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SI Materials and Methods
Intracranial Recordings. Note on intracranial recordings. Despite the
high data quality provided by human intracranial recordings,
there are several factors one should consider when interpreting
the results of any intracranial study of human epilepsy patients,
including those we report in the present study. First, whereas in
animal studies, electrodes are placed according to researchers’
needs, the placements of implanted human electrodes are de-
termined solely by clinical teams with the goal of localizing the
seizure focus to ensure the best possible outcome for the patient.
For some patients, this means that the brain areas most relevant
to a particular research question may receive little or no elec-
trode coverage. To obtain adequate coverage of all relevant
brain areas, we have analyzed data from many patients (Table
S1). A second concern is that medications or recent seizures
might change the electrophysiological properties of the brain.
For this reason, we refrained from collecting data while the
patients were on high dosages of pain medications or antiepi-
leptic drugs, or during the 6-h period following any clinically
significant seizure. A third issue is that the brain is known to
rewire itself to compensate for damage, including damage
caused by epilepsy (1), which could lead to cognitive remapping.
Although we cannot control for cognitive remapping that may
have occurred in individual participants, we have averaged our
anatomical analyses over many patients; thus, results attributable
to remapping in one patient will average out in the population
analyses. A fourth concern is that severe epilepsy can lead to
cognitive impairment. To address this issue, we have analyzed
data only from patients with scores on the Wechsler Intelligence
and Wechsler Memory Scales within 1.5 SDs of the mean for
their age group.

Recording methods. Subdural grids or depth electrodes (Ad-
Tech, Inc.) were implanted by neurosurgical teams solely for
clinical purposes. The locations of the electrodes were de-
termined by means of coregistered postoperative computed to-
mography and preoperative MRI scans, or from postoperative
MRI scans, by an indirect stereotactic technique and converted
into Montreal Neurological Institute coordinates. ECoG signals
were recorded referentially using a Telefactor, Bio-Logic, XLTek,
Neurofile, or Nicolet electroencephalographic digital video-EEG
system. Depending on the amplifier, signals were sampled at 200,
256, 500, 512, or 1,024 Hz. Several hospitals applied band-pass
filters to the recorded signals before writing to disk (Table S2).
Where applicable, frequencies outside of the filtered range were
excluded from further analysis. Data were subsequently notch-
filtered with a Butterworth filter with zero phase distortion at 50
or 60 Hz to eliminate electrical line and equipment noise. ECoG
signals and behavioral events were aligned using synchronization
pulses sent from the testing computer (mean precision <4 ms).

Analysis Methods. Quantifying the contiguity effect. Fig. 4C depicts an
analysis relating the neural reinstatement effect to the recall
behavior of the participants. Specifically, we show that partic-
ipants showing stronger neural reinstatement effects tend to
exhibit a stronger contiguity effect (whereby neighboring list items
tend to be recalled successively). The contiguity effect is measured
using the temporal clustering score, an analysis technique de-
scribed previously (2). The temporal clustering score is calculated
as follows.
For each recall transition, we create a distribution of temporal

distances between the just-recalled word and the set of words that
have not yet been recalled. These distances are simply the ab-

