## **Supplementary Information**

### MicroRNA 130 Family Regulates the Hypoxia Response Signal through the P-body Protein DDX6

Ken Saito, Eisaku Kondo, Masayuki Matsushita

#### **FIGURE LEGENDS**

Supplementary Figure S1. Predicted miRNAs in the HIF-1a 3'UTR. (A) 3'UTR seed matches to human HIF-1 $\alpha$  were identified using the partially overlapping predictions by miRBase (http://microrna.sanger.ac.uk/targets/v2/). Underlines show the miRNA target sites. The binding of miRNAs to the target sites (underlines) are shown. (B) miR-130a/b target sites in mouse and human HIF-1 $\alpha$  are shown. Bold type shows residues of the seed sequence.

**Supplementary Figure S2.** 3'UTR seed matches to human HIF-1 $\beta$  were identified using the partially overlapping predictions by TargetScan (http://www.targetscan.org/). Underlines show the miRNA target sites. The binding of miRNAs to target sites (underlines) are shown.

**Supplementary Figure S3.** Effects of miR-130a and 130b. (**A**) HEK 293 cells were transfected with 0.1 to 100 nM of pre-miR-130a and 130b for 48 h, and then cells were exposed to hypoxia for 8 h. Expression levels of HIF-1 $\beta$  were detected by western blots. Pre-miR negative control (Pre-miR N.C.) was 100 nM. Left lane (control) shows untransfected cells. HIF-1 $\beta$  expression levels were calculated by the relative expression of actin. The ratio to the control is shown. (**B**) HEK293 cells were transfected with pre-miRNAs and the mHIF-1 $\alpha$  3'UTR reporter gene. Renilla luciferase expression was standardized to firefly luciferase. Results are presented as mean ± S.D. (n=3, control vs 130a: p=0.056, control vs 130b: p=0.028). (**C**) In the transient transfection of pre-miR-130a/130b, cells were exposed to hypoxia for 8 h and HIF-1 $\alpha$  mRNA levels were analyzed by qRT-PCR. The values were corrected by  $\beta$ -actin mRNA. Results are presented as means ± S.D. (n=3).

Supplementary Figure S4. Knock-down of genes predicted to be miR-130 targets. (A) siRNAs for miR-130 target genes were transfected into HEK 293 cells. After 48 h, cells were exposed to hypoxia for 8 h. HIF-1 $\alpha$  expression was detected by western blotting. (B) Knock-down efficiency was examined by qRT-PCR. The ratio to the control siRNA is shown.

**Supplementary Figure S5.** DDX6 localization in HEK293 cells. (**A**) Cells were treated with normoxia and hypoxia for 48 h and were stained with anti-DDX6 and anti-DCP1A antibodies. The localization of endogenous proteins was examined by fluorescence

microscopy. Nuclei were stained with DAPI. Scale bar =  $10 \mu m$ . (**B**) HEK293 cells were exposed to normoxia and hypoxia for 8, 24, and 48 h. Endogenous DDX6 expression was detected by western blotting.

**Supplementary Figure S6.** Tissue distribution of pri-miR-130a. (A) *In situ* hybridization experiment on cryo-sections of E18.5 mouse embryos using antisense probes that recognize pri-miR-130a (left) or sense probes of pri-miR-130a (right). (B) Pri-miR-130a was expressed in the cortex (top panel, left), cerebellum (middle panel, left), and kidneys (bottom panel, left). Granule cells in the cortex and cerebellum are indicated by arrowheads. Renal tubes in kidneys are indicated by asterisks. Scale bar = 1 mm. Squares represent areas shown as higher magnifications. Scale bar = 100  $\mu$ m.

**Supplementary Figure S7.** Mature miR-130 levels in hypoxia. HeLa and NIH-3T3 cells were cultured under normoxia (N, solid bars) or hypoxia (H, open bars) for 72 h. Endogenous mature miR-130a and 130b levels were detected by qRT-PCR. RNA levels for miR-130a and 130b were normalized by 5S rRNA. The ratio to normoxia is the mean of three independent experiments  $\pm$  S.D. (P=0.1).

