Supporting information for:

Structural basis for complement Factor I control and its disease-associated sequence polymorphisms.

Pietro Roversi^{1a}, Steven Johnson^{1a}, Joseph J.E. Caesar^a, Florence McLean^a, Kirstin J. Leath^a, Stefanos A. Tsiftsoglou^b, B. Paul Morgan^c, Claire L. Harris^c, Robert B. Sim^b and Susan M. Lea^{a23}

^a: Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, England, UK;

^b: Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England, UK;

^c: Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, Wales, UK

The authors declare no conflict of interest.

Classification: Biological Sciences, Biochemistry⁴

¹ P.R. and S.J. contributed equally to this work

² To whom correspondence may be addressed. E-mail: <u>susan.lea@path.ox.ac.uk</u>, tel.: 0044-1865-275181; fax: 0044-1865-275556

³ Author contributions: P.R., S.J., R.B.S., B.P.M, C.L.H. and S.M.L. designed research; P.R., S.J., J.J.E.C., F.M., K.J.L, S.A.T. and S.M.L. performed research; P.R., S.J., J.J.E.C., F.M., K.J.L, B.P.M, C.L.H., S.A.T. and S.M.L.analyzed data; and P.R., S.J. and S.M.L. wrote the paper.

⁴ The coordinates and measured structure factor amplitudes for the Factor I crystal have been deposited in the Protein Data Bank (accession code 2XRB).

Fig S1. Factor I sequence alignment across species.

The fI sequences belong to the following database entries: Man (*Homo sapiens*) GI:1335054; Orangutan (*Pongo abelii*) GI:197098986; Rabbit (*Oryctolagus cuniculus*) GI:291401284; Rat (*Rattus norvegicus*) GI:13162353; Mouse (Mus musculus) GI:110347406; Panda (*Ailuropoda melanoleuca*) GI:281338891; Dog (*Canis familiaris*) GI:74002138; Horse (*Equus caballus*), GI:194208523; Cow (*Bos Taurus*) GI:84000165; Frog (*Xenopus tropicalis*) GI: 73853846|; Chicken (*Gallus gallus*) GI:118090385; Shark (*Triakis scyllium*) GI:21669679; Lamprey (*Lethenteron japonicum*) GI:194686864.

Red boxes with white lettering: 100% conserved residues; white boxes and red lettering: residues with high level of similarity across the sequences. The figure was prepared with the ClustalW alignment program and the ESPript server (<u>http://espript.ibcp.fr/ESPript/ESPript/</u>).

Fig. S2. Representative electron density of glycosylation

The 1 sigma level contour of the 2Fo-Fc electron density map is represented as a mesh around the region of the serine protease domain containing the N-linked glycosylation at Asn 446 (copy B). Only the first GlcNAc residue was traced at all 4x6 glycosylation sites, although some electron density for the second GlcNAc residue of the glycan was visible in places.

Fig. S3. Structure-annotated sequence

The sequence of human fI is annotated with the secondary structure as observed in the crystal, coloured as in the cartoon schematic. Boxed residues are highly mobile and could not be traced in some or all the copies of the molecule in the asymmetric unit of the crystal. Disulphide bonds are represented as lines between Cys residues, the cysteines of the interchain disulphide bond are additionally flagged with triangles. The six glycosylated Asn residues are starred. The residues coordinating the Ca atoms are flagged with purple circles. The catalytic triad residues His362, Asp411 and Ser507 are highlighted by red boxes.

Fig. S4 The individual domains of fI.

A: Schematic representation of the structure of fI. Blue: FIMAC domain; green: SRCR domain; orange and yellow: LDLRA1 and LDLRA2 domains; the N- and C-termini of the heavy chain and the loops between its 4 domains are in black; the region connecting the FIMAC and the SRCR domains and the one between the LDLRA2 and the Cterminus of the heavy chain were missing in the crystal electron density and are dashed. Red: serine protease domain. White stars flag the N-linked glycosylation sites. **B,C,D,E:** individual domains, in cartoon and surface representation, with disulphide bonds in ball-and stick, and the N-linked GlnNAcs in ball-and-stick, painted cyan. **B.** Factor I Membrane Attack Complex (FIMAC) domain; **C.** Scavenger Receptor Cystein Rich (SRCR) domain. **D.** Low-Density Lipoprotein Receptor type A (LDLRA) domains 1 and 2; each domain binds a Calcium ion represented as a purple sphere; **E.** Serine protease (SP) domain.