solute value of the difference between the serial position of the
just-recalled word and the set of words that have not yet been
recalled. A percentile score is generated by comparing the
temporal distance value corresponding to the next item in the
recall sequence with the rest of the distribution. Specifically, we
calculate the proportion of the possible distances that the ob-
served value is less than, because strong temporal clustering will
cause observed lags to be smaller than average. As is often the
case, when there is a tie, we score this as the percentile falling
halfway between the two items. If the participant always chose the
closest temporal associate (which is only possible for pure serial
recall in the forward or backward direction), the temporal clus-
tering score would yield a value of 1 (because there would never
be an opportunity for a tie). A value of 0.5 indicates no effect of
temporal clustering. Each patient was assigned a temporal clus-
tering score by taking the average of the percentile scores across
all observed recall transitions.
Quantifying the primacy and recency effects. The primacy and recency
effects refer to an enhancement in memory for early and late list
items, respectively, compared with memory for intermediate list
items (3, 4). The number of items that show a boost in memo-
rability attributable to primacy or recency is relatively invariant
to changes in list length; the primacy effect generally affects the
first few items, whereas the recency effect generally affects the
last six or so items (4). To measure the strength of the primacy
effect, we labeled the first three serial positions on each list as
primacy positions and the last six serial positions as recency
positions. The remaining positions were labeled as intermediate
list positions (i.e., items 4–9 for 15-word lists, items 4–14 for 20-
word lists). We then measured the strength of the primacy effect
for each participant by dividing his or her mean probability of
recalling items from primacy positions by his or her mean
probability of recalling items from intermediate list positions.
The main text reports that the neural signature of context re-
instatement (t value) is not correlated with the strength of the
primacy effect (r = 0.13, P = 0.42).
We also performed an analogous analysis to test whether the

neural signature of context reinstatement was influenced by the
factors underlying the recency effect. We measured the strength
of the recency effect for each participant by dividing his or
her mean probability of recalling items from recency positions
by his or her mean probability of recalling items from interme-
diate list positions. The neural signature of context reinstatement
is not correlated with the strength of the recency effect (r = 0.13,
P = 0.40). Mean serial position curves for participants showing
strong (top 50%) and weak (bottom 50%) neural signatures of
context reinstatement (by t value) are shown in Fig. S2. As shown
in the figure, the primacy effect, recency effect, and overall
probability of recall are roughly conserved across the two groups
of participants.
Simulations.We conducted three neural network simulations (Fig.
3 and Fig. S1) that predict the expected outcome of our test
for context reinstatement under various model assumptions. As
described in the main text, the autocorrelated noise model has
neural activity evolve randomly over time, irrespective of what is
happening in the experiment. The content reinstatement model
has each neuron represent a different word; a neuron is activated
if its associated word is presented or recalled. The context re-
instatement model also has each neuron represent a different
word. We simulate context reinstatement by activating not only
the neuron associated with the word being recalled, but also
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other neurons that were active at the time the recalled word
was studied.
For all three simulations, we define an activity vector, f, that

defines the pattern of activation across the network. Each neuron
in the network takes on a value between 0 (inactive) and 1
(maximally active). Let fi denote the state of f after the ith ex-
perimental event (i.e., study presentation, distracting task, recall).
Our main analysis entails selecting autocorrelated components of
neural activity as the candidate context representation (Results).
After this feature selection, the feature vectors we analyze are
autocorrelated, a property we need to take into account in our
simulations. In particular,

f i ¼ ρif i− 1 þ βwi;

where β is a constant; ρi is a function of fi−1,wi, and β (with 0 ≤ ρi,
β ≤ 1); and wi is the pattern of neural activity specifically evoked
by the ith experimental event [details are presented by Polyn and
Kahana (5)]. In this way, the neural activity measured after a
given experimental event (e.g., presentation of the fifth list item)
is a recency-weighted blend of the activity evoked by previous
experimental events (e.g., activity evoked by presentations of
items 5, 4, 3, 2, and 1). We initialize f0 by setting the activation
of the first neuron to 1 and the activations of the other neurons
to 0. We then simulate different experimental events by adjusting
wi according to the particular rules of each model. We ensure
that fi is always of unit length by setting

ρi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

h
ðf i− 1· wiÞ2 − 1

ir
− βðf i− 1· wiÞ:

