300 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 3.60 (dd, 1H, J = 14.4, 7.2 Hz), 3.67 (dd, 1H, J = 14.4, 7.2 Hz), 4.67 (t, 1H, J = 7.2 Hz), 4.96 (d, 1H, J = 15.9 Hz), 5.02 (d, 1H, J = 15.9 Hz), 7.45–7.56 (m, 2H), 7.57 (s, 1H), 7.85 (dd, 1H, J = 6.6, 1.2 Hz), 8.01 (dd, 1H, J = 6.9, 1.2 Hz); ¹³C NMR (75 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 28.4, 50.4, 52.4, 114.5, 116.4 (q, 1C, J = 290 Hz), 121.1, 123.3, 124.7, 125.0, 126.8, 127.6, 137.7, 140.3, 162.7 (q, 1C, J = 35 Hz), 168.2; HRMS (ESI) calculated for $C_{13}H_{12}N_2O_2S$: ([M + H]⁺) m/z 261.0692, found: m/z 261.0684

(*S*)-*Cyanomethyl 2-Amino-3-(4-Aminophenyl) Propanoate Trifluoroacetate (for the Introduction of Aniline Side Chain).* The compound was obtained according to procedure B described above. ¹H NMR (300 MHz, DMSO-*d*₆/D₂O, 10/1, vol/vol, the minor rotamer was marked with an asterisk) δ 3.14–3.34 (m, 2H), 4.35–4.48 (m, 1H), 4.53* (d, 0.4H, *J* = 15.3 Hz), 4.60* (d, 0.4H, *J* = 15.3 Hz), 5.07 (s, 1.2H), 7.33–7.51(m, 4H); ¹³C NMR (75 MHz, DMSO-*d*₆/D₂O, 10/1, vol/vol) δ 34.9, 50.3, 53.4, 114.6, 116.4 (q, 1C, *J* = 288 Hz), 118.3, 131.0, 131.2, 134.7, 168.1; HRMS (ESI) calculated for C₁₃H₁₂N₂O₂S: ([M + H]⁺)*m/z* 220.1081, found: *m/z* 220.1081

(S)-Cyanomethyl 2-Amino-3-(Biphenyl-4-yl) Propanoate Trifluoroacetate (for the Introduction of Biphenyl). The compound was obtained according to procedure B described above. ¹H NMR (300 MHz, acetone- d_6/D_2O , 10/1, vol/vol, the minor rotamer was marked with an asterisk) δ 3.44–3.65 (m, 2H), 4.76* (br, 0.25H), 5.02–5.15

(m, 2H), 5.35 (dd, 0.75H, J = 9.9, 4.5 Hz), 7.33–7.41 (m, 1H), 7.44-7.52 (m, 4H), 7.61-7.70 (m, 4H); ¹³C NMR (75 MHz, acetone-d₆/D₂O, 10/1, vol/vol) & 36.9, 50.8, 62.7, 115.3, 127.7, 127.99, 128.05, 128.2, 128.3, 129.71, 129.75, 129.77, 131.6, 135.8, 140.9, 141.2, 169.2; HRMS (ESI) calculated for $C_{17}H_{16}N_2O_2$: ([M + H]⁺) m/z 281.1285, found: m/z 281.1285

(S)-Cyanomethyl 2-Amino-3-(Naphthalen-1-yl)Propanoate Trifluoroacetate (for the Introduction of 1-Naphtyl Side Chain). The compound was obtained according to procedure B described above. ¹H NMR (300 MHz, acetone- d_6/D_2O , 10/1, vol/vol, the minor rotamer was marked with an asterisk) & 3.70-3.87 (m, 1H), 3.96-4.11 (m, 1H), 4.70 (t, 0.7H, J = 7.5 Hz), 4.89 (d, 0.7H, J =16.2 Hz), 4.95 (d, 0.7H, J = 16.2 Hz), 5.05^{*} (d, 0.3H, J = 16.5 Hz), 5.11^* (d, 0.3H, J = 16.5 Hz), 5.22^* (dd, 0.3H, J = 10.2, 3.9 Hz), 7.43–7.64 (m, 4H), 7.89 (d, 1H, J = 8.1 Hz), 7.96 (dd, 1H, J = 8.1, 1.2 Hz), 8.33 (dd, 1H, J = 7.5, 7.2 Hz); ¹³C NMR (75 MHz, acetone- d_6/D_2O , 10/1, vol/vol) δ 34.6, 50.6, 54.3, 115.1, 124.1, 126.4, 126.9, 127.6, 129.4, 129.4, 129.9, 131.5, 132.7, 134.9, 169.3; HRMS (ESI) calculated for $C_{15}H_{14}N_2O_2$: ([M + H]⁺) m/z 255.1128, found: m/z 255.1119

