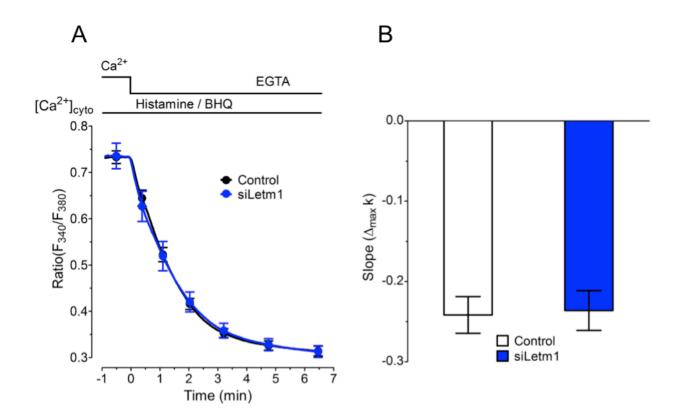

Supplementary Figures

Supplementary Figure 1:


Assesment of cytosolic and mitochondrial [ATP]. Cells were transiently transfected with AT1.03 or mt AT1.03. Curves represent the drop in [ATP]_{cyto} (light green curve) and in [ATP]_{mito} (red curve) by an incubation of the cells with EB containing 10 mM 2-deoxy-D-glucose instead of D-glucose and 2 μ M oligomycin.

Supplementary Figure 2:

The correlation of mitochondrial Ca^{2+} and pH revealed mitochondrial pH ([H⁺]_{mito}) to be strictly associated with mitochondrial Ca^{2+} ([Ca^{2+}]_{mito}) elevation, independently of the Ca^{2+} carrier engaged. Mitochondrial Ca^{2+} uptake (*upper panel*) from either intracellularly released or entering Ca^{2+} yielded mitochondrial acidification (*lower panel*) using the dual ability of the RP-mt sensor to simultaneously measure [Ca^{2+}]_{mito} at $\lambda_{exc.} = 430$ nm and [H]⁺ at $\lambda_{exc.} = 480$ nm. Knock-down of Letm1 (n=3, 13 cells) induced less acidification of mitochondria upon SOCE versus Control (n=3, 14 cells) while mitochondrial acidification in response to intracellular Ca^{2+} release remained unaffected by knock-down of Letm1. *P < 0.05 vs. Control.

Supplementary Figure 3:

The activity of the PMCA was not affected by the knock-down of Letm1. Cells transiently transfected with nuclear GFP and either Control siRNA (Control, n=8, 28 cells) or siRNA against Letm1 (siLetm1, n=8, 13 cells) were loaded with Fura2-AM and subsequently stimulated with 100 μ M histamine and 15 μ M BHQ in low Na⁺ buffer (LSB) to exclusively elucidate the activity of the PMCA. *Panel A:* Cytosolic Ca²⁺ decrease after addition of 1 mM EGTA reflecting the force of the PMCA to transport the intracellular Ca²⁺ in the extracellular space. *Panel B:* Maximal slope from curves presented in *Panel A* were calculated and expressed as $\Delta_{max}k$.