For the autocorrelated noise model, each wi is set to a vector of
0’s, plus a 1 in a single random position. In this way, each wi
activates one of the neurons in the network at random. As shown
in Fig. S1A, for β < 0.5, similarity between fi during presentation
and fj during recall increases as a function of i. This is because, by
definition, an autocorrelated signal measured at times t and t +
Δ becomes more similar as Δ → 0. For β > 0.5, similarity as a
function of lag flattens out, because as fi is dominated by wi, the
average similarity between fi and fj approaches the expected
similarity between two independent draws of wi.
For the content reinstatement model, w is set differently de-

pending on the type of experimental event. In this model, each
neuron is assigned a different word or distractor. During pre-
sentation of study items or distractors, wi is set to a vector of all
0’s except for a 1 in the position of the neuron representing the
item or distractor being presented. During recall of the jth pre-
sented item, we set wi = wj. As shown in Fig. S1B, for β < 0.5,
similarity increases as a function of lag. Because β is small, fi is
dominated by fi−1 rather than wi. Because the specifics of the
experimental event contribute only minimally to f, the simulation
approximates the autocorrelated noise simulation. For 0.5 < β < 1,
neural similarity is roughly constant as a function of lag for
negative lags but decreases as a function of lag for positive lags.
This is because the pattern of activation during the ith pre-
sentation will only contain traces of wj if i > j. Finally, for β = 1,
similarity is 1 when lag = 0 and is 0 everywhere else. This is
attributable to the fact that when β = 1, fi = wi; thus, the neural
activity evoked by the ith item will be present only during its
presentation or recall.
The context reinstatement model is identical to the content

reinstatement model during the presentation of study items and
distractors. To simulate context reinstatement during recall of the
jth presented item, we set wi = fj (recall that fj will contain
a recency-weighted average of the activations associated with the
previously presented items). As shown in Fig. S1C, for β < 0.5,
similarity increases as a function of lag, just as in the other
simulations. Importantly, for 0.5 < β < 1, neural similarity de-

creases with absolute lag in both the positive and negative di-
rections, as seen in the neural data (Fig. 4A). Finally, as in the
content reinstatement simulation, for β = 1, similarity is 1 when
lag = 0 and is 0 everywhere else.
These simulations show that regardless of the precise rate at

which neural activity evolves over time, the simplest model con-
sistent with our neural results (Fig. 4A) is one in which the tem-
poral context in which an item is studied is reinstated when the
item is recalled. Although we have not ruled out every possible
model that does not include some form of context reinstatement,
neither autocorrelated noise (Fig. S1A) nor content reinstate-
ment alone (Fig. S1B) can account for the neural signature of
context reinstatement we observed in our ECoG recordings.
Neural symmetry vs. behavioral asymmetry. The neural data (Fig. 4A)
show that the decrease in neural similarity with absolute lag falls
off symmetrically in the forward (positive) and backward (nega-
tive) directions. A natural question, then, concerns why the be-
havioral data exhibit a clear forward asymmetry in the conditional
response probability as a function of lag (Fig. 4B). In particular, if
the neural signature of context reinstatement we observe is truly
related to participants’ behavior (as implied in Fig. 4C), why is the
neural signature of context reinstatement symmetrical, whereas
the contiguity effect is forward asymmetrical?
Consistent with the neural data, our simulations show that

context reinstatement, per se, implies a symmetrical decrease in
neural similarity with lag (Fig. 3F). Thus, the forward asymmetry
in the behavioral data must arise as the result of some additional
process that is not captured by our neural analysis. One possi-
bility is that, in addition to reinstating the recalled item’s context,
the representation of the recalled item itself receives an addi-
tional “boost.”As described above, reinstating the representation
of an item (without its associated context) implies a decrease in
neural similarity as a function of lag in the forward direction,
but not in the backward direction (Fig. 3E). In this way, the be-
havioral data might reflect both context and content reinstate-
ment [e.g., figure 6 in the article by Howard and Kahana (6)].
However, because we examine only autocorrelated components
of neural activity, our neural analysis is (intentionally) biased
toward examining neural features related to context rather than
neural features related to item representations. An interesting
question for future studies will be to clarify the extent to which
the context and item representations overlap.
Selecting autocorrelated features. Context-based theories of memory
posit the existence of a gradually changing pattern of neural
activity that becomes associated with each studied word during
study and is reinstated during recall. To identify candidate com-
ponents of the context representation for a given recording
session, we selected autocorrelated PCA-derived features of the
neural representation (Fig. 1C) as follows. Separately for each
feature x, we computed the Pearson’s lag 1 autocorrelation co-
efficient (r) and associated P value for the values of x within each
list. We then combined the autocorrelation coefficients across
lists into a summary autocorrelation measure, �r:

