а

MDYKDHDGDYKDHDIDYKDD DDKMAPKKKRKVGIHGVPAA MAERPFQCRICMRKFAQSGD **LTRHTKIHTGEKPFQCRICM** RNFSRSDVLSEHIRTHTGEK PFACDICGKKFADRSNRIKH TKIHTGSQKPFQCRICMRNF SRSDNLSEHIRTHTGEKPFA **CDICGRKFAQNATRINHTKI** HLRGSQLVKSELEEKKSELR **HKLKYVPHEYIELIEIARNS** TQDRILEMKVMEFFMKVYGY RGKHLGGSRKPDGAIYTVGS PIDYGVIVDTKAYSGGYNLP **IGQADEMERYVEENQTRNKH LNPNEWWKVYPSSVTEFKFL** FVSGHFKGNYKAQLTRLNHI **TNCNGAVLSVEELLIGGEMI** KAGTLTLEEVRRKFNNGEIN F

b

MDYKDHDGDYKDHDIDYKDD DDKMAPKKKRKVGIHGVPER PFQCQICMRNFSRSDSLSVH **IRTHTGEKPFACDICGRKFA TSGHLSRHTKIHTGSQKPFQ** CRICMRNFSRSDHLSQHIRT **HTGEKPFACDICGRKFAHAS** TRHCHTKIHLRGSQLVKSEL **EEKKSELRHKLKYVPHEYIE** LIEIARNSTQDRILEMKVME FFMKVYGYRGKHLGGSRKPD GAIYTVGSPIDYGVIVDTKA **YSGGYNLPIGQADEMQRYVK ENQTRNKHINPNEWWKVYPS SVTEFKFLFVSGHFKGNYKA QLTRLNHKTNCNGAVLSVEE** LLIGGEMIKAGTLTLEEVRR **KFNNGEINF**

Supplementary Figure 1 - F9 ZFN pair amino acid sequence. Amino acid sequence of FLAG-tagged **a**, left F9 ZFN and **b**, right F9 ZFN.

Supplementary Figure 2 - F9 ZFNs cleave human *F*9 intron 1 and induce homologydirected repair in Hep3B cells.

a, Transfection of 400 ng of ZFN expression plasmid into Hep3B cells results in cleavage of the human *F9* intron 1 at day 3 post-transfection. Cel-1 assay performed with PCR using ³²P-labeled nucleotides, followed by PAGE and band intensity quantification by autoradiography. **b**, Co-transfection of 400 ng of ZFN expression plasmid with increasing amounts of Nhel donor plasmid (0, 1, 2, and 4 μ g) results in increasing levels of HDR at days 3 post-transfection, whereas transfection of the Nhel donor alone (4 μ g) does not result in detectable HDR. HDR PCR performed with PCR using ³²P-labeled nucleotides, followed by PAGE and band intensity quantification by autoradiography. Lanes with no quantification had no detectable HDR.

a

AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCAGGGGTACTAGGGGGTATGGGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCAGG TACTAGGGGGTATGGGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCAGGGC CTAGGGGGTATGGGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCAGGG **CTAGGGGTATG**GGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCAGGG **CTAGGGGTATG**GGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCAGGG **CTAGGGGTATG**GGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCAGGG **CTAGGGGTATG**GGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCAG TACTAGGGGTATGGGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCAG TACTAGGGGTATGGGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCAT TACTAGGGGTATGGGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTC **GGTACTAGGGGTATG**GGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTC TTACTAGGGGTATGGGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTC TTACTAGGGGTATGGGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGT AGGGT TAGGGGTATGGGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCA TACTAGGGGTATGGGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCA **TACTAGGGGTATG**GGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCAGGG CTAGGG TATGGGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTG **GGTACTAGGGGTATG**GGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTG **GTACTAGGGGTATG**GGGACAGGTTAGTCCACC **TAGGGGTATG**GGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCAG AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCA **CTAGGGGTATG**GGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCAGGG **GGGTATG**GGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTG **GTACTAGGGGTATG**GGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTC AGGGGTATGGGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTC **AGGGGTATG**GGGACAGGTTAGTCCACC GGGTACTAGGGGTATGGGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTA AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCA **GGGTATG**GGGACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCAGGG GACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGTCAGGG GACAGGTTAGTCCACC AAAGCTGACTGGCCCTGGTGCCAGGTACTGTGT GGGGACAGGTTAGTCCACC