(S)-Cyanomethyl 2-Amino-3-(Naphthalen-6-yl) Propanoate Trifluoroacetate (for the Introduction of 2-Naphtyl Side Chain). The compound was obtained according to procedure B described above. ¹H NMR (300 MHz, acetone-d₆/D₂O, 10/1, vol/vol) δ 3.43 (dd, 1H, J = 15.3, 6.9 Hz), 3.48 (dd, 1H, J = 15.3, 6.9 Hz), 4.67 (t, 1H, J = 6.9 Hz), 4.94 (d, 1H, J = 16.2 Hz), 5.03 (d, 2H, J = 16.2 Hz)J = 16.2 Hz, 7.37 (dd, 1H, J = 8.7, 1.8 Hz), 7.46–7.54 (m, 2H), 7.74 (s, 1H), 7.78–7.92 (m, 3H); ¹³C NMR (75 MHz, acetone-d₆/D₂O, 10/1, vol/vol) & 35.8, 50.2, 53.8, 114.6, 116.5 (q, 1C, J = 290 Hz), 126.6, 126.8, 126.9, 127.75, 127.78, 128.5, 129.1, 130.9, 132.7, 133.2, 162.5 (q, 1C, J = 35 Hz), 168.2; HRMS (ESI) calculated for $C_{15}H_{14}N_2O_2$: $([M + H]^+)m/z$ 255.1128, found: m/z 255.1117

(S)-Cyanomethyl 2-Amino-3-Phenylpropanoate Hydrochloride (for the Introduction of Phe). The compound was obtained according to procedure B described above and also reported in ref. 1. ¹H NMR (300 MHz, DMSO- d_6 , the minor rotamers was marked with asterisks) & 3.08-3.35 (m, 2H), 4.28-4.44 (m, 1H), 4.45* (d, 0.2H, J = 15.6 Hz), 4.54^* (d, 0.2H, J = 15.6 Hz), 4.76^{**} (d, 0.2H, J = 14.7 Hz), 4.82^{**} (d, 0.2H, J = 14.7 Hz), 5.02 (d, 0.6H, J = 16.5 Hz), 7.20–7.48 (m, 5H), 8.88 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 35.6, 50.0, 53.0, 115.1, 127.3, 128.5, 128.6, 129.4, 129.5, 168.1; HRMS (ESI) calculated for $C_{11}H_{12}N_2O_2$: $([M + H]^+)m/z$ 284.0877, found: m/z 284.0877

1. Saito H, Kourouklis D, Suga H (2001) An in vitro evolved precursor tRNA with aminoa-
cylation activity. EMBO J 20:1797–1806.

Table S1. Measured ΔG_{app}	, values and standard deviations (three or four mea	surements)
in kcal/mol for all sequer	nces and amino acids in the study	

H seg	ments with G flanks (helix length 19)		
ID	Amino acid Sequence of test helix H3 (S)-2-aminobutanoic acid	ΔG^{meas}_{app}	SD
1	GGPG*AAALAAAAAAAAAAAAAAAAAGPGG	0.72	0.05
2	GGPGAA*ALAAAAAAAAAAAAAAAGPGG	0.36	0.04
3	GGPGAAAAL*AAAAAAAAAAAAAAGPGG	0.52	0.03
4	GGPGAAAALAAAA*AAAALAAAAGPGG	0.55	0.12
5	GGPGAAAALAAAAAAA*LAAAAGPGG	0.49	0.03
6	GGPGAAAALAAAAAAAAAAAAAA	0.58	0.04
7	GGPGAAAALAAAAAAAAAAAAAAAAAA	0.53	0.11
	(S)-2-aminopentanoic acid (L-norvaline)		
8	GGPG*AAALAAAAAAAAAAAAAAAAAGPGG	0.36	0.05
9	GGPGAA*ALAAAAAAAAAAAAAAAGPGG	0.31	0.03
10	GGPGAAAAL*AAAAAAAAAAAAAAGPGG	0.27	0.07
11	GGPGAAAALAAAA*AAAALAAAAGPGG	0.28	0.03
12	GGPGAAAALAAAAAAA*LAAAAGPGG	0.36	0.03
13	GGPGAAAALAAAAAAAAAAAAAA	0.36	0.03
14	GGPGAAAALAAAAAAAAAAAAAAAAAA	0.41	0.06
	(S)-2-aminohexanoic acid (L-norleucine)		
15	GGPG*AAALAAAAAAAAAAAAAAAAGPGG	0.12	0.01
16	GGPGAA*ALAAAAAAAAAAAAAAGPGG	0.05	0.05
17	GGPGAAAAL*AAAAAAAAAAAAAAGPGG	-0.02	0.03
18	GGPGAAAALAAAA*AAAALAAAAGPGG	0.11	0.04
19	GGPGAAAALAAAAAAA*LAAAAGPGG	0.30	0.06
20	GGPGAAAALAAAAAAAAAAAAAAGPGG	0.21	0.07
21	GGPGAAAALAAAAAAAAAAAAAAAAAA	0.23	0.03
	(S)-2-aminoheptanoic acid		
22	GGPG*AAALAAAAAAAAAAAAAAAAGPGG	-0.02	0.09
23	GGPGAA*ALAAAAAAAAAAAAAAAGPGG	-0.28	0.07
24	GGPGAAAAL*AAAAAAAAAAAAAAGPGG	-0.34	0.04
25	GGPGAAAALAAAA*AAAALAAAAGPGG	-0.28	0.10
26	GGPGAAAALAAAAAAAA*LAAAAGPGG	-0.07	0.05
27	GGPGAAAALAAAAAAAAAAAAAA	0.06	0.05
28	GGPGAAAALAAAAAAAAAAAAAAAAAA	0.03	0.09

