Zedelius et al.

Appendix S2

Redox potentials of subsequent reduction steps, and average redox potential

If an electron acceptor A_{ox} is reduced stepwise to A_{red} via m subsequent steps involving free intermediates (I_i), the reaction can be written as follows (n_i , number of electrons):

$$n_1 e^ n_2 e^ n_m e^-$$

$$A_{ox} \longrightarrow I_1 \longrightarrow I_2 \cdots I_{m-1} \longrightarrow A_{red}$$

With an electron donor of a given redox potential, E_{don} , and the redox potential E_i of a reduction step (definition of which is originally based on a reversible reaction), the free energy change of an individual step is $-\Delta G_i = n_i F \Delta E_i = n_i F (E_i - E_{don})$; F = 96,485 C mol⁻¹ (Faraday constant). The free energy change of the total reduction reaction is

$$-\Delta G_{tot} = n_1 F(E_1 - E_{don}) + n_2 F(E_2 - E_{don}) + \dots + n_m F(E_m - E_{don})$$
 (1)

$$= F \left[(n_1 E_1 + n_2 E_2 + \dots + n_m E_m) - (n_1 + n_2 + \dots + n_m) E_{don} \right]$$
 (2)

The sum $n_1 + n_2 + ... + n_i$ is the total number of electrons, n_{tot} , so that

$$-\Delta G_{tot} = F [(n_1 E_1 + n_2 E_2 + \dots + n_m E_m) - n_{tot} E_{don}].$$
 (3)

Rearrangement leads to

$$\frac{-\Delta G_{tot}}{n_{tot} F} + E_{don} = \frac{n_1 E_1 + n_2 E_2 + \dots + n_m E_m}{n_{tot}} . \tag{4}$$

The term $-\Delta G_{tot}/(n_{tot} F)$ expresses a redox potential difference. Because it includes only parameters referring to the total reaction, it can be defined as the average redox potential difference, ΔE_{av} , of the total reaction:

$$\frac{-\Delta G_{tot}}{n_{tot} F} = \Delta E_{av}. \tag{5}$$

Because ΔE_{av} is relative to the redox potential of the donor reaction, (5) necessarily defines also an average redox potential by $\Delta E_{av} = E_{av} - E_{don}$. We can thus write (4) as

$$(E_{av} - E_{don}) + E_{don} = E_{av} = \frac{n_1 E_1 + n_2 E_2 + ... + n_m E_m}{n_{tot}}$$
 (6)