SUPPLEMENTAL DATA

Supplemental Data include one figure and two tables, and the microarray data in excel format.

Supplemental Figure S1. (A) Protein carbonylation in $zim17\Delta$ rho⁺ and rho⁻ strains grown in the absence (-) or presence of oxidative stress (+) induced by 2mM *t*-BOOH. Total protein content is shown (Coomassie staining, left) together with the immunodetection of carbonylated proteins (right). Relative intensity of protein carbonylation normalized to the signal obtained by Coomassie staining. (B) Tetrad analysis crossing $zim17\Delta$ with $rad17\Delta$ mutant cells. Note that viable $zim17\Delta rad17\Delta$ spores could not be recovered. (C) Drop test analysis of serial 1:10 dilutions of WT and $zim17\Delta$ cells spotted onto media containing different concentrations of MMS and 4-NQO or of cells exposed to different doses of UV-irradiation (254nm). (D) Tetrad analysis crossing $zim17\Delta$ with npa1-1 cells. For explanation see B above.

Supplemental Table S1. Yeast strains and plasmids used in this study.

Supplemental Table S2. Transcriptionally up- and down-regulated genes in $zim17\Delta$ mutants.

strain	genotype	source
W303-1A	MAT a ade2-1 trp1-1 ura3-1 his3-11 leu2-3,112 can1-100	(65)
W303-1B	MAT α ade2-1 trp1-1 ura3-1 his3-11 leu2-3,112 can1-100	(65)
BY4741	MAT a trp1-1 ura3 $\Delta 0$ leu2 $\Delta 0$ his3 $\Delta 0$ met15 $\Delta 0$	(66)
BY4742	MAT α trp1-1 ura3 $\Delta 0$ leu2 $\Delta 0$ his3 $\Delta 0$ lys2 $\Delta 0$	(66)
FPAA001-09B	MAT α ura3 Δ 0 leu2 Δ 0 zim17::KAN	Euroscarf
WRK5-3C	W303-1A, leu2-k::URA3-ADE2::leu2-k	(24)
WFNL-5A	MAT α ura3 leu2 leu2-k::URA3-ADE2::leu2-k	this study
WFNL-5B	MATa ura3 leu2 zim17::KAN leu2-k::URA3-ADE2::leu2-k	this study
WZFN3D-1B	W303-1B zim17::KAN	this study
WZFN3D-1D	W303-1A zim17::KAN	this study
MCDY101	W303-1B zim17::KAN leu2-k::URA3-ADE2::leu2-k	this study
MCDY102	W303-1A rad24::TRP1 leu2-k::URA3-ADE2::leu2-k	this study
MCDY103	W303-1B zim17::KAN rad24::TRP1 leu2-k::URA3-ADE2::leu2- k	this study
KM84	MAT a ade2-1 trp1-HIII ura3-52 his4-260 leu2-3,112 lys2::Bam, can1-100 URA3::rDNA ADE2::rDNA	(25)
MCDY104	MAT a ade2-1 trp1 ura3-52 leu2-3,112 his zim17:KAN URA3::rDNA ADE2::rDNA	this study
WRS52-4B	MATa-inc ade2-1 trp1-1 ura3-52 his3-11 ade3::GAL-HO LEU2::SFA1, rad52::KAN	(67)
MCDY105	MAT a ade2-1 trp1-1 ura3-52 leu2-3,11 his3-11 met15∆0 lys2∆0 zim17::KAN rad52::KAN	this study
Y04222	BY4741 mus81::KANMX4	Euroscarf
MCDY106	MAT α trp1 ura3 leu2 his3-11 met15 Δ 0 zim17::KAN mus81::KAN	this study
Y10775	BY4742 sgs1::KAN	Euroscarf
MCDY107	MATa ade2-1 trp1-1 leu2 his3 zim17::KAN sgs1::KAN	this study
AMH5	ho∆ MATa ade1-100 ura3-52 leu2-3 his4-519 ade3::GAL::HO cdc44-8::URA3	(68)

