

## Figure S1. Analysis of TNR and ICN4 transplant mice

(A) Flow-sorted Lineage<sup>-</sup>, propidium iodide<sup>-</sup> (Lin<sup>-</sup>PI<sup>-</sup>) cells from either MSCV-IRES-GFP or MIG-ICN4 infected bone marrow recipients were fixed/permeabilized and prepared for phospho-flow analyses as described in Figure 1. Histograms show phosphorylation levels of AKT and RPS6 in the GFP<sup>+</sup> vs. the GFP<sup>-</sup> compartment within the same animals and are a representative of three independent animals analyzed.

**(B)** Scheme depicting the TNR mouse model. The transgenic construct consists of four tandem copies of the C-promoter binding factor 1 (CBF1/RBPSUH) binding site of the Epstein-Barr virus major latency C promoter (Cp), followed by the SV40 minimal promoter and the coding sequence for EGFP. Expression of EGFP happens when the promoter is activated, by binding of a complex comprising RBPJ, MAML1 and ICN to the upstream RBPJ binding elements.

(C) MegaCult assay with GFP<sup>+</sup> and GFP<sup>-</sup> whole bone marrow cells for assessment of CFU-MK potential. Mean±SEM of triplicate experiments is represented.



## Figure S2. Analysis of *Pten*-deficient animals

(A) Flow cytometric analysis of myeloid progenitors within the Lineage cKit<sup>+</sup>Sca1 population of *Pten*<sup>+/+</sup> and *Pten*<sup>-/-</sup> mice two weeks post pIpC injection. Bar graphs show the mean±SEM of five independent experiments.

**(B)** Whole bone marrow cells from *Pten<sup>+/+</sup>* and *Pten<sup>-/-</sup>* mice were plated in M3434 methylcellulose media supplemented TPO. Colonies were scored after seven days. GM: Granulocyte-Macrophage colony, GEMM: Granulocyte-Macrophage-Erythroid-Megakaryocyte colony, EMk: Erythroid-Megakaryocyte colony, E: Erythroid colony, Mk: Megakaryocyte colony.

(C) Bar graphs representation of the platelet counts showing the mean $\pm$ SEM platelets count for *Pten*<sup>+/+</sup> (n=12) and *Pten*<sup>-/-</sup> (n=11) mice.

(D) Ploidy analysis was performed on hematopoietic cells obtained from PTEN <sup>-/-</sup> LSK and CMP plated on OP9-DL1+/-GSI for 6 and 4 days, respectively. Analysis was gated on CD45+CD41+ cells as shown in Figure 3F, 3G.



## Figure S3. Megakaryocytic potential of *FoxO*-deficient cells

**(A)** LSK cells from *FoxO1/3/4*cKO-Mx1Cre<sup>-</sup> (*FoxO*<sup>+/+</sup>) or *FoxO1/3/4*cKO-Mx1Cre<sup>+</sup> (*FoxO*<sup>-/-</sup>) mice were flow-sorted three weeks post plpC treatment and cultured on OP9-DL1 stroma in the presence or absence of 1µM GSI. After six days of co-cultures, cells were analyzed by flow cytometry for the development of CD41<sup>+</sup> cells within the CD45<sup>+</sup> gate.

**(B)** CMP cells from  $FoxO^{+/+}$  or  $FoxO^{-/-}$  mice were purified and analyzed as in (A). **(C)** Whole bone marrow cells from  $FoxO^{+/+}$  or  $FoxO^{-/-}$  animals were plated in M3434 methylcellulose media supplemented with 50ng/ml TPO. Colonies were scored after seven days. GM: Granulocyte-Macrophage colony, GEMM: Granulocyte-Macrophage-Erythroid-Megakaryocyte colony, EMk: Erythroid-Megakaryocyte colony, E: Erythroid colony, Mk: Megakaryocyte colony.

**(D)** Chromatin Immunoprecipitation assay (ChIP) of  $FoxO^{+/+}$  or  $FoxO^{-/-}$  Lin<sup>-</sup> cells using an anti-FOXO1 or an anti-FOXO3a antibody to test binding of these factors to the 3' untranslated region (UTR) region of the Hes1 gene. Bar graphs represent the mean±SEM of triplicate experiments and all signals are normalized to FoxO<sup>+/+</sup> sample pulled down with anti-Histone H3 antibody

**(E)** ChIP analysis of Lin<sup>-</sup> cells infected with an empty MIG vector or with a wildtype FoxO3a construct and pulled down with either an anti-FOXO3a antibody. All signals at the Hes-1 3'UTR region are normalized to MIG cells pulled down with an anti-IgG antibody and bar graphs represent the mean±SEM of triplicate experiments.