�r ¼ F − 1
�
∑
L

i¼1
FðriÞ

�
;

where ri is the Pearson’s lag 1 autocorrelation coefficient for the
values of x measured during list i and F() is the Fisher z-prime
transformation:

FðrÞ ¼ lnð1þ rÞ− lnð1− rÞ
2

;

and F−1() is the inverse of F():
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F − 1ðzÞ ¼ e2z− 1

e2zþ1 :

In this way, if ri has large positive values across all lists, �r will have
a large positive value. Similarly, if ri is negative across all lists, �r
will have a large negative value. If ri is sometimes positive and
sometimes negative (with approximately equal probability), �r will
take on a value near zero. (Note that − 1≤ ri;�r≤ 1.)
We also obtained a P value, �p, associated with �r by applying

the inverse Normal transformation to the P values associated
with the Pearson’s lag 1 autocorrelation coefficients for each list.
We then summed across the transformed P values and evaluated
the cumulative normal distribution function at this sum to obtain
�p. We selected features with �r > 0 and �p< 0:1 for further anal-
ysis (Results).
Identifying time interval of the recall event. Our main analysis (Fig.
4A) compares the neural activity elicited by a studied word with
the neural activity elicited by a word’s retrieval during the recall
period. We restrict our analysis of the study period to ECoG
activity beginning 200 ms after the appearance of a word and
ending when the word disappears from the screen. Here, the
200-ms delay was meant to account for the lag between the
word’s appearance on-screen and the processing of the word by
the participant.
To search for the optimal time interval for the recall event, we

tested for context reinstatement while varying both the duration
and onset of the time interval for the recall event. We tested time
intervals ranging in duration from 100 to 1,000 ms (in increments
of 100 ms) and onsets ranging from −1000 to 0 ms (in increments
of 100 ms) relative to the time the participant began his or her
vocalized recall. This analysis indicates that the context re-
instatement effect is strongest for the recall interval ranging from
−600 to 200 ms relative to vocalization.

To account for the possibility that different brain regions re-
instate context at different times relative to vocalization, we re-
peated this optimization analysis separately for each region of
interest. The best time interval for the temporal lobe was from
−400 to −300 ms (Fig. 5B). The time interval that gave the
strongest frontal lobe effect was from −900 to −400 ms; however,
the frontal effect was not statistically reliable (Results).
Additional details of selected features. In addition to asking whether
specific brain regions contribute to the representation of context
(Fig. 5), a natural question is whether the principal components
comprising the feature vectors tend toweight particular oscillatory
components of ECoG activity more heavily than others. Because
PCA performs a linear mapping from the n-dimensional space
of the original set of activity vectors onto the m-dimensional
PCA space (where m ≤ n), we can use the PCA coefficients to
perform the inverse mapping of the feature vectors back onto the
original n-dimensional space. The PCA coefficients tell us how
much each of the elements in the original principal components
vectors contributes to each of the principal components in the
feature vectors. This allowed us to determine the degree to which
each oscillatory component recorded from each electrode con-
tributes to each element of the feature vectors. For a given fre-
quency band, we assessed the degree to which that frequency
band contributed to the feature vectors across all study and
recall events by examining the distribution of PCA coefficients
assigned to that frequency band across all participants. An anal-
ysis of PCA coefficients across frequency bands revealed no sig-
nificant differences among frequency bands [repeated measures
ANOVA: F(4,37) = 0.57, P=0.69]. This finding suggests that the
selected features are composed of oscillatory activity at a broad
range of frequencies (Fig. S3A).
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Fig. S1. Simulated neural similarity as a function of lag and drift rate (β), given no content or context information in the neural recordings (A; Fig. 3 A and D),
content reinstatement without context reinstatement (B; Fig. 3 B and E), and context reinstatement (C; Fig. 3 C and F). Similarity is computed as the normalized
dot product between the simulated feature vector after the recall of the ith word and the feature vector corresponding to presentation of word i + lag. The
first dimension (initialized to 1 before the start of the simulation) was ignored for the similarity calculations. Simulation results in Fig. 3 used β = 0.7 [this choice
was motivated by previously reported simulation results (2)].
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Table S1. Patient and task information