Supplemental Table S1. Yeast strains and plasmids used in this study.

strain	genotype	source
MCDY108	MAT a ade trp1-1 ura3-52 leu2 his zim17::KAN cdc44- 8::URA3	this study
DD379	W303-1A rad24::TRP1	D. Durocher
MCDY109	zim17::KAN rad24::TRP1	this study
DD303	W303-1A <i>elg1::KAN</i>	D. Durocher
MCDY110	W303-1B zim17::KAN elg1::KAN	this study
DD377	W303-1A <i>elg1::KAN</i>	D. Durocher
MCDY111	W303-1A zim17::KAN ctf18::HYG	this study
AMH4	ho∆ MATa ade1-100 ura3-52 leu2-3 his4-519 ade3::GAL::HO pol30-52	(68)
MCDY112	MAT α ade2-1 trp1-1 ura3 -52 leu2-3,112 his3-11 met15 Δ 0 lys2 Δ 0 zim17::KAN pol30-52	this study
MC2_7B	MAT α ade2 ura3 leu2 his3 leu2-k::URA3-ADE2::leu2-k cdc2-3	this study
MCDY113	MAT a ade2 ura3 trp1-1 leu2-3,112 his3-11 zim17::KAN cdc2- 3	this study
Y14963	BY4742 rad27::KAN	Euroscarf
MCDY114	MAT α ade2-1 trp1-1 ura3 leu2 his3-11 zim17::KAN rad27::KAN	this study
Y00994	BY4741 rrm3::KAN	Euroscarf
MCDY115	MAT α ade2-1 trp1-1 ura3 leu2 his3-11 zim17::KAN rrm3::KAN	this study
Y00509	BY4741 <i>pif1::KAN</i>	Euroscarf
MCDY116	MAT α ade2-1 trp1-1 ura3 leu2 his3-11 zim17::KAN pif1::KAN	this study
Y11171	BY4742 tof1::KAN	Euroscarf
MCDY117	MAT α ade2-1 trp1-1 ura3 leu2 his3-11 zim17::KAN, tof1::KAN	this study
JVY325	W303-1A npa1-1	(22)
DMP1913-11C	W303-1B rad17::TRP1	(69)
MMI-81	W303-1B RAD5 rad3-102::HYG	(62)

MCDY118	W303-1A npa1-1 leu2-k::URA3-ADE2::leu2-k	this study
strain	genotype	source
FLRA006-01B(A)	MAT α ura3Δ0 leu2Δ0 YGL099w(154,1920)::KAN	Euroscarf
Y02292 (acc. no.)	MAT α ura3 $\Delta 0$ leu2 $\Delta 0$ rpl13::KAN	Euroscarf
MCDY119	MATa ura3 leu2 YGL099w(154,1920)::KAN leu2-k::URA3-ADE2::leu2-k	this study
MCDY120	MATa ura3 leu2 rpl13::KAN leu2-k::URA3-ADE2::leu2-k	this study
plasmid	description	source
plasmid pWJ1344	description LEU2, RAD52::YFP::CYCt	source R.Rothstein, Columbia University
plasmid pWJ1344 pRS316-RPS2-eGFP	description LEU2, RAD52::YFP::CYCt URA3, RPS2::GFP	source R.Rothstein, Columbia University (50)
plasmid pWJ1344 pRS316-RPS2-eGFP pRS316-RPL25-eGFP	description LEU2, RAD52::YFP::CYCt URA3, RPS2::GFP TRP1, RPL25::GFP	source R.Rothstein, Columbia University (50) (49)

Supplemental Table 2. Transcriptionally up-regulated and down-regulated genes (≥ 2 fold, Pvalues ≥ 0.05) that cluster within predictable GO-terms versus all *S. cerevisiae* ORFs.