H segments with G flanks (helix l	length	19)
-----------------------------------	--------	-----

ID	Amino acid Sequence of test helix H3	ΔG^{meas}_{app}	SD
29		_0.08	0.06
30		-0.00	0.00
30		-0.40	0.05
32	GGPGAAAAI AAAA*AAAAI AAAAGPGG	-0.62	0.05
33	GGPGAAAAI AAAAAAAA*I AAAAGPGG	-0.26	0.07
34	GGPGAAAAI AAAAAAAAAAAAAAGPGG	0.20	0.07
35	GGPGAAAALAAAAAAAAAAAAAAAAAA	0.16	0.06
	(S)-2-aminononanoic acid		
36	GGPG*AAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	-0.23	0.05
37	GGPGAA*ALAAAAAAAAAAAAAAAGPGG	-0.47	0.11
38	GGPGAAAAL*AAAAAAAAAAAAAGPGG	-0.64	0.06
39	GGPGAAAALAAAA*AAAALAAAAGPGG	-0.79	0.06
40	GGPGAAAALAAAAAAA*LAAAAGPGG	-0.48	0.07
41	GGPGAAAALAAAAAAAAAAAAAAGPGG	-0.36	0.00
42	GGPGAAAALAAAAAAAAAAAAAAAAA	-0.29	0.07
	(S)-2-aminodecanoic acid		
43	GGPG*AAALAAAAAAAAAAAAAAAAAGPGG	-0.23	0.08
44	GGPGAA*ALAAAAAAAAAAAAAGPGG	-0.71	0.17
45	GGPGAAAAL*AAAAAAAAAAAAAGPGG	-0.69	0.08
46	GGPGAAAALAAAA*AAAALAAAAGPGG	-0.96	0.10
47	GGPGAAAALAAAAAAA*LAAAAGPGG	-0.70	0.06
48	GGPGAAAALAAAAAAAAAAAAAA	-0.55	0.06
49	GGPGAAAALAAAAAAAAAAAAAAAAAA	-0.30	0.06
	(5)-2-amino-3-cyclopropylpropanoic acid		
50	GGPG*AAALAAAAAAAAAAAAAAAAAGPGG	0.43	0.02
51	GGPGAA*ALAAAAAAAAAAAAAGPGG	0.4	0.04
52	GGPGAAAAL*AAAAAAAAAAAAGPGG	0.32	0.01
53	GGPGAAAALAAAA*AAAALAAAAGPGG	0.33	0.03
54	GGPGAAAALAAAAAAA*LAAAAGPGG	0.57	0.09
55	GGPGAAAALAAAAAAAAAAAAAGPGG	0.43	0.07
56	GGPGAAAALAAAAAAAAAAAAAAAAGPGG	0.32	0.04
	(S)-2-amino-3-cyclopentylpropanoic acid		
57		0 10	0.08
58	GGPGAA*ALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	0.10	0.00
59	GGPGΔΔΔΔΙ *ΔΔΔΔΔΔΔΔΔΔΔΔGPGG	_0.00	0.05
60	GGPGAAAAI AAAA*AAAAI AAAAGPGG	-0.06	0.08
61	GGPGAAAAI AAAAAAAA*I AAAAGPGG	0.00	0.00
67	GGPGAAAAI AAAAAAAAAAAAAAGPGG	0.01	0.05
63	GGPGAAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	-0.09	0.02
	(S) 2 amino 2 avalency upropanois asid		
64		0.35	0.04
65		0.55	0.04
66		0.03	0.01
67		_0.03	0.04
68		-0.03	0.05
60		0.17	0.05
69 70	GGPGAAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	0.15	0.05
	a selected data to a		
71		0.30	0 02
72		0.50	0.05
72 72		0.52	0.00
15 7/		0.14	0.06
/4 75		0.29	0.05
75		0.35	0.07
76 77	GGPGAAAALAAAAAAAAAAAAAAA GGPGAAAALAAAAAAAAAA	0.29	0.02
78	O-methyl-L-tyrosine	0.46	0 በጽ
70		0.40	0.00
80		0.40 0.20	0.03
Q1		0.20 0.20	0.05
UI QD		0.20	0.00
02 82		0.44 0.20	0.04
202		0.23	0.05
04	UUF JAAAALAAAAAAAAAAAAAAAA "UPUU	0.22	0.05