ID HOSP AGE, y SEX HAND ELC FEA L LEN SES LST REC REP PLI ELI

1 BW 33 F R 64 3 20 1 15 55 2 26 12
2 BW 51 F R 40 5 20 1 15 66 2 8 1
3 BW 32 M R 32 2 15 3 39 212 5 9 4
4 BW 40 M R 96 5.5 15 2 20 82 5 38 28
5 BW 44 M R 16 1 15 2 20 58 1 12 19
6 BW 27 M R 64 1.5 15 2 20 76 49 12 3
7 BW 38 M R 104 9.33 15 3 30 136 3 30 15
8 CH 13 F R 64 9 20 1 12 59 0 2 1
9 CH 12 F R 104 19 20 1 15 39 0 0 2
10 CH 15 M L 128 15.67 20 3 30 90 1 12 8
11 CH 17 M R 64 4 20 3 45 178 20 27 17
12 CH 15 M R 123 13 20 1 15 86 3 6 3
13 CH 11 M R 104 0 20 2 30 104 3 2 3
14 CH 14 F R 72 0 20 1 15 104 2 7 5
15 CH 8 F R 86 6.5 20 2 30 159 5 18 10
16 CH 17 M R 84 12 20 1 14 30 2 9 12
17 CH 17 M L 124 10.5 20 4 60 116 2 104 13
18 CH 20 F R 128 8.5 15 2 24 114 2 9 4
19 CH 14 M R 94 6.67 15 3 30 94 0 18 13
20 CH 17 M L 80 7 15 2 20 14 0 10 22
21 CH 19 F R 125 8.5 15 2 17 47 2 10 1
22 CH 16 M R 156 13 15 1 16 76 1 4 1
23 CH 12 M L 83 5 15 2 20 52 9 12 25
24 CH 13 M R 72 4.75 15 4 40 200 3 4 2
25 FR 33 M R 98 8 20 1 9 43 0 0 0
26 FR 25 M R 85 21 20 1 9 45 18 1 2
27 FR 31 M L 56 4 20 1 9 24 0 4 0
28 FR 41 F R 63 9 20 1 7 23 0 9 6
29 FR 34 F L 40 3 20 1 7 38 3 5 3
30 FR 45 F L 100 10 20 1 8 27 0 20 3
31 FR 46 F L 14 0 20 1 1 4 3 0 5
32 FR 20 M R 84 4 20 1 15 42 6 6 2
33 FR 53 F L 41 5 20 1 15 49 26 21 21
34 FR 50 M R 68 4 20 2 30 116 5 36 15
35 FR 28 M L 112 11 20 1 15 37 1 1 1
36 FR 30 F R 60 7 20 1 15 67 9 10 2
37 FR 37 F L 30 6 15 1 20 65 84 73 42
38 FR 18 M L 30 2 15 1 20 121 7 12 13
39 FR 23 M L 58 3 15 4 56 281 98 32 29
40 FR 21 M L 93 4 15 1 10 49 2 10 3
41 FR 28 F R 86 7 15 1 10 36 4 4 6
42 FR 35 F L 122 3 15 2 20 54 0 6 6
43 FR 37 F L 52 2.5 15 4 35 161 38 29 28
44 FR 19 M L 74 2 15 2 30 148 19 14 35
45 FR 41 F R 30 3 15 1 15 15 0 3 38
46 FR 21 F R 64 6 15 1 15 50 0 3 7
47 FR 43 F R 56 0 15 1 15 23 5 11 59
48 FR 19 M R 30 3 15 2 25 120 2 5 27
49 FR 21 M R 70 5 15 5 53 408 41 8 194
50 FR 35 F R 62 6 15 1 15 44 24 16 114
51 FR 25 M R 84 5 15 2 30 145 5 3 96
52 FR 47 M L 82 4 15 1 4 13 1 3 35
53 FR 45 F R 88 4 15 1 10 43 11 3 0
54 TJ 25 M R 62 0.67 15 3 48 232 3 6 1
55 TJ 40 F R 94 3.25 15 4 64 164 8 54 43
56 TJ 39 M L 56 2 15 1 16 53 1 8 20
57 TJ 34 F R 111 4.3 15 10 154 513 7 110 24
58 TJ 44 M R 125 7 15 1 13 31 1 7 6
59 UP 38 M R 62 4.75 15 4 40 135 3 68 24
60 UP 30 M R 86 3 15 2 20 54 5 24 21
61 UP 43 M R 66 2.33 15 3 18 31 22 12 33
62 UP 36 M R 88 5.75 15 4 40 70 6 114 50
63 UP 25 M R 62 3 15 4 40 135 2 1 2
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Table S1. Cont.