b

CTGGTGCCAGGTACTGTGTCAGGG **TACTAGGGGTATGGGGAC** CTGGTGCCAGGTACTGTGTCAGGG **TTACTAGGGGTATGGGGAC** CTGGTGCCAGGTACTGTGTCAGGG **GTACTAGGGGTATGGGGAC CTGGTGCCAGGTACTGTGTCA** AGGGTACTAGGGGTATGGGGAC CTGGTGCCAGGTACTGTGTCAGGG **GGTACTAGGGGTATGGGGAC** CTGGTGCCAGGTACTGTGTCAGGGAG **GGTACTAGGGGTATGGGGAC** CTGGTGCCAGGTACTGTGTCAGGG **GGAGTGGCCAAAGGGTACTAGGGGTATGGGGAC GGGTACTAGGGGTATGGGGAC** CTGGTGCCAGGT CCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGTACTAGGGGTATGGGGAC

Supplementary Figure 3 - Sequencing of target site insertions and deletions induced by ZFNs in vivo.

PCR products from Cel-1 assay on ZFN-treated mice in Fig.2c were cloned and sequenced prior to treatment with Cel-1 enzyme. Sequencing of clones demonstrated **a**, deletions and **b**, insertions characteristic of imprecise DSB repair by NHEJ. Red bases indicate ZFN binding sites while blue bases indicate the 6 bp regionof ZFN cleavage. Intervening white regions represent deleted bases while black bases in between ZFN binding sites indicate inserted bases. The 5' and 3' flanking black bases indicate hF9mut intron. The top line of each panel indicates the sequence of the unmodified locus.

Supplementary Figure 4 - F9 ZFNs promote HDR at the h*F*9mut intron in HEK293T-h*F*9mut cells and HDR can be quantified through PCR.

HEK293T cells were stably transduced with a lentiviral vector carrying the h*F*9mut mini-gene and a single cell-derived clone was expanded. **a**, Co-transfection of HEK293T-h*F*9mut cells with 400 ng of ZFN expression plasmid and 2 µg or 4 µg of Notl RFLP donor plasmid results in gene targeting 3 days post-transfection, whereas transfection of 400 ng of ZFN expression plasmid alone, or 4 µg of donor plasmid does not result in detectable HDR. **b**, Targeted integration of the "splice acceptor – exons 2-8 coding sequence – bovine growth hormone polyA signal" cassette in HEK293T-h*F*9mut cells followed by the isolation of either untargeted ("wt") or targeted single cell-derived clones (#1 and #2). (*) denotes non-specific amplicon present in all samples. **c**, Linearity of the PCR-based quantitative detection of HDR using primers P1/P3. Genomic DNA isolated from a single cell-derived targeted clone (#1) was mixed at various ratios with wild-type (non-targeted) gDNA and amplified by PCR using ³²P-labeled nucleotides followed by PAGE and autoradiography. The intensity of the non-targeted and targeted bands were quantified. The % of detected targeted signal is shown below the gel and the theoretical signal is shown above.

а

Week of life	ZFN+Donor	Mock+Donor	ZFN Alone	p-value
	hF9mut average			
4	124 (7, 117) ≤15 (6, 0) ≤15 (7, 0)		0.003	
6	119 (7, 111)	≤15 (6, 0)	≤15 (7, 0)	0.003
8	119 (7, 122)	≤15 (6, 0)	≤15 (7, 0)	0.006
10 wks 1 day	156 (7, 140)	≤15 (6, 0)	≤15 (7, 0)	0.002
10 wks 2 days	205 (7, 170)	≤15 (6, 0)	≤15 (7, 0)	0.0006
11	156 (7, 149)	≤15 (6, 0)	≤15 (7, 0)	0.003
12	171 (7, 165)	16 (6, 1)	≤15 (7, 0)	0.003
13	126 (7, 123)	≤15 (6, 0)	≤15 (7, 0)	0.004
14	121 (7, 116)	≤15 (6, 0)	≤15 (7, 0)	0.003
16	176 (7, 144)	≤15 (6, 0)	≤15 (7, 0)	0.0006
18	177 (7, 136)	≤15 (6, 0)	≤15 (7, 0)	0.003
22	137 (7, 133)	≤15 (6, 0)	≤15 (6, 0)	0.003
32	189 (7, 223)	≤15 (6, 0)	17 (7, 4)	0.01