**Supplementary Figure S8.** Localization of DDX6 in neuronal cells. (**A**) After exposure to normoxia (left panel) and hypoxia (middle panel) for 48 h, cells were stained with DDX6 antibody or Dcp1a antibody as a P-bodies marker. The right panels (reoxygenation) show the localization of DDX6 and Dcp1a under normoxia for 12 h after hypoxia for 48 h. Nuclei were stained with DAPI. Scale bar = 10  $\mu$ m. (**B**) After exposure to normoxia (solid bar) and hypoxia (open bar) for 48 h, DDX6 mRNA levels in neuronal cells were measured by qRT-PCR. The values were corrected by  $\beta$ -actin mRNA. Results are presented as means  $\pm$  S.D. (n=3).

Supplementary Figure S9. Localization of DDX6 under oxidative stress and hypoxia. Neuronal cells were treated with or without 0.5 mM arsenite for 15 min as an oxidative stressor, and then cells were stained with DDX6 antibody and TIAR antibody as stress granule markers. Neuronal cells were also stained with DDX6 antibody and TIAR antibody and TIAR antibody under hypoxia and reoxygenation conditions. DDX6 foci and TIAR foci are indicated by arrowheads. Nuclei were stained with DAPI. Scale bar =  $10 \mu m$ .



A 2761 actgagettt ttettaattt <u>catteetttt tttggacaet ggtgg</u>eteae taeetaaage 2821 agt<u>ctattta tattttctac atcta</u>atttt agaagcctgg c<u>tacaatact qcacaaactt</u> 2881 <u>gqft</u>agttca atttttgatc ccctttctac <u>ttaatttaca ttaatqctct tttttaqtat</u> 2941 <u>gttctttaat gctggatcac agacagctca tttttctccagt tttttggtat ttaaaccatt</u> 3001 <u>gcattq</u>cagt <sup>6</sup>agcatcattt taaaaaatgc acctttttat ttatttattt ttggctaggg 3061 agtttatccc tttttcgaat tatttttaag aagatgccaa tataattttt gt<u>aagaaggc</u> 3121 agtaaccttt catcatgatc ataggcagtt gaaaaatttt tacacctttt tittcacatt 3181 tt<u>acataaat aataatq</u>ctt tgccagcagt acgtggtagc cacaattgca caatatattt 3241 tottaaaaaa taccagcagt tactcatgga atatattctg cgtttataaa actagtttt 3301 aagaagaaat tttttttggc ctatgaaatt gttaaacctg gaacatgaca ttg<u>ttaatca</u> 3361 <u>tataataatg attet</u>taaat getgtatggt ttattattta aatgggtaaa geeatttaea 3421 taatatagaa agatatgcat at<u>atctaqaa qqtatqtqqc attta</u>tttgg ataaaattct 12 3481 caattcagag aa<u>atcatctg atqtttctat aqtc</u>actttg ccagctcaaa agaaaacaat 13 13 3541 accctatgta gtt<u>gtggaag tttatgctaa tattgtg</u>taa ctgatattaa acctaaatgt 3601 tctgcctacc ctgttggtat a<u>aagatattt tgagcagact gt</u>aaacaaga aaaaaaaaat 3661 catgcattct tagcaaaatt gcctagtatg ttaatttgct caaaatac<u>aa tqtttgattt</u> 17 3721 tatgcacttt gtcgctatta acateetttt ttteatgtag attteaataa ttgagtaatt 3781 ttagaagcat t<u>attttaqqa atatataqtt qtca</u>cagtaa <u>atatcttqtt ttttctatqt</u> 18 3841 acattgtaca aatttttcat teettttget etttgtggtt ggatetaaca etaaetgtat 

| No. | Predicted miRNA | No. | Predicted miRNA |
|-----|-----------------|-----|-----------------|
| 1   | hsa-miR-199a-5p | 11  | hsa-miR-411     |
| 2   | hsa-miR-576-3p  | 12  | mmu-miR-290-3p  |
| 3   | hsa-miR-464     | 13  | hsa-miR-625*    |
| 4   | hsa-miR-335     | 14  | hsa-miR-195*    |
| 5   | hsa-miR-338-3p  | 15  | hsa-miR-889*    |
| 6   | hsa-miR-556-5p  | 16  | hsa-miR-622     |
| 7   | hsa-miR-130a    | 17  | hsa-miR-17      |
| 8   | hsa-miR-488     | 18  | hsa-miR-549     |
| 9   | hsa-miR-126     | 19  | hsa-miR-376c    |
| 10  | hsa-miR-15b*    |     |                 |