Up-regulated genes	Fold increase	Down-regulated genes	Fold decrease
Iron metabolism		Electron transport chain	
(iron starvation adaptation)		ACO2	2.9
Siderophore transport		ATP17	2.2
FIT1	92.1	ATP20	2.6
FIT2	88.2	CCP1	2.9
FIT3	28.8	COR1	2.5
Iron ion homeostasis		COX4*	2.8
CAD1	2.8	COX5A*	2.5
CTH2	41.7	COX6*	3.0
FRE8	2.6	COX7	2.3
HMX1	3.2	COX8*	2.6
Iron transport	0.2	CYB5	2.6
ARN1	18.1	CYC1*	3.7
ARN?	10.1	CYT1	2.7
FNR1	41.1 15 7	QCR10	2.1
ENDI FFT3	60	QCR2	2.8
FEIJ EETA	0.0	QCR6*	2.7
FE14 EET5	2.0	QCR7*	2.5
	2.5	QCR9*	2.0
FMP23	5.8	RIP1*	2.6
FREI	7.3	SDH1*	3.0
FRE2	19.3	SDH2*	4.3
FRE3	8.5	SDH3*	2.9
FRE4	21.2	SDH4	2.4
FRE5	64.3	Phosphate metabolism	
FRE6	4.0	РНО11/12	10.9
FTH1	3.2	РНО5	17.2
FTR1	6.8	PHO84	7.2
MRS4	3.4	VTC3	3.3
PCA1	3.2	Cofactor metabolic processes	
SIT1	31.8	Biotin metabolism	
SMF3	2.9	BIO2	7.6
Glycogen/glucan metabolism		BIO4	2.5
GAC1	2.6	Heme metabolism	
GDB1	2.3	HEM3	2.1
GIP2	2.8	HEM13	2.3
GLC3	2.2	HEM15	2.1
GPH1	2.2	Iron-sulfur cluster biosynthesis	
GSC2	2.6	ISA1	2.5
GSY2	2.1	NFU1	2.0
PGM2	2.7	YFH1	2.2
Transmembrane transport		Nitrogen compound metabolism	
AGP2	2.0	AAH1	2.6
ALP1	4.5	ARO9	5.4
CCC2	8.3	ARO10	13.4
COT1	2.5	DAL3	2.0
NCA3	23	DAL80	2.4
NFT1	6.9	DUR3	3.6
PDR3	5 5	GLT1	5.0
PDR5	3.9	ILV3	2.6
PDR15	14.0	LEU1	3.6
PDR16	2 3	LEU9	2.4
	2.3 12.1	LYS4	2.9
NDI SNAI	15.1	MEP2	3.7
5/11 <u>7</u> 24 1712 4 2	5.9	MYS1	2.8
V DAJ	0.4	RKI1	2.3
	15.4	SER3	31
	2.0	URA7	2.0
YORI	2.6	UN/17	2.0

Statistically relevant GO terms (biological processes) and the fold increase or decrease in respect to the WT are indicated. Omitted genes can be found in the Supplementary Data (microarray analysis).

* Target genes for CTH1/CTH2-dependent degradation

Supplementary References

- 66. Thomas, B.J. and Rothstein, R. (1989) Elevated recombination rates in transcriptionally active DNA. *Cell*, **56**, 619-630.
- 67. Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P. and Boeke, J.D. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. *Yeast (Chichester, England)*, **14**, 115-132.
- 68. Gonzalez-Barrera, S., Cortes-Ledesma, F., Wellinger, R.E. and Aguilera, A. (2003) Equal sister chromatid exchange is a major mechanism of double-strand break repair in yeast. *Mol. Cell*, **11**, 1661-1671.
- 69. Holmes, A.M. and Haber, J.E. (1999) Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. *Cell*, **96**, 415-424.
- 70. Majka, J. and Burgers, P.M. (2005) Function of Rad17/Mec3/Ddc1 and its partial complexes in the DNA damage checkpoint. *DNA Repair (Amst)*, **4**, 1189-1194.