Fig. S5 Closest structural homologues of the fI domains

Structural homologues of each domain were identified using the Dali server (1). (A) The FIMAC domain overlayed on the follistatin-domain of BM-40 (rmsd = 2.5Å over 65 C α atoms). This fold is also found in the FIMAC domains of complement component C7. Intriguingly, the next closest structural homologues are ovomucoid serine protease inhibitors as earlier proposed on the basis of sequence (1). However, the location of the FIMAC and the extensive covalent and noncovalent interactions locking it in place within the heavy chain demonstrate that it cannot be acting in this fashion as previously proposed on the basis of small angle X-ray scattering studies (2). In addition, despite a high level of structural similarity in the loop equivalent to the ovomucoid inhibitory region, the glycosylation of Asn52 of fI would prevent docking of this region into a protease active site and so excludes the possibility of the fI FIMAC acting to inhibit another circulating protease. The structural homology to this inhibitor class therefore seems irrelevant to the function of the fI FIMAC as previously suggested (2). (B) The SRCR domain overlayed on the SRCR domain of Mac-2 binding protein (rmsd = 2.5Å over 96 C α atoms). The SRCR domain is also related to the SRCR domain of hepsin, another mosaic serine protease. Unlike hepsin, however, the SRCR domain of fI does not form any contacts with the serine protease domain. (C) LDLRA1 domain overlayed on the first LDLR domain of Apolipoprotein E receptor 2 (rmsd = 0.6Å over 30 C α atoms). (**D**) LDLRA2 domain overlayed on ligand binding repeat 5 of the low-density lipoprotein receptor (rmsd = 1.0Å over 37 Ca atoms). (E) SP domain overlayed on Hepatocyte growth factor activator (rmsd = 1.7Å over 180 Ca atoms). Blue: fI domains; pink: structurally homologous domains obtained by searching with the individual fI domains against the protein databank using the DALI server (3). Disulphide bonds are represented in sticks, the Ca^{++} ions as spheres.

Fig. S6 Thrombin zymogen site, exosites and allostery in SP domains.

Thrombin (from PDB ID 1P8V) is in surface representation, with the zymogen activation domain coloured blue, and the sites of allosteric control (Exosites I and II) coloured red. The structure of fI was aligned with the one of thrombin, by superposing the serine protease domains, and the heavy chain of the fI model aligned on thrombin is represented in green cartoon.

Fig. S7 Modeling fI binding on the C3b substrate loop (A) Overlay of the ¹²⁷⁹PSRSSK¹²⁸⁴ region of C3b in purple ball-and-stick, with the pseudosubstrate peptide ³⁷LCKARF⁴² from the TdPI inhibitor protein, green ball-and-stick (C3b: PDB ID 2WII; trypsin:TdPI: 2UUY); (**B**) fI (grey) is oriented by superposition of its serine protease domain onto the trypsin domain in the trypsin (purple): TdPI (green) complex.

Fig. S8 The glycosylation on factor I cluster on one side of the molecule and do not impede fH and C3b binding in the model for the ternary complex.

Factor I is shown in black cartoon, with the glycosylated Asn residues in sticks, and a model for the N-linked Man₃GlcNAc₂ core structure in spheres, colored by atom type (C, green; O, red; N, blue). The binary complex C3b:fH in surface representation, coloured as in Fig. 6 of the main paper. The glycans were modelled using the GlyProt server at http://www.glycosciences.de/modeling/glyprot.

Fig. S9 Electrostatic potential surfaces for fI and the FH₁₋₄/C3b complex.

Left hand side: the C3b:fH₁₋₄ complex from PDB ID 2WII is represented as a surface, coloured by the electrostatic potential: red: -3.0 kT/e, blue: +3.0 kT/e with the fI footprint on the complex outlined in black. Right hand side: the surface of factor I, coloured by its electrostatic potential at the same contour levels as the C3b:fH₁₋₄ complex and oriented by opening up the ternary complex with a rotation of fI by 180° along the vertical direction. Positively charged regions at the edges of that face of fI sit opposite negatively charged patches on C3b:fH₁₋₄.

Fig. S10¹²⁵I-C3(NH₃) proteolysis by redissolved fI protein crystals.

Proteolytic activity of human fI from crystals grown in 30% PEG600, imidazole malate 10 mM pH 4.5. Crystals were re-dissolved in 10 mM K_3PO_4 pH 6.2, 0.5 mM EDTA, 0.1% TWEEN-20. Reaction mixtures contained 0.4 nM ¹²⁵ I-C3(NH₃), 4 nM fH and 4.5 nM of fI from re-dissolved crystals or serum-purified controls. Reactions were quenched by addition of SDS-PAGE sample buffer with 20 mM DTT.