b

Week of life	ZFN+Donor Mock+Donor		p-value
	hF9mut/HB average plasma		
4	262 (9, 96)	24 (9, 17)	0.000006
6	354 (8, 183)	21 (8, 10)	0.0001
8	217 (6, 160)	18 (4, 7)	0.04
12	256 (5, 86)	16 (3, 2)	0.003
13	166 (5, 38)	15 (3, 0)	0.0006
14	284 (5, 49)	18 (3, 6)	0.0001

Supplementary Figure 5 - Significant difference in hF.IX expression between groups.

a, hF.IX expression in ZFN+Donor group at multiple time-points compared to ZFN alone and Mock+Donor groups in hF9mut mice from Figure 4a. p-values from 2-tailed T-test.
b, hF.IX expression in ZFN+Donor group at multiple time-points compared to Mock+Donor group in hF9mut/HB mice from Figure 5a. p-values from 2-tailed T-test.

Supplementary Figure 6 - Correlation of ZFN activity, HDR efficiency, and hF.IX expression in hF9mut mice.

a, Quantification of HDR efficiency using primers P1/P2 and P1/P3 PCR assays, quantification of ZFN-induced indel frequency using the Cel-I assay, and measurement of plasma hF.IX levels by ELISA in mice from Fig.4a at 32 weeks of life demonstrates correlation of ZFN cleavage activity with HDR efficiency and hF.IX expression. PCR was performed using ³²P-labeled nucleotides, followed by PAGE and product band intensity quantification by autoradiography. Lanes with no quantification were below the limit of detection. Each lane represents an individual mouse. **b**, Linear regression of plasma hF.IX versus HDR targeting rate, as measured using primers P1/P2, demonstrates association between degree of HDR and level of hF.IX expression.

Supplementary Figure 7 - Lack of amplification products for PCR-based HDR quantification assays in C57BL/6-wt mice.

Liver genomic DNA from control mice in Fig.4c was PCR amplified using **a**, primers P1/P3, **b**, primers P1/P2, or **c**, endogenous mouse F8 gene (to show no inhibition of PCR) primers. PCR was performed using ³²P-labeled nucleotides, followed by PAGE and product band detection by **a**, autoradiography, or **b-c**, ethidium bromide staining. Each lane represents an individual mouse.

Treatment Group

1		
٩	-	
1		

Week of life	ZFN:Donor, 1:5	ZFN:Donor, 1:1	p-value
	h <i>F9</i> mut/HB average plasma		
4	262 (9, 96)	100 (7, 70)	0.002
6	354 (8, 183)	88 (7, 63)	0.003
8	217 (6, 160)	119 (7, 101)	0.2
12	256 (5, 86)	98 (6, 58)	0.005
13	166 (5, 38)	105 (6, 60)	0.08
14	284 (5, 49)	116 (6, 68)	0.001

Supplementary Figure 8 - hF.IX expression and aPTT correction are dependent on Donor dose.

a, Plasma hF.IX in hF9mut/HB mice following day 2 of life I.P. injection with ZFN alone (5e10vg), Mock(5e10vg)+Donor(2.5e11vg), ZFN(5e10vg)+Donor(2.5e11vg), or ZFN (5e10vg)+Donor(5e10vg). Error bars denote std. error. PHx=partial hepatectomy.
b, Test of clot formation by aPTT at week 14 of life for mice from panel a as well as WT and HB control mice. p-values from 2-tailed T-test.

c, hF.IX expression in ZFN:Donor, 1:5 group at multiple time-points compared to ZFN:Donor, 1:1 group in h*F9*mut/HB mice. p-values from 2-tailed T-test.