## Β

|                    | miR-130b 3' - UACGGGAAAGU - AGU <b>AACGUGA</b> C - 5'<br>miR-130a 3' - UACGGGAAAAUU - GU <b>AACGUGA</b> C - 5' |                       |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|--|--|
|                    | 204                                                                                                            | 249                   |  |  |
| human HIF-1α 3'UTR | CAUUUUCUCAGUUUUUUGGUAUUUA                                                                                      | AACCAUUGCAUUGCAGUAGCA |  |  |
|                    | 248                                                                                                            | 292                   |  |  |

mouse HIF-1α 3'UTR CACAUUCACAGCUCCUCAGCAUUUCA - CCAUUGCAUUGCUGUAGUG

|      |                    |                    |                    |                    |                    | actattgg           |
|------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 2581 | ggtgaggata         | aggggtgggg         | gagaaaaaat         | cactgtttgt         | ttttaaaaag         | caaatctttc         |
| 2641 | tgtaaacaga         | ataaaagttc         | ctctcccttc         | ccttccctca         | cccctgacat         | gtacccctt          |
| 2701 | tcccttctgg         | ctgttcccct         | gctctgttgc         | ctctctaagg         | taacatttat         | agaagaaatg         |
| 2761 | gaatgaatct         | ccaaggcttt         | taggactgtc         | tgaaaatttg         | aggctgggtg         | aagttaaaac         |
| 2821 | acctttcctt         | atgtctcctg         | acctgaaatt         | gtatagtgtt         | gatttgtgct         | gagatcaaga         |
| 2881 | ggcaggttag         | aagaacctga         | catccactgt         | ttgccttgga         | tagtatggct         | tgtttttgga         |
| 2941 | aagaaattct         | gaagagagtg         | gaggagagga         | gaaatgtcct         | catatttgag         | gaccatgaaa         |
| 3001 | cattgtaggt         | atatatgggg         | ctttagcaag         | tttgagcata         | ggctctttt          | gctgcctgtg         |
| 3061 | agcagtccct         | ctggaaagaa         | acatgtgagt         | aagtgagaga         | gagtgtgtgt         | gtatgtgtgt         |
| 3121 | gtgtgtgtgt         | gtgcgcacac         | atgcttctgt         | atttcactct         | ttctccctat         | tagggagtta         |
| 3181 | tgcaaaattt         | gtccccgatt         | ttacctttgt         | ctttctgtgt         | acttttcaaa         | gagtcctaag         |
| 3241 | gagttaaatc         | ttccaggtat         | tttccactta         | gtattgcagc         | caaagaatat         | ttaaataaac         |
| 3301 | gtctttgctg         | cgcttgcatc         | catgcccagc         | caatatacaa         | ctgtaaagca         | aatatagaaa         |
| 3361 | gtcggctgtt         | gatacgattg         | tctgttatcg         | aacacattca         | gtgataaagc         | t <u>gqqttactq</u> |
| 3421 | <u>ctqcttttqq</u>  | <u>tqctc</u> tcacc | ttatctggaa         | gatctgcaaa         | cattacctaa         | ataggctggc         |
| 3481 | aagataaaca         | ctttctggaa         | cccgagac <u>tt</u> | ggccataaag         | ataatgctgc         | <u>a</u> tttttctgt |
| 3541 | cagaatcaca         | tatgatgtgt         | gttctgtåga         | ggttatttct         | gcatggaaac         | tcaacttctt         |