Table S1. Data collection and refinement statistics

Table S2. Proposed explanation for disease-associated polymorphisms and mutants offactor I described in the literature.

Factor I mutants and polymorphisms reported in the literature as associated with disease are listed with the appropriate references, and grouped in the table according to the rational for their effect, as inferred on the basis of the fI crystal structure.

Movie S1. Assembly of the ternary complex.

The movie illustrates the cofactor approaching the C3b molecule and forming the interaction surface for fI. Once fI docks onto it, the first cleavage occurs.

Fig. S1. Factor I sequence alignment across species.

Man Orangutan Rabbit Rat Mouse Panda Dog Horse Cow Frog Chicken Shark Lamprey	1 10 20 30 40 50 60 HVTYTSQEDLVEKK LAKKYTHLSCDKYFCOWORIEGTCVCLFYOFKMG.TAVCATNERSPT HVTYTSQEDLVEKK LAKKHTHLSCNKYFCOWORIEGTCKFYOFMG.TAVCATNERSPT HVTYTSQEDLVEKK LAKKHTHLSCNKYFCOWORIEGTCKFYYOFMG.TVCATNERSPT HVTSTSNABEDLVEKK LLKNYTHLSCSKYFCOWORIEGTCKFYYOFMG.TVCATNERSPT SPSADLOGELVDGK LLKNYTHLSCSKYFCOWORIEGTCKFYYOFMG.TVCATNERSPT TSTATNERSPT LSLKNYTOKDLVDKK LLKNYTHLSCSKYFCOWORIEGTCKFYYOFMG.TVCSTNERSPT TSTSTOTSCKYFCOWORIEGTCKFYYOFMG.TVCSTNERSYN HTTSTSTOTSCKYFCOWORIEGTCKFYYOFMG.TVCSTNERSYN TTTSTSTOTSCKYFV HENCKYFCOWORIEGTCKFYYOFMG.TVCSTNERSYN TTTSTSTOTSCKYFV HENCKYFCOWORIEGTCKFYYOFMG.TVCSTNERSYN TTTSTSTOTSCKYFV HENCKYFCOWORIEGTCKFYYOFMG.TVCSTNERSYN TTTSTSTOTSCKYFV HENCKYFCOWORIEGTCCLCFFYGFNG.TVCSTNERSYN TTTSTSTOTSCKYFV HENCKYFCOWORIEGTCCLCFFYGFNG.TVCSTNERSYN TTTSTSTOTSCKYFV HENCKYFCOWORIEGTCCLCFFYGFNG.TVCSTNERSYN TTTSTSTOTSCKFYV HENCKYFCOWORIEGTCCLCFFYGFNG.TVCSTNERSYN HENCKYFCOWORIEGTCCLCFFYGFNG.TVCSTNERSYN HENCKYFCOWORIEGTCCLCFFYGFNG.TVCSTNERSYN HENCKYFCOWORIEGTCCLCFFYGFNG.TVCSTNERSYN HENCKYFCOWORIEGTCCLCFFYGFNG.TVCSTNERSYN HENCKYFCOWORIEGTCCLCFFYGFNG.TVCSTNERSYN HENCKYFCOWORIEGTCCLCFFYGFNG.TVCSTNERSYN HENCKYFCOWORIEGTCCLCFFYGFNG.TVCSTNERSYN HENCKYFCOWORIEGTCCLCFFYGFNG.TVCSTNERSYN HENCKYFCOWORIEGTCCLCFFYGFNG.TVCSTNERSYN HENCKYFCOWORIEGTCCLCFFYGFNG.TVCSTNERSYN HENCKYFCOWORIEGTCCLCFFYGFNG.TVCSTNERSYN HENCKYFCOWORIEGTCCLCFFYGFNG.TVCSTNERSYN HENCKYFCOWORIEGTCCLCFFYGFNG.TVCSTNERSYN HENCKYFCOWORIEGTCCLCFFYGFNG.TVCSTNERSYN HENCKYFCOWORIEGTCCLCFFFYGFNG.TVCSTNERSYN HENCKYFCOWORIEGTCCCCCCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	
Man Orangutan Rabit Rat Dog Horse Cow Frog Chicken Shark Lamprey	70 80 90 100 110 120 130 70 80 90 90 100 110 80 100 100 100 100 70 80 100 100 100 100 100 100 100 100 70 80 100 100 100 100 100 100 100 70 80 100 100 100 100 100 100 100 70 80 100 100 100 100 100 100 100 100 70 80 100 100 100 100 100 100 100 100 100	