Predicted ZFN target site

gTGCCAGGTACTGTGTcagggtACTAGGGGTCTGg

			(Left ZFN)	Right ZFN)				
Chr.	Location	Nucleotide position (mm8 build)	Potential site		Mismatches*	Gene	Position in Gene	Cel-1 (%)
chr9	9qE3.1	85644480-85644514	AaGgCAGGTgCTGTGTAAGTACACT	\aGGaTGT G	5	none	N/A	4
chr2	2qH4	178784182-178784212	TCACACCCtTAGGAAGAGAgTgGGG	GTCTGG	3	none	N/A	<1
chr4	4qB3	58366981-58367014	CCgGACtCCTAGGACCCAgCACAGT	CCCGGCAC	4	none	N/A	<1
chr11	11qB4	71934573-71934603	CCACACCCtgAGGAGAAGCCTAGtG	ttctgg	4	Pitpnm3	Intron 2	<1
chrX	XqC3	95501151-95501184	ATGCCAtGTCCTGTGcCCTGTgCcAG	GGaTGTG G	5	none	N/A	<1
chr14	14qA3	27637751-27637781	TCAaACCCCTAGGAAAATgCTAGaG	GTCaGT	4	none	N/A	<1
chr4	4qD2.2	121711455-121711485	ACAtACtCtTAGGGTACTACTcaGGG	CTGG	5	none	N/A	<1
chr4	4qD2.2	121973087-121973117	ACAtACtCtTAGGGTACTACTcaGGG	CTGG	5	none	N/A	<1
chr5	5qF	120448948-120448978	TCACAgCCacAGGACCCCACTAGGG	GTGTGG	3	Rbm19	Intron 23	<1
chr8	8qA1.1	12898527-12898558	CCgCACaCCTtaGGGAAAACCTAGG	GGTCTGG	4	none	N/A	<1
chr2	2qB	35247904-35247934	CCcCACCCtcAGcAGCCTggTAGGGG	TGTGT	6	Ggta1	Intron 2	<1
chr13	13qD1	97361947-97361977	AaACACCCCTAGGAGTCTCCTgGGG	aTGgGG	4	none	N/A	<1
chr7	7qF3	125662683-125662713	CCACtCtCCTAGTGGAAGgCTAaGGC	TCTGA	4	D430042009Rik	Intron 24	<1
chr19	19qD1	50113440-50113470	TCACAtCCtTAGTAGCATCCTtaGaGT	GTGG	5	none	N/A	<1
chr4	4qD3	136746026-136746056	CCAGctCCCTAGTGGCTTCCTAaaGG	TCTGC	4	Hspg2	Intron 1	<1
chr4	4qD2.2	123884923-123884954	TCgCAaCCCTAGGCAGAGAgCcAGG	GGTCTGG	4	none	N/A	<1
chr3	3qE3	79023411-79023441	CCtGACCCtTAGTAACCTgCTAatGtT	CTGA	6	none	N/A	<1
chr1	1qA2	9983321-9983355	CCAGACCCtTAGGTCCGTAACACtGT	AgCTGGgAG	4	Lrrc67	Intron 5	<1
chr4	4qB2	52798123-52798154	GCgCAtCCtTAGTAGTTGACCTAGGG	GTCTtT	4	none	N/A	<1
chr7	7qD1	74726604-74726634	GCAGACCCCTtGTTCTGTgCTAGGG	TGgGG	4	none	N/A	<1

Supplementary Figure 9 - Off-target cleavage by F9 ZFNs in vivo.

Potential off-target cleavage sites in the mouse genome as determined using a SELEX approach. Mismatches are indicated by lower-case letters. To determine the frequency of off-target ZFN-induced insertions and deletions, the Cel-I assay was performed at each site using liver genomic DNA of mice from Figure 2c and averaged among the 4 samples.

Supplementary Figure 10- LM-PCR cloning and 454 pyrosequencing to characterize AAV-F9 donor integration junctions at off-target sites.