| 3601 | ggattagccg         | tcccagtgaa         | aatcctcatt         | gttggagtgt         | aaaccaaata         | cgaagccctc         |
| 3661 | ttgcaaagta         | gcctctttca         | tcccatactc         | aaaataccca         | gtttagcaag         | caactgagat         |
| 3721 | ttaagtctct         | ctggccctaa         | gaggtttttc         | ctctttgctc         | cctccaatct         | tgagattggg         |
| 3781 | ttttgcttta         | gagtgcaagt         | atcataattc         | cgtatgatag         | atggggcc <u>tq</u> | qacacccatc         |
| 3841 | <u>tcaacaqqqt</u>  | <u>cacttqqtaa</u>  | ttaacaataq         | <u>ccatat</u> aaat | gcggatacag         | gttactaccc         |
| 3901 | tcacccttta         | ccitcctcag         | gtaacagtcg         | tagataccag         | cttttttt           | ttttt <u>tttta</u> |
| 3961 | <u>aattqqcttt</u>  | <u>qqccaqta</u> gc | taaagtgcaa         | gactgaatta         | atgagaagat         | atattaaatg         |
| 4021 | tagtcatagg         | ggactgagga         | gcaagggtgg         | ccttgaagag         | gccaaaggaa         | tgtccatttg         |
| 4081 | ctgagtttcc         | cttccttatg         | tctccagtct         | ggtgccaggt         | agtggagtaa         | aaaaggagac         |
| 4141 | agtttatttt         | tttattctat         | gtgcacactt         | acagtataca         | tatatatta          | tatcacaatt         |
| 4201 | tacgaaacca         | aaaagttgag         | tttccaatgg         | aacccttgtt         | tttta <u>ataat</u> | cgacttttta         |
| 4261 | <u>aatqtqat</u> ca | ggactataat         | attgtacagt         | tattataggg         | cttttggggga        | aggggaggat         |
| 4321 | agcgagaaga         | tgctctgggg         | gttttgtttt         | tgcttttcct         | tcagggtttt         | atttttgact         |
| 4381 | gttttgtttt         | cttgttggcc         | atttctgtat         | tgctggcatc         | tgt <u>gctaaqc</u> | tttacaqtqq         |
| 4441 | <u>caaaaat</u> aat | gacatgtagc         | aaagattttc         | aaacaaaata         | ttttttcctt         | ttgtaaaatt         |
| 4501 | tcttgtgttg         | tgtgatcttg         | attgcggctt         | tatcattcct         | ttccagttca         | taaacaacag         |
| 4561 | gcacccacaa         | ccagaggaat         | ctatagttta         | agctccagac         | atacaaacat         | aaggcacatt         |
| 4621 | gtgtctttaa         | tttcaggaat         | cagaaatcat         | agggttctga         | tcacattgca         | cgcctccccc         |
| 4681 | ctcacttgtc         | ctcctgatcc         | tgacacattc         | tgagtaacat         | cagcaggaat         | gctctgacca         |
| 4741 | tgaggtgggg         | gttttggggt         | gggcgttgcc         | tgggttcttg         | ggagagaggg         | gaagagtcgg         |
| 4801 | gacttgaaaa         | ccactagggc         | acatctggat         | gccttccccc         | agtatgtcct         | tttctggatt         |
| 4861 | aaaatgagtg         | aaatttaaac         | tgttcaaaaa         | aaaaaaaaaa         | aaa                |                    |

| No. | Predicted miRNA     | No. | Predicted miRNA | No. | Predicted miRNA    |
|-----|---------------------|-----|-----------------|-----|--------------------|
| 1   | hsa-miR-29a/29c/29b | 4   | hsa-miR-135     | 7   | hsa-miR-129/129-5p |
| 2   | hsa-miR-103/107     | 5   | hsa-miR-193     | 8   | hsa-miR-221/222    |
| 3   | hsa-miR-10a/10b     | 6   | hsa-miR-23ab    |     |                    |