Man Orangutan Rabbit Rat Mouse Panda Dog Horse Cow Frog Frog Chicken Shark Lamprey	140 150 160 170 180 190 CDLCFQQC ADTQRRFKLSD.LS.INSTECL.HVHCRCLETCLAGCTPTKRRTMGYQDFADVVC CDLCGQQC ADTQRRFKLSN.LS.INSTECL.HVHCRCLETCLAGCTPTKRRTMGYQDFADVVC CPDLGQC CADTQRFFKPLSN.LS.INSTECL.HVHCRCLETCLAGCTPTKRRTMGYQDFADVVC CPDLGPCGAVDVQGFFHFPBHLH.INSTECL.HVHCRCUTTFTKRRTMGYQDFADVVC CPDLGPCGAVDVQGFFHFPBHLAL.INSTECL.HVHCRCUTTFTKRRTMGYQDFADVVC CPDLGPCGAVDVQGFFHFPBHLAL.INSTECL.HVHCRCUTTFTKRRTMGYQDFAGVVC CDLGPCGAVDVQGFFHFPBHLS.MNSTECL.OVHCRCUTTFTKRRTKNGYQNFAGVVC CDLGQCGAVDICKOPFIPBHLS.MNSTECL.QVHCRGEFFTKRRTKNDQPFAGVVC CDLGQCGAPDICKOPFIPBHLS.MNSTECL.QVHCRGEFFTKRTNSAMGLAVVC CDLGQCGAPDICKUTFFVPBHDO.H.NNITECL.QVHCRGEFFTKRTNSAMGLAVVC CDLGQCGAPDICKUTFFVPBHDC.N.NSTECL.QVHCRGEFFTKGVHNSE.GLAGVVC CDLGQCGAPDICKUTFFVPBHDC.N.NSTECL.QVHCRGEFFTKGVHNSE.GLAGVVC CDLGQCGAPTICKUTFFVPBHDC.N.NSTECL.QVHCRGEFFTKGVHNSE.GLAGVVC CDLGQCAPTCVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	
Man Orangutan Rabbit Mouse Panda Dog Horse Cow Frog Chicken Shark Lamprey	200 210 220 230 240 250 260 YTQKADS.PMDJFD.CVNCKYBSOMKACDGINDEGDC5DELCCKACGKSPHCKSOVCBSOVCGNGVD YTQKADS.PTNDFD.CVNCKYBSOMKACDGINDEGDC5DELCCKACGKSPHCKSOVCBSOVCGNGVD YTQKADS.PTNDFJ.CVNCKNPPNKKACDVNDCGDC5DELCCKACGKSPHCKSOVCBSOVCGNCKCVC YTQDADF.PTSSSOCKNCKNPPNKKACDVNDCGDC5DELCCKACGKSPHCKSOVCBOCKSOVC YTQDADF.PTSSSOCKNCKNPPNKKACDVNDCGDC5DELCCKACGKSPFCKSOVCBNCKKOVC YTQDADF.PTSSSOCKNCKNPPNKKACDVNDCGDC5DELCCKACGKSFFCKSOVCBNCKKOVC YTQDADF.PTSSSOCKNCKPPNKKACDVNDCGDC5DELCCKACGKSFFCKSOVCBNCKKOVC YTQDADF.PTSSSOCKNCKPPQKKACDVNDCGDC5DELCCKACGKSFFCKSOVCBNCKKOVC YTQDADF.PTSSSOCKNCKPPQKKACDVNDCGDC5DELCCKACGKSFFCKSOVCBNCKKOVC YTQNATU.PNNSFFCKSOVCBPQKKACDVNDCGDC5DELCCKACGKSFFCKSOVCBNKKCNGVD YTQNATU.PNNSFFCKSOVCBPQKKACDVNDCGDC5DELCCKACGKSFFCKSOVCBNKKCNGVD YTQNATU.PNNSFFCKSOVCBPQKKACDVDGCDC5DELCCKACGKSFFCKSOVCBNKKCNGVD YTQNTLILPENESOCVNCKFPQKKACDVDGCDC5DELCCKACGKSFFCKSOVCBNKKCNGVD YTQNTLILPENESOCVNCKFRPQKKACDVDGCDC5DELCCKACGKSFFCKSOVCBNKKCNGVD YTENTCCSGGE.KSOVCCNCKFRPQKKACDCVNDCGDC5DELCCKACGKSFFCKSOVCBNKKCNGVD YTENTCCSGGE.KKSVCCNCKFCKCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
Man Orangutan Rabit Panda Dog Horse Cow Frog Chicken Shark Lamprey	270 280 290 300 310 G TGE DE VGCEG FASVAQE ET E ILTADMDAE BERIKSL LPKLS COVKNEMH. G TGE DE VGCEG FASVAQE ET E ILTADMDAE BERIKSL LPKLS COVKNEMH. G TGE DE VGCED FLPVAQE TI. KILAVDMDAE BERIKSL LPKLS COVKNEMH. G TGE DE GCEGE FASVAQE ET KILAVDMDAE BERIKSL LPKLS COVKNEMH. G TGE DE GCEGE FLPVAQE TI. KILAVDMDAE BERIKSL LPKLS COVKNEMH. G TGE DE GCEGE FLPVAQE TI. KILAVDMDAE BERIKSL LPKLS COVKNEMH. G TGE DE GCEGE FLPVAQE TI. KILAVDMDAE BERIKSL LPKLS COVKNEMH. G TGE DE GCEGE MLK.K.K.K.K.K.K.K.K.K.K.K.K.K.K.K.V.N.S.P. G TGE DE GCEGE MLK.LC KET. EVLTANMDAE R.K.K.L.LPKLS COVKNSNP. G TGE DE GCEGE MLK.K.C.K.K.S.P. G TGE DE GCEGE SLANSANGE S	