Н	segments	with	G	flanks	(helix	length	19)
					•		

PNAS PNAS

ID	Amino acid	Sequence of test helix H3	$\Delta {m G}^{{\sf meas}}{}_{{\sf app}}$	SD
85	(S)-2-amino-3-(4-aminophenyl)propanoic acid GGPG*AAALALAAAAALALAAAAGPGG	-0.71	0.01
86		GGPGAA*ALALAAAAALALAAAAGPGG	-0.41	0.04
87		GGPGAAAAL*LAAAAALALAAAAGPGG	-0.06	0.09
88		GGPGAAAALALAA*AALALAAAAGPGG	0.15	0.07
89		GGPGAAAALALAAAAAL*LAAAAGPGG	-0.39	0.01
90		GGPGAAAALALAAAAALALA*AAGPGG	-0.94	0.13
91		GGPGAAAALALAAAAALALAAA*GPGG	-0.76	0.08
02	L-tyrosine		0.60	0 12
92 02			0.00	0.12
93			0.78	0.07
94			0.00	0.11
96			0.90	0.11
97			0.50	0.05
98		GGPGAAAALAAAAAAAAAAAAAAAA	0.77	0.05
	L-tyrosine			
99	-	GGPG*AAALALAAAAALALAAAAGPGG	-0.82	0.12
100		GGPGAA*ALALAAAAALALAAAAGPGG	-0.62	0.01
101		GGPGAAAAL*LAAAAALALAAAAGPGG	-0.49	0.03
102		GGPGAAAALALAA*AALALAAAAGPGG	0.18	0.02
103		GGPGAAAALALAAAAAL*LAAAAGPGG	-0.62	0.08
104		GGPGAAAALALAAAAALALA*AAGPGG	-1.11	0.09
105		GGPGAAAALALAAAAALALAAA*GPGG	-0.90	0.07
	∟-tryptophan			
106		GGPG*AAALAAAAAAAAAAAAAAAAAAGPGG	0.07	0.04
107		GGPGAA*ALAAAAAAAAAAAAAAAAGPGG	0.23	0.05
108		GGPGAAAAL*AAAAAAAAAAAAAAGPGG	0.66	0.05
109		GGPGAAAALAAAA*AAAALAAAAGPGG	0.77	0.05
110		GGPGAAAALAAAAAAA*LAAAAGPGG	0.66	0.08
111 112			0.25	0.09
112			0.45	0.12
112	L-tryptophan		1 /1	0 17
11/			-1.41	0.17
114			- 1.04	0.08
116			-0.03	0.07
117			_0.97	0.05
118			_1 47	0.05
119		GGPGAAAALALAAAAAALALAAA*GPGG	-1.19	0.07
	(S)-2-amino-3-(1-methyl-1 <i>H</i> -indol-3-yl)propanoic acid		
120	., .	GGPG*AAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	0.06	0.06
121		GGPGAA*ALAAAAAAAAAAAAAAAAGPGG	0.15	0.03
122		GGPGAAAAL*AAAAAAAAAAAAAAAAAGPGG	0.17	0.10
123		GGPGAAAALAAAA*AAAALAAAAGPGG	0.15	0.09
124		GGPGAAAALAAAAAAAA*LAAAAGPGG	0.41	0.09
125		GGPGAAAALAAAAAAAAAAAAAA	0.09	0.02
126		GGPGAAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	0.17	0.08
	(S)-2-amino-3-(benzo[<i>b</i>]thiophen-3-yl)propaonoic acid		
127		GGPG*AAALAAAAAAAAAAAAAAAAAGPGG	-0.05	0.09
128		GGPGAA*ALAAAAAAAAAAAAAAAAAGPGG	-0.12	0.03
129		GGPGAAAAL*AAAAAAAAAAAAAAAAGPGG	-0.18	0.01
130		GGPGAAAALAAAA*AAAALAAAAGPGG	-0.20	0.01
131		GGPGAAAALAAAAAAA*LAAAAGPGG	0.09	0.11
132 133		GGPGAAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	-0.02 -0.19	0.03
	(6) 2 1 - (0.15	0.02
13/	(S)-2-amino-3-(_0 11	0.00
134			_0.17	0.00
136		GGPGΔΔΔΔΙ *ΔΔΔΔΔΔΔΔΔΙΔΔΔΟΓΟΟ	_0.14 _0.20	0.02
137		GGPGΔΔΔΔΙΔΔΔΔΔ*ΔΔΔΔΙΔΔΔΔGPGG	_0.20	0.04
138		GGPGAAAALAAAAAAAA*I AAAAGPGG	0.03	0.01
139		GGPGAAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	-0.11	0.02