### Α







Β







Β





Β



Cortex
Antisense
Sense

Image: Cortex
Image: Cortex
Image: Cortex

Cerebellum
Antisense
Sense

Image: Cerebellum
Image: Cortex
Image: Cortex

Image: Cerebellum
Image: Cerebellum
Image: Cerebellum

Ima



Supplementary Figure S7



Normoxia Hypoxia



| Database | Target Scan | PICTAR            | miRANDA   |             | miRbase     |             |
|----------|-------------|-------------------|-----------|-------------|-------------|-------------|
| Rank No  | miR-130/301 | miR-130/301       | miR-130a  | miR-130b    | miR-130a    | miR-130b    |
| 1        | MIER1       | RPS6KA5,variant1  | EPB41L5   | DDX6        | c18orf1     | RACGAP1     |
| 2        | SLAIN1      | MI-ER1            | DDX6      | MLLT6       | RACGAP1     | PHF3        |
| 3        | FLJ45187    | FBXL11            | RPS6KA5   | ACVR1       | PHF3        | MET         |
| 4        | MYBL1       | FLJ45187          | MLLT6     | CDK11       | MET         | TNRC6A      |
| 5        | PAN3        | EIF2C4            | CDK11     | MEOX2       | TNRC6A      | Jade1       |
| 6        | DDX6        | FLJ30046          | TGFBR2    | <u>RSN</u>  | MARCH2      | MARCH2      |
| 7        | CLIP1       | EIF2C1            | POU3F2    | SDC4        | EDG1        | EDG1        |
| 8        | ENPP5       | WDR47             | MEOX2     | EPS15       | LMTK2       | LMTK2       |
| 9        | TSC1        | ZNF238,variant 1  | ACVR1     | WNT1        | FAM43A      | FAM43A      |
| 10       | ESR1        | ZNF238, variant 2 | FBXL11    | LRIG1       | MEOX2       | MEOX2       |
| 11       | LDLR        | CDK11             | NRD1      | ABR         | MLLT6       | MLLT6       |
| 12       | GDA         | FLJ31818          | EIF2C1    | MTMR4       | COX7A2L     | MLLT10      |
| 13       | FLJ20366    | CFL2, variant 1   | DNCL12    | JARID2      | <u>ST18</u> | COX7A2L     |
| 14       | RAB5A       | CFL2, variant 2   | EPS15     | JARID2      | FRZB        | <u>ST18</u> |
| 15       | GJA1        | SYNJ1, variant 1  | ZFPM2     | TGFBR2      | PLAA        | PLAA        |
| 16       | TRIM2       | SFRS2IP           | COL19A1   | <u>ST18</u> | HAT1        | NFIL3       |
| 17       | PIGA        | FBXO28            | C21orf107 | TSC1        | RTCD1       | HAT1        |
| 18       | EREG        | WDR20, variant 1  | HOXA5     | ACSL4       | SACM1L      | RTCD1       |
| 19       | MECP2       | DLL1              | TGOLN2    | FBXL11      | RAB34       | SACM1L      |
| 20       | ADCY1       | ARL10C            | TXNIP     | POU3F       | CHST1       | RAB34       |
| 21       | FLJ31818    | DKFZp566C0424     | MLL       | C10orf6     | TMEM159     | CHST1       |
| 22       | GOLT1B      | ZFYVE9,variant 3  | CLN2      | NRP1        | CTSK        | TMEM159     |
| 23       | CDC2L6      | ZFYVE9,variant 1  | INHBB     | ELAVL2      | CEBPE       | CTSK        |
| 24       | ZNF217      | MEOX2             | ROBO1     | TRPS1       | ABHD3       | ABHD3       |
| 25       | ACSL4       | ZFPM2             | APG16L    | EIF2C1      | ATP6V1B2    | ARL6IP      |
| 26       | RNF38       | <u>ST18</u>       | PHF3      | ADCY1       | ARL6IP      | KCTD13      |
| 27       | PHF20       | HABP4             | C11orf15  | ZFPM2       | KCTD13      | NEUROG1     |
| 28       | CHST1       | C9orf54           | LRP8      | MLL         | UBE2D1      | UBE2D1      |
| 29       | ACVR1       | USP6              | TNRC6     | RAB14       | INOC1       | INOC1       |
| 30       | RAP2C       | USP32             | COX7A2L   | SIAT8C      | RPS6KA5     | RPS6KA5     |
| 31       | FBXO28      | LOC220594         | CD69      | RBBP8       | XAB1        | RXFP2       |
| 32       | WDR20       | PLCB1,variant 1   | EDG1      | ARHGAP21    | NUP107      | NUP107      |
| 33       | <u>ST18</u> | ROBO1, variant 2  | TARDBP    | CD69        | SNAPAP      | SNAPAP      |