		320	330	340	350	360	370	
Man	I	RRKRI	IVGGKRAQLGD	PWQVAIKDA	SGITCGGIYIG	3CWILTAAHC	LRASKTHRYQIWTTV	
Orangutan Rabbit	I	RRKRI RRKRI	IVGGKRAQLGD IVGGKPAOVGO	PWOVGIKDA	NRINCGGIYIG	GCWILTAAHC GCWVLTAAHC	LRASKTHHYQIWTTV VSAHKAHOYOIWTGL	
Rat	I	RRKR	VV <mark>GG</mark> KP <mark>A</mark> EMGD	PWQVAIKDG	DRITCGGIYIG	GCWILTAAHC	VRPSRYRNYQVWTSL	
Panda	T	RRKR	VIGGKPANVGD	PWOVAIKDG	.QRITCGGIYIG	GCWILTAAHC	VRPSRAHSYQVWTAL VSVSKMYHYOIWASF	
Dog	s	RRKR	VV <mark>GG</mark> KA <mark>A</mark> VMGD	FPWQVAIKEN	EKIKCGGIYIG	GCWILTAAHC	VSVSRIYQYQIWTSF	
Lorse	V	RRKR	VVGGQEAHVGD VVGGKPAKMGE	FPWQVAIKDVT FPWQMAIKEG	.ERINCGGIYIG	GCWILTAAHC GCWILTAAHC	VRVSKVHRYQIWTSL VRISRMHRYOIWTSF	
Frog	TKI.T	RKKR	VI <mark>GGTN</mark> AVENQ	PWQVAIKDG	TSVNCGGIYIG	GCWVLTAAHC	VRANQPORYLIILEL	
Shark	TNSSK	RRKRI RSKRI	LVGGRNALOGE	FPWOVAIKDTGTEG	PTLNCGVFIG	GCWILSAAHC	LRPYHLSDY VVRIAK	
Lamprey	APPPG	RVRRI	LIGGKNAEQGQ	FPWQAAVLKEK	FVWT <mark>CGAVYLG</mark>	SHWVLTAAHC	VGFGRAN.MRVRLGE	