We used the strategy described in Li et al., 2011 to characterize AAV-Donor integration sites in the mouse genome at sites distant from the hF9 target site. a, LM-PCR strategy to clone NHEJ-mediated events by using donor vector primers hybridizing to the stuffer. The stuffer is outside the arms of homology and thus is eliminated by HDR events. This approach thus maps integration sites where the stuffer remained intact (i.e. NHEJdependent integrations) and could not query HDR-mediated events because 454 reads would not span the length of the arms of homology. To create the second primer binding site, genomic DNA was cleaved with a restriction enzyme and ligated to a linker, which was then used as the binding site for the reverse PCR primer. **b**, Integration site preferences for AAV Donor integrations within the mouse genome. One plate of 454/Roche Titanium sequencing was used to query integration sites from five mice treated with ZFN + Donor, and five control mice treated with Mock + Donor. The number of junction sequence reads aligning to unique sites in the mouse genome in each group were 5801 (ZFN + Donor) or 14048 (Mock + Donor). The relative likelihood of donor integrations to occur within genes, within exons, and within 50kb of oncogenes relative to randomly selected sites within the mouse genome³⁰ are indicated by the bar graphs (red for Mock + Donor and green for ZFN + Donor). Events are more likely to occur than random if above the black line and less likely if below the black line. No significant differences were detected in the presence or absence of the AAV-ZFN vector for these comparisons, indicating that ZFN cleavage at off-target sites did not have a strong effect on vector integration. Sequence data are available from the National Center for Biotechnology Information (NCBI) Genome Survey Sequences Database (GSSS, www.ncbi.nlm.nih.gov/dbGSS, accession numbers: HR941099 -HR999999, and JJ000001-JJ725186).

Supplementary Figure 11 - Capture of vector genome at the ZFN target site.

a, Vector DNA targeted integration at the ZFN target site can be detected through PCR using primers P1 and P4.
b, PCR analysis with primer pair P1/P4 showing vector integration at the ZFN target site. PCR was performed using ³²P-labeled nucleotides, followed by PAGE and autoradiographed.

Supplementary Figure 12 - Kinetics of liver function tests and ZFN expression after neonatal injection. Measurement of plasma alanine aminotransferase (ALT) by chromogenic assay as a marker for liver damage at various time-points following day 2 of life I.P. injection of 2.5e11 v.g. AAV-Donor and 5e10 v.g. of AAV-ZFN or AAV-Mock in **a**, hF9mut and **b**, C57BL/6-wt mice. **c**, Western blotting to detect ZFN expression in whole liver lysate at weeks 1, 3, and 8 post- day 2 of life I.P. injection of 5e10 v.g. of AAV-ZFN. Note that the loss of ZFN expression by 3 weeks of life likely contributes to the absence of toxicity.

Supplementary Figure 13 - Expression of hF.IX in mice receiving ZFN and a Donor lacking exon 1 in the left arm of homology.

a, Schematic showing the map of a donor vector, distinct from the donor vector in Fig.3a in that it does not contain exon 1 sequence within the 5' arm of homology. **b**, Plasma hF.IX levels in hF9mut mice following I.P. injection at day 2 of life with either 5e10 v.g. AAV-ZFN alone (n=7), 5e10 v.g. AAV-ZFN and 2.5e11 v.g. of the new AAV-Donor (n=8), or 5e10 v.g. AAV-Mock and 2.5e11 v.g. of the new AAV-Donor (n=10). Plasma hF.IX assayed by ELISA. Error bars denote standard error. P-values from 2-tailed T-test.