Supplementary Table S1. Prediction of miR-130a/b Target Genes in the Top 50

| Dtabase    | Target Scan      | PICTAR                  | miRANDA        | miRANDA      |            |              |
|------------|------------------|-------------------------|----------------|--------------|------------|--------------|
| Rank No    | miR-130/301      | miR-130/301             | miR-130a       | miR-130b     | miR-130a   | miR-130b     |
| 34         | TSHZ1            | ROBO1, variant 1        | NHLH2          | TOMM34       | NPFFR2     | NPFFR2       |
| 35         | WDR47            | SDFR1, variant $\beta$  | RNF38          | SATB2        | OSTF1      | OSTF1        |
| 36         | BRWD1            | SDFR1, variant $\alpha$ | C14orf31       | TNRC6        | TEX261     | PSAP         |
| 37         | EIF2C4           | FLJ20366                | GRM6           | MYST2        | PSAP       | ST8SIA3      |
| 38         | CPEB1            | GMRP-1                  | C14orf31       | CFLAR        | ST8SIA3    | KIAA0196     |
| 39         | ZNF3             | PLCB1,variant2          | <u>RSN</u>     | SNX27        | SESTD1     | SESTD1       |
| 40         | TBL1XR1          | MTF1                    | SATB2          | MTF1         | RALGPS2    | RALGPS2      |
| 41         | FBXL11           | CGI-141                 | ESR1           | HAS3         | RAB9B      | RAB9B        |
| 42         | ZFYVE9           | ACVR1                   | BAHD1          | ULK2         | GADD45B    | GADD45B      |
| 43         | DNAJC16          | FLJ11011,variant1       | PXK            | LMTK2        | OTUD4      | SUGT1        |
| 44         | ZNF238           | FLJ11011,variant2       | OR1K1          | NEUROG1      | SGCB       | LY6D         |
| 45         | TGFBR2           | SMAD5, variant 1        | QKI            | E2F7         | SUGT1      | TRPC4        |
| 46         | SH3D19           | SMAD5, variant 2        | RAB34          | PHF12        | LY6D       | FIP1L1       |
| 47         | DICER1           | SMAD                    | ACBD3          | C11orf8      | CYP2U1     | RWDD2        |
| 48         | FAM73A           | FLJ11011,variant3       | QKI            | RPA2         | TRPC4      | ACVR1        |
| 49         | AAK1 SIRT7       |                         | PRKAA1         | CSK          | FIP1L1     | NP_612361.1  |
| 50         | ERBB2IP          | CDC14A,variant1         | PPM1F          | TGOLN2       | RWDD2      | GOLT1B       |
| Target g   | genes of mi      | R-130a and 130b         | were ide       | entified by  | TargetScan | Release 3.0  |
| (http://ww | w targetscan org | A PICTAR (htt           | n·//nictar.mdc | -berlin de/) | miRanda I  | Release 2005 |

(Continue Supplementary Table S1)

(http://www.targetscan.org/), PICTAR (http://pictar.mdc-berlin.de/), miRanda Release 2005 (http://www.microrna.org/) and miRbase (http://microrna.sanger.ac.uk/). Under lines were shown as the commonly observed genes and highly ranked genes in four databases.

| siRNA   | Sequence (5' to 3')   |
|---------|-----------------------|
| DDX6    | CCGAAATGGCTTATGCCGCAA |
| ST18    | AAGACAAATCTTTAACAATAA |
| PHF3    | ATGCATTATCTTCAACCTCAA |
| EDG1    | CTCGGTCTCTGACTACGTCAA |
| TNRC6A  | AAGAGCTTAACTCATCTTTAA |
| MLLT6   | CAGGCTGTCTCAACAGCCTTA |
| RPS6KA5 | AAGCCAGTCATTCGAGATGAA |
| RSN6    | AACGATGAATTACGTCTGAAA |
| FBXL11  | CCAAATAAGTTTCGCTATC   |