	380	390	400	410	420 430	440
Man	VDWIHPDL	KRIVIEYVDR	IIFHENYNAG	TYQNDIALIEM	KKDGNKKDCELPRS	IPACVPNSPYLFOPN
Orangutan	VDWIHPDR	KRIVIEYVDR	I I F <mark>H</mark> EN <mark>Y</mark> NAG	TYONDIALMEM	KKDGNKKDCELPRS	IPACVPNSPYLFOPN
Rabbit	LNWIIPNS	E.LIVELVNK	III <mark>H</mark> EN <mark>Y</mark> NGT	TYONDIALIEM	KKRPNQKQCDLPNS	VPACLPWSPYLFOPN
Rat	LDWLKPNS	Q. LAVQGVSR	V V V <mark>H</mark> E K <mark>Y</mark> NG A	TYONDIALVEM	KKHPGKKECELINS	VPACVPNSPYLFOPN
Mouse	LDWLKPNS	Q.LGIQTVKR	V I V <mark>H</mark> EK <mark>Y</mark> NGA	TFONDIALIEM	KMHTGKKECELPNS	VPACVPNSPYLFOPN
Panda	LNTLTPDG	D.VIVHLVKQ	IFI <mark>H</mark> EK <mark>Y</mark> NGS	TYENDIAL IEL	KKHSNKKDCELTNS	IPVCVPNSSYLFOPN
Dog	LSSLRPDN	D. TVVQLAKO	IIV <mark>H</mark> EN <mark>Y</mark> SGA	TYENDIAL IEL	RKRSNOKECSLPHS	IPACVPNSSYLFOPN
Horse	VDWLRPNS	E.IGIQWANR	IIIHEG <mark>Y</mark> NGT	TYONDIAL IEL	KKRPNOKECVLLNS	IPACVPNSPYLFRPN
Cow	TDWLRPGF	Q. TVVHSVNR	III <mark>H</mark> EN <mark>Y</mark> NGT	TYONDIALIEM	KKRPNEKECVLSKS	IPACVPNSPYLFOPN
Frog	LDRLSYDK	D.IDSFPVKS	VIV <mark>H</mark> ES <mark>Y</mark> NPN	TYENDIALLEV.	KNIYSNPKCMQTDNNM	VPACVPNSPFOFRAG
Chicken	LDTIQYDR	E. TDTYRLKQ	LII <mark>H</mark> EK <mark>Y</mark> DAA	TYENDIAL LEL	KG.HGKGECSLKYS	TPACVPNSEHMFEAG
Shark	YNKRGIAD	N.EEILPVEK	III <mark>H</mark> HN <mark>Y</mark> NPK	TYENDIALIKV	VHVFKERECIPLSIDV	OPVCVPNSEYLFRPR
Lamprey	HSRNTKEE	S.QDSMSVES	VTI <mark>H</mark> SG <mark>Y</mark> NAN	TNQHDIALLKL	RMYNQQYQYSRYVS	PACLPRSPLOFERH

	450		460		4	70	4	80	490	500	510
Man	DTCI	SGWGRE	KDNE	RVFS		GEV	KLISNCS	KFYGN	RFYEKEMECA	GTYDGSIDACKG	DSGGPLV
Orangutan	DTCI	/ SGWGRE	KDNE	KVFS	LON	GEV	KLISNCS	K F <mark>Y</mark> G N	R F Y E K <mark>E M</mark> E <mark>C A</mark>	GTYDGSIDACKG	DSGGPLV
Rabbit	ERCI	ISGWGRD	KDNQ	KVYS	. LSW	GEV	NLLSNCS	KF <mark>Y</mark> AN	RFYEKEMECA	GTNDGSIDACKG	DSGGPLV
Rat	DRCI	ISGWGRE	KDNQ	KVYS	. LRW	GEV	DLIGNCS	RFYPG	R Y Y E K <mark>E M</mark> Q <mark>C A</mark>	GTSDGSIDACKG	DSGGPLV
Mouse	DRCI	ISGWGRG	KDNQ	KVYS	L.RW	GEV	DLIGNCS	QFYPD	RYYEKEMQCA	GTRDGSIDACKG	DSGGPLV
Panda	DKCT	V <mark>S G W G</mark> R E	KDNQ	KVHL		GEV	TLINNCS	RYYPG	RYFEKEMDCA	GTDDGSIDACKG	DSGGPLV
Dog	DRCT	SGWGRE	KDNQ	KVYV	LKW	GDV	KLIDNCS	KFYPG	RYFEKEMVCA	GTDDGSIDACKG	DSGGPLV
Horse	DKCI	ISGWGRE	KDHQ	KVYS	LRW	GEV	HLISNCS	RFYPN	RYFEKEMECA	GTVDGSIDACKG	DSGGPLV
Cow	DKCI	SGWGRE	KDNQ	KVYS	L.RW	GEV	HLINNCS	EFYPG	RYFEKEMQCA	GTDDGSIDACKG	DSGGPLV
Frog	DTCT	V S G W G R E	KGMS	RVFH	L. L.KW	GHI	NLMNNCS	EVYKE	RFLDK.MECA	GTYDGSIDACKG	DSGGPLV
Chicken	DKCK	SGWGLE	KGYT	KQYV	LKW	GNV	NLFQNCS	EMYPG	RFFQK, MACA	GTYDGSIDSCKG	DSGGPLV
Shark	KTCV:	ISGWGQA	PG.S	TVSI	LRW	AEL	DIFENCS	AIYKS	NFFEG.MECA	GKMDGTVDACKG	DSGGPLV
Lamprey	HTCY	SGWGTA	RDLQ	SSNKHP:	DVLRW	VDV	NLIANCS	ΚΙ <mark>Υ</mark> Ν.	QYFMD <mark>GM</mark> DCA	GKHDGSADTCDG	DSGGPLV

