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Lemma 1

For every i, j ∈ {1, . . . ,N} with i 6= j, we have the following limit of the probability

distribution of the empirical correlation:
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as T → ∞, where Φ denotes the cumulative distribution function of a standard normal

random variable.

Proof

In order to simplify the presentation, wewrite yi,M,T(t) = xi,M,T(t)− 1
2 , so that Eyi,M,T(t) =

0. First note that yi,M,T(t) is a M-dependent sequence, i.e. for |s− t| > M, yi,M,T(s) and

yi,M,T(t) are independent. So we have that the covariance
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)

= 0 for T > M.

Additionally,
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and Cov (zi(s), zi(t)) = Var (zi(1)) if s = t and otherwise Cov (zi(s), zi(t)) = 0. For

1 ≤ t ≤ M, we obtain by the definition of the moving average and the independence of

the underlying process zj(t), t ∈ N that
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By the central limit theorem for M-dependent random variables, see reference [1],
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converges in distribution to a standard normal random varibale as T → ∞. Further-

more, we have the following convergence for the variance as T → ∞:
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The last equality follows easily by ∑
n
i=1 i

2 = n(n+1)(2n+1)
6 . With the same central limit
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in probability as T → ∞. By similar arguments, we have that 1
T ∑

T
t=1 y

2
i,M,T(t) →
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By Slutsky’s theorem [2] and with (5), (6), (7), and (8), we finally obtain that
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converges in distribution to a standard normal random variable as T → ∞. This com-

pletes the proof.

Lemma 2

For T → ∞, R → ∞
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Proof

With Lemma 1, we have that
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independence of the R random networks
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as R → ∞. The lemma follows with the Chebyshev inequality.
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