### Supplementary Table S2. Target sequences of siRNAs

| Cloning            |           | Primer sequence (5' to 3')                          |
|--------------------|-----------|-----------------------------------------------------|
| DDX6/pcDNA3        | Forward   | AAGCTTCGCCACCATGAGCACGGCCAGAACAGAGAACCCTGTT         |
| DDX6/pFLAG         | Forward   | CTCGAGCTATGAGCACGGCCAGAACAGAGAAC                    |
|                    | Reverse   | GGATCCTTAAGGTTTCTCATCTTCTACAGGCTC                   |
| DDX6 3'UTR         | Forward   | GTCGACCAAGCATGCTTTGACAAATTACAA                      |
|                    | Reverse   | GCGGCCGCGGCATTGCGTTCATCTCTTTACAGAAGAAC              |
| HIF-1a 3'UTR       | Forward   | CTCGAGGCGTTTCCTAATCTCATTCCT                         |
|                    | Reverse   | GCGGCCGCTGATATAACAAAACAGTACAGTTAGTGTTA              |
| HIF-1a IRES        | Forward   | CTCGAGCGCGAGGACTGTCCTCGCCGC                         |
|                    | Reverse   | TGGATCCCGGGCGAATCGGTGCCCGCGTTG                      |
| DDX6 3'UTRmutation | Forward   | CTTGTCTGAACGGTGTGCTGACTGAACATTAGCTGAACGAAC          |
| DDX6 3'UTRmutation | Forward   | TGTTCCACTTGTCTGAACGGTGTGCTGACTG                     |
| qRT-PCR            |           | Primer sequence (5' to 3')                          |
| human Actin        | Forward   | CCTCATGAAGATCCTCACCGA                               |
|                    | Reverse   | TTGCCAATGGTGATGACCTGG                               |
| 5S rRNA            | Forward   | CATACCACCCTGAACGCGCCC                               |
|                    | Reverse   | CCTACAGCACCCGGTATTCCC                               |
| VEGF               | Forward   | CCCTGATGAGATCGAGTACAT                               |
|                    | Reverse   | CGGCTTGTCACATCTGCAAGT                               |
| Pri miR-130a       | Forward   | TCACTATTAGGTACAGAGTAG                               |
|                    | Reverse   | CCTCAAGCAGCATTACCATCA                               |
| Pre miR-130a       | Forward   | GAGCTCTTTTCACATTGTGCT                               |
|                    | Reverse   | GATGCCCTTTTAACATTGCAC                               |
| Mature miR-130a    | Stem loop | GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACATGCCCT |
|                    | Forward   | GCCGCCAGTGCAATGTTAAA                                |
|                    | Reverse   | GTGCAGGGTCCGAGGT                                    |
| Mature miR-130b    | Stem loop | GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACATGCCCT |
|                    |           | TTCAT                                               |
|                    | Forward   | GCCGCCAGTGCAATGATGAA                                |
|                    | Reverse   | GTGCAGGGTCCGAGGT                                    |
| lin-4              | Stem loop | GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCACAC  |
|                    | Forward   | GCCCTCCCTGAGACCTCAA                                 |
|                    | Reverse   | GTGCAGGGTCCGAGGT                                    |

Supplementary Table S3. Oligonucleotide sequence

### (Continue Supplementary Table S3)

| Synthetic lin-4   |         | UCCCUGAGACCUCAAGUGUGA          |  |
|-------------------|---------|--------------------------------|--|
| RT-PCR for mRNP   |         | Primer sequence (5' to 3')     |  |
| human HIF-1α      | Forward | ATGAGCCAGAAGAACTTTT            |  |
|                   | Reverse | GTGGTTGAGAATTCTTGGTG           |  |
| human GAPDH       | Forward | AGCCACATCGCTCAGACAC            |  |
|                   | Reverse | GCCCAATACGACCAAATCC            |  |
| mouse HIF-1α IRES | Forward | CTCGAGCGCGAGGACTGTCCTCGCCGC    |  |
|                   | Reverse | TGGATCCCGGGCGAATCGGTGCCCGCGTTG |  |
| mouse HIF-1α CDS  | Forward | ATGAGCCGGAAGAACTTTTG           |  |
|                   | Reverse | GTGGCTGGGAGTTCTTCGTA           |  |
| mouse Actin       | Forward | CCTCATGAAGATCCTGACCGA          |  |
|                   | Reverse | TTGCCAATAGTGATGACCTGG          |  |