	520	530	540	550	560
Man	CMDANNVTYVWG	VVSWGENCGK	PEF <mark>PGV</mark> YTK <mark>VA</mark>	NYFDWISYH	VGRPFISQYNV
Orangutan	CMDANNVTYVWG	VVSWGENCGK.	PEFPGVYTKVA	NYFDWISYB	VGRPFISQYNV
Rabbit	CKDINNVTYVWG	IVSWGENCGK	PEFPGVYTKVA	NYFDWISYH	VGRSLIARYNI
Rat	CKDVNNVTYVWG	IVSWGENCGK	PEFPGVYTRVA	SYFDWISYY	VGRPLVSQYNV
Mouse	CEDINNVTYVWG	IVSWGENCGK	PEFPGVYTRVA	NYFDWISYH	VGRSLVSQHNV
Panda	CKDVNNVTYVWG	VVSWGENCGR	PEYPGVYTKVA	NYFDWISHE	VGRSLISQYNV
Dog	CRDINNVIYVWG	VVSWGENCGN.	PEIPGVITRVA	NYFDWISHE	VGRSLISQYNV
Horse	CODANNVTYVWG	VVSWGERCGR	PDFPGVYTKVA	NYFDWISHE	VGRSLISOHNV
COW	CODVNNV11VWG	VVSWGENCGR	SEPPGVITKVA	NTEDWISCH	VGRSLISQHNI UGDOLIORYNU
Trog	CYDVNNVAYVWG	IVSWGENCGV.	PGF PGV ITRVA	HTIEWISH(UCDOLIGRANY
Chark	C P D A B A Y A 1 Y A G	UVENERCOR.	AGL DOVUTEVA	UVEDNICCU	UCDOLINKYNN
Lamprey	CFDNGGKAYVWG	LVSWGDGCGN	VDRPGVYAKVA	YYLDWILQH	TSTDLFPHY

Fig. S2 Representative electron density of glycosylation

Fig. S3 Structure-annotated equence

Fig. S6 Thrombin zymogen site, exosites and allostery in SP domains.

Fig. S7 Modeling of fI binding on the C3b substrate loop.

Fig. S8 The glycosylation on factor I cluster on one side of the molecule and do not impede fH and C3b binding in the model for the ternary complex.

Fig. S9 Electrostatic potential surfaces for fI and the fH1-4/C3b complex.

Fig. S10 ¹²⁵I-C3(NH₃) proteolysis by redissolved fI protein xtals.

	Human fI †
Space group	P1
Cell dimensions	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	71.32, 234.72,40.30
α,β,γ (°)	89.98,90.18,90.03
Resolution (Å)	78.3-2.7
	(2.8-2.7)*
$R_{\rm sym}$ or $R_{\rm merge}$	0.11(0.41)
Ι/σΙ	10.5(2.0)
Completeness (%)	90.8(90.1)
Redundancy	2.9(2.5)
Refinement	
Resolution (Å)	79-2.69
No. reflections	61930
$R_{ m work}$ / $R_{ m free}$	0.20 / 0.24
No. atoms	
Protein	14581
Ligand/ion	18 NAG (324 atoms)
	8 Ca ⁺² ions
Water	0
<i>B</i> -factors (Å ²)	
Protein	49.5
Ligand/ion	66.4
Water	-
R.m.s. deviations	
Bond lengths (Å)	0.006
Bond angles (°)	1.96

Table S1 Data collection and refinement statistics

Values in parentheses are for highest-resolution shell.

*A single crystal was used for all data collections

†: tetartohedrally twinned; twin operator (twin fraction): hkl (0.33); -hk-l (0.36); -h-kl (0.21); h-k-l (0.10)

 Table S2 Proposed explanation for disease-associated polymorphisms and mutants of factor I described in the literature.