	H seg	ments	with	G	flanks	(helix	length	19)
--	-------	-------	------	---	--------	--------	--------	-----

PNAS PNAS

ID	Amino acid	Sequence of test helix H3	$\Delta G^{\text{meas}}_{\text{app}}$	SD
140		GGPGAAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	-0.06	0.00
	(6) 2			
1/1	(S)-2-amino-3-		0.03	0.08
1/17			0.03	0.00
142			-0.04	0.04
145			-0.13	0.00
144			-0.24	0.04
145			0.01	0.05
140			-0.07	0.05
147		GGFGAAAALAAAAAAAAAAAAAAA	-0.05	0.06
	(S)-2-amino-3-	(biphenyl-4-yl) propanoic acid		
148		GGPG*AAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	-0.06	0.02
149		GGPGAA*ALAAAAAAAAAAAAAAAGPGG	-0.15	0.05
150		GGPGAAAAL*AAAAAAAAAAAAAAGPGG	-0.43	0.02
151		GGPGAAAALAAAA*AAAALAAAAGPGG	-0.37	0.07
152		GGPGAAAALAAAAAAA*LAAAAGPGG	-0.07	0.02
153		GGPGAAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	-0.07	0.00
154		GGPGAAAALAAAAAAAAAAAAAAAAA	-0.21	0.07
	∟-alanine			
155		GGPGAAAALAAAAAAAAAAAAAAAGPGG	0.66	0.06
	ı-valine			
156	2 10	GGPGAAAALAAAAVAAAALAAAAGPGG	0.18	0.03
	L-leucine			
157		GGPGAAAALAAAALAAAALAAAAGPGG	0.10	0.02
	Licolousino			
158	L-Isoleucine		_0.07	0.05
150			-0.07	0.05
	amino acid	sequence of test helix H4	ΔG^{meas}_{app}	SD
	(6) 2 amin a a	town air and a		
150	(S)-2-aminooc		0.50	0.00
159			0.52	0.09
160			0.49	0.05
161		GGPGAAAAA^AAAAAAAAAAAAAAAAGPGG	0.34	0.08
162		GGPGAAAAAAAAAAAAAAAAAAAAAAGPGG	0.29	0.05
163		GGPGAAAAAAAAAAAAAAAAAAAAAGPGG	0.18	0.03
164		GGPGAAAAAAAAAAAAAAAAAA	0.36	0.10
165		GGPGAAAAAAAAAAAAAAAAAAAA	0.29	0.10
	(S)-2-aminode	canoic acid		
166	(-)	GGPG*AAAAAAAAAAAAAAAAAAAAAGPGG	0.16	0.07
167		GGPGAA*AAAAAAAAAAAAAAAAAAGPGG	0.31	0.05
168		GGPGAAAAA*AAAAAAAAAAAAAAAAAGPGG	0.19	0.05
169		GGPGAAAAAAAAA*AAAAAAAAAAGPGG	0.04	0.04
170		GGPGAAAAAAAAAAAAAAA*AAAAAGPGG	-0.03	0.11
171		GGPGAAAAAAAAAAAAAAAAAAAA	-0.02	0.15
172		GGPGAAAAAAAAAAAAAAAAAAAAAAA	0.12	0.08
-				
	∟-alanine			
173		GGPGAAAAAAAAAAAAAAAAAAAAAAAAGPGG	1.20	0.10