ID HOSP AGE, y SEX HAND ELC FEA L LEN SES LST REC REP PLI ELI

64 UP 18 F R 76 7.33 15 3 30 104 5 6 3
65 UP 27 F R 48 2 15 2 32 104 2 43 20
66 UP 55 F L 80 1.5 15 2 32 81 11 61 24
67 UP 18 M A 100 2.33 15 3 48 253 7 8 3
68 UP 38 F R 86 6 15 1 16 48 14 3 73
69 UP 40 M R 58 5.75 15 4 64 304 1 14 9

This table provides the hospital (HOSP) at which each patient’s data were collected (Table S2), as well as each patient’s age (AGE), sex (SEX), handedness or
language mapping (HAND), number of implanted electrodes (ELC), and mean number of features selected for analysis across all sessions for that patient (FEA).
Information about the task includes the list length (L LEN) used for each participant, number of testing sessions (SES), and number of lists each participant
encountered across all sessions (LST). Performance information includes the total number of correct recalls across all lists (REC), total number of repeated recalls
(REP), and total number of incorrect recalls, which include recalls of previously presented items [prior list intrusions (PLI)] and recalls of items that were never
presented [extralist intrusions (ELI)]. In total, the 69 patients contributed 5,299 electrodes and 739 selected features, studying 29,030 items presented in 1,790
lists. A, ambidexterous; BW, Brigham & Women’s Hospital (Boston, MA); CH, Children’s Hospital (Boston, MA); F, female; FR, University Hospital of Freiburg
(Freiburg, Germany); L, left; M, male; R, right; TJ, Thomas Jefferson University Hospital (Philadelphia, PA); UP, Hospital of the University of Pennsylvania
(Philadelphia, PA).

Table S2. Bandpass filters used by our collaborating hospitals

Hospital HOSP Lower Upper

Brigham & Women’s Hospital, Boston, MA BW 0.5 Hz 60 Hz
Children’s Hospital Boston, Boston, MA CH 0.3 Hz 50 Hz
University Hospital of Freiburg, Freiburg, Germany FR 0.1 Hz 100 Hz
Thomas Jefferson University Hospital, Philadelphia, PA TJ −∞ ∞
Hospital of the University of Pennsylvania, Philadelphia, PA UP −∞ ∞

Hospital codes (HOSP) are referenced in Table S1. The Lower and Upper columns denote the lower and upper limits of the bandpass filters, respectively.
Frequencies outside of the band-passed range were excluded from further analysis.
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