ATTTAAATGGCCGGCCAGT<u>AGGCTCAGAGGCACACAGGAGTTTCTGGGCTCACCCTGCCCCCTTCCA</u> <u>ACCCCTCAGTTCCCATCCTCCAGCAGCTGTTTGTGTGCTGCCTCTGAAGTCCACACTGAACAACTTC</u> CCTGCTGACCTTGGAGCTGGGGCAGAGGTCAGAGACCTCTCTGGGCCCATGCCACCTCCAACATCCA CTCGACCCCTTGGAATTTCGGTGGAGAGGAGCAGAGGTTGTCCTGGCGTGGTTTAGGTAGTGTGAGA GGGGTACCCGGGGATCTTGCTACCAGTGGAACAGCCACTAAGGATTCTGCAGTGAGAGCAGAGGGC CTGTGGTTTCTGAGCCAGGTACAATGACTCCTTTCGGTAAGTGCAGTGGAAGCTGTACACTGCCCAGG CCTCCGATAACTGGGGTGACCTTGGTTAATATTCACCAGCAGCCTCCCCCGTTGCCCCTCTGGATCCA CTGCTTAAATACGGACGAGGACAGGGCCCTGTCTCCTCAGCTTCAGGCACCACCACTGACCTGGGAC <u>AGT</u>GAATGATCCCCCTGATCTGCGGCCTCGACGGTATCGATAAGCTTGATATCGAATTCTAGTCGTCG<u>A</u> CCACTTTCACAATCTGCTAGCAAAGGTTATGCAGCGCGTGAACATGATCATGGCAGAATCACCAGGCC ATTGAGTATGCTTGCCTTTTAGATATAGAAATATCTGATGCTGTCTTCTTCACTAAATTTTGATTACATGAT TTGACAGCAATATTGAAGAGTCTAACAGCCAGCACGCAGGTTGGTAAGTACTGGTTCTTTGTTAGCTAG GTTTTCTTCTTCTTCATTTTTAAAACTAAATAGATCGACAATGCTTATGATGCATTTATGTTTAATAAACACT GTTCAGTTCATGATTTGGTCATGTAATTCCTGTTAGAAAACATTCATCTCCTTGGTTTAAAAAAATTAAAA CTTTGAAATCAAAATGGGAAACAAAAGCACAAACAATGGCCTTATTTACACAAAAAGTCTGATTTTAAGA TATATGACATTTCAAGGTTTCAGAAGTATGTAATGAGGTGTGTCTCTAATTTTTTAAATTATATATCTTCAAT GGATTAGGAAAAAATCATTTTGTCTCTATGTCAAACATCTTGGAGTTGATATTTGGGGGAAACACAATACT CAGTTGAGTTCCCTAGGGGAGAAAAGCAAGCTTAAGAATTGACATAAAGAGTAGGAAGTTAGCTAATGC AACATATATCACTTTGTTTTTTCACAACTACAGTGACTTTATGTATTTCCCAGAGGAAGGCATACAGGGA CTAGAATCAAATCTAGTAGCTGACAGTACCAGGATCAGGGGTGCCAACCCTAAGCACCCCCAGAAAGC TGACTGGCCCTGGTGCCAGGTACTGTGTCAGGGTACTAGGGGGTATGGGGACAGGTTAGTCCACCTGA GTGGGAAGAAGCGGTGAAAGGAGTCCAATCCATGTTTAAATGGCGGCAGTTGCAAGGAGCTGGTCAT CCTCATCCTGATAAACTGCAAAAGGCTGCGGCAGTTACGCTAGGGATAACAGGGTAATATAGGGTGGTT CCCACTCCAGACATGATGTCAGCTGTGAAATCGACGTCGCTGGACCATAATTAGGCTTCTGTTCTTCAG TTGCAAAGATCCTCAATGAGCTATTTTCAAGTGATGACAAAGTGTGAAGTTAACCGCTCATTTGAGAAC TTTCTTTTCATCCAAAGTAAATTCAAATATGATTAGAAATCTGACCTTTTATTACTGGAATTCTCTTGACT AAAAGTAAAATTGAATTTTAATTCCTAAATCTCCATGTGTATACAGTACTGTGGGAACATCACAGATTTTG GCTCCATGCCCTAAAGAGAAATTGGCTTTCAGATTATTTGGATTAAAAACAAAGACTTTCTTAAGAGATG TAAAATTTTCATGATGTTTTCTTTTTTGCTAAAACTAAAGAATTATTCTTTTACATTTCAGTTTTTCTTGATC ATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAATTCAGGTAAATTGGAAGAGTTTGTTC AACACTGAAAGAACAACTGAATTTTGGAAGCAGTATGTTGATGGAGATCAGTGTGAGTCCAATCCATGT TTAAATGGCGGCAGTTGCAAGGATGACATTAATTCCTATGAATGTTGGTGTCCCTTTGGATTTGAAGGA AAGAACTGTGAATTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAGCAGTTTTGTAAAAATAGTG CTGATAACAAGGTGGTTTGCTCCTGTACTGAGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGAA CCAGCAGTGCCATTTCCATGTGGAAGAGTTTCTGTTTCACAAACTTCTAAGCTCACCCGTGCTGAGGC TGTTTTTCCTGATGTGGACTATAGGGCCGGCCATTTAAAT

Supplementary Figure S14 - hF9mut mini-gene sequence.

Nucleotide sequence for the hF9mut construct. <u>Underlined</u> regions indicate liver enhancer and promoter (bases 20-742), hF9 exon 1 (bases 808-923), ZFN target site (bases 1881-1910), and hF9 exons 2-6 (bases 2548-3062).