#### Supplementary Table S4. Northern and in situ probes

| Probe              | Sequence (5' to 3')                                     |
|--------------------|---------------------------------------------------------|
| mature miR-130a    | ATgCCcTTTtAaCAtTGcACtG                                  |
| LNA                |                                                         |
| mature miR-130a    | ATgCCaTTTtAaCAtTGtACtG                                  |
| 2MM LNA            |                                                         |
| mature miR-130b    | ATGcCCtTTcAtCAtTGcACtG                                  |
| LNA                |                                                         |
| Pri miR-130a sense | CACCACCACAACAACCAGTTATTTCCTTTGAGAAGTGTCAAATGATGGGA      |
|                    | CTCCCACAGGCGGTCTCACTTGGCTCTGCACCACCACCCCTCAAGAAAAAG     |
|                    | GTGATCTTTGCTGGGAAGGAAATGAGGACGAGGGACGAGAGGAAGGCCGTG     |
|                    | ACGTGAGCTGAGTGTGGCCAGGGACTGGGAGAAAGGGTGAGGAGGCGGGC      |
|                    | CGGCATGCCTTTGCTGCTGGCCGGAGCTCTTTTCACATTGTGCTACTGTCTAA   |
|                    | CGTGTACCGAGCAGTGCAATGTTAAAAGGGCATCGGCCTTGTAGTACTACCCA   |
|                    | GTGCCGGCAGCCTCCTCAGCATCACTGCATTTTCTCCCCACCTGAGCACCAGTC  |
|                    | AGCTACTCTGCTGGCAATTTGGATATATGGAGCCCTCCCT                |
|                    | AGGCTGTAGAGCTCCTAAGTTAACTGCTCTATCCTGAGCCCAACAGGAAGGCAC  |
|                    | CCATTTTTGTAGACCTGTCCAGAGAGATTTGAACTGAGGGGGGGG           |
| Pri-miR-130a       | Complement sequence of Pri miR-130a sense               |
| antisense          |                                                         |
| DIG labeled        | CCTCAAGAAACGACCACTGCTAAGGCATCAGCATACAGTGGCACTCACAGTCGGA |
| mouse HIF-1α       | CAGCCTCACCAGACAGAGCAGGAAAGAGAGTCATAGAACAGACAG           |
| sense probe        | TCCAAGGAGCCTTAACCTGTCTGCCACTTTGAATCAAAGAAATACTGTTCCTGAG |
|                    | GAAGAATTAAACCCAAAGACAATAGCTTCGCAGAATGCTCAGAGGAAGCGAAAAA |
|                    | TGGAACATGATGGCTCCCTTTTTCAAGCAGCAGGAATTGGAACATTATTGCAGCA |
|                    | ACCAGGTGACTGTGCACCTACTATGTCACTTTCCTGGAAACGAGTGAAAGGATTC |
|                    | ATATCTAGTGAACAGAATGGAACGGAGCAAAAGACTATTATTTTAATACCCTCCG |
|                    | ATTTAGCATGCAGACTGCTGGGGCAGTCAATGGATGAGAGTGGATTACCACAGCT |
|                    | GACCAGTTACGATTGTGAAGTTAATGCTCCCATACAAGGCAGCAG           |
| DIG labeled        | Complement sequence of HIF-1a sense                     |
| mouse HIF-1α       |                                                         |
| antisense probe    |                                                         |

Locked nucleic acids (LNA) were indicated by lower case in mature miR-130a, miR-130a 2MM and 130b LNA sequence.