	Disrupt interactions			
Affect		Disrupt interd	with	
catalytic site	Disrupt domain fold	Within the heavy chain	Between heavy- and light-chain	substrate or cofactor
I322T, D501N, D506V(4-6)	K93A/F94A (7), F94A/K182Q/R184Q (7), V134M(5), A222G(8),(9), C229G(10), V252A/I267A(7), I339M(11), H400L(12) (13) (11),	F29/Q31(7), D26N/K27Q/F29A/Q31A and F29A/Q31A (7), L73A/L76A/F82A(7), G170V(11), V212A/L236A(7), Q232K(11), C237Y, R299W(9, 14, 15)	D26N/K27Q(7), Q232K/S250L(11), K249Q/Q259R/E270Q(7), V252A/I267A(7)	K51A/R62A(7), A222G(8),(9)

M120I (15) and G243D (8),(16),(15) are disease-associated mutations of surface residues that neither impair secretion nor reduce enzymatic activity. Either they are crucial for hitherto uncharacterized fI interactions, or the association with the disease is to be questioned.

R183S, A282T, R388H, K423R, R484L, E530Q, Y553S (6, 10, 17) are naturally occurring polymorphisms that map to surface regions of the protein, away from proposed cofactor and/or substrate interaction sites

W127X, E285K plus E287X, W468X, R456X, W528X (9, 10) (5, 6, 15, 18) premature stop codons give rise to truncated and therefore not functional forms of the protein.

Supporting Information References

- 1. Ullman CG & Perkins SJ (1997) The Factor I and follistatin domain families: the return of a prodigal son. *Biochem J* 326 (Pt 3):939-941.
- 2. Chamberlain D, Ullman CG, & Perkins SJ (1998) Possible arrangement of the five domains in human complement factor I as determined by a combination of X-ray and neutron scattering and homology modeling. *Biochemistry* 37(40):13918-13929.
- 3. Holm L & Rosenstrom P (2010) Dali server: conservation mapping in 3D. *Nucleic Acids Res* 38(Web Server issue):W545-549.
- 4. Geelen J, *et al.* (2007) A missense mutation in factor I (IF) predisposes to atypical haemolytic uraemic syndrome. *Pediatr Nephrol* 22(3):371-375.
- 5. Westra D, *et al.* (2010) Genetic disorders in complement (regulating) genes in patients with atypical haemolytic uraemic syndrome (aHUS). *Nephrol Dial Transplant* 25(7):2195-2202.
- 6. Fremeaux-Bacchi V, et al. (2004) Complement factor I: a susceptibility gene for atypical haemolytic uraemic syndrome. J Med Genet 41(6):e84.
- 7. Nilsson SC, *et al.* (2010) Analysis of binding sites on complement factor I that are required for its activity. *J Biol Chem* 285(9):6235-6245.
- 8. Servais A, *et al.* (2007) Primary glomerulonephritis with isolated C3 deposits: a new entity which shares common genetic risk factors with haemolytic uraemic syndrome. *J Med Genet* 44(3):193-199.
- 9. Caprioli J, *et al.* (2006) Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. *Blood* 108(4):1267-1279.
- 10. Saunders RE, *et al.* (2007) The interactive Factor H-atypical hemolytic uremic syndrome mutation database and website: update and integration of membrane cofactor protein and Factor I mutations with structural models. *Hum Mutat* 28(3):222-234.
- 11. Nilsson SC, et al. (2009) Genetic, molecular and functional analyses of complement factor I deficiency. *Eur J Immunol* 39(1):310-323.
- 12. Vyse TJ, *et al.* (1996) The molecular basis of hereditary complement factor I deficiency. *J Clin Invest* 97(4):925-933.
- 13. Sadallah S, Gudat F, Laissue JA, Spath PJ, & Schifferli JA (1999) Glomerulonephritis in a patient with complement factor I deficiency. *Am J Kidney Dis* 33(6):1153-1157.
- 14. Nilsson SC, *et al.* (2010) Mutations in complement factor I as found in atypical hemolytic uremic syndrome lead to either altered secretion or altered function of factor I. *Eur J Immunol* 40(1):172-185.
- 15. Kavanagh D, *et al.* (2008) Characterization of mutations in complement factor I (CFI) associated with hemolytic uremic syndrome. *Mol Immunol* 45(1):95-105.
- 16. Nilsson SC, *et al.* (2007) A mutation in factor I that is associated with atypical hemolytic uremic syndrome does not affect the function of factor I in complement regulation. *Mol Immunol* 44(8):1835-1844.
- 17. Yuasa I, *et al.* (2008) Molecular basis of complement factor I (CFI) polymorphism: one of two polymorphic suballeles responsible for CFI A is Japanese-specific. *J Hum Genet* 53(11-12):1016-1021.
- 18. Kavanagh D, et al. (2005) Mutations in complement factor I predispose to development of atypical hemolytic uremic syndrome. J Am Soc Nephrol 16(7):2150-2155.