Table S1. Errors (RMSE relative to average interaction energy in the group, in %) for the separate interaction categories in S66 set. Dispersion interactions are divided further into π - π , aliphatic-aliphatic and π -aliphatic complexes.

Method	S66 categories			Dispersion subcategories			
	H-bonds	Dispersion	Other	π-π	A-A	π-А	7
MP2/TZ	12.7	13.7	12.1	12.5	15.0	14.3	
MP2/aDZ	11.6	15.1	15.4	15.8	11.5	11.6	
MP2/CBS	3.2	9.2	17.5	8.9	9.4	7.8	
MP2C/CBS	11.3	12.4	14.3	10.6	6.3	19.7	1
SCS-MP2/CBS	12.5	19.0	15.4	13.1	21.2	30.9	
SCS-MI-MP2/CBS	4.5	10.2	5.5	2.9	11.6	21.4	
DW-MP2/CBS	3.7	10.8	6.2	2.4	12.1	23.2	
MP3/CBS	3.6	9.0	15.2	5.0	11.9	15.1	
MP2.5/CBS	1.0	3.3	3.4	2.2	3.7	5.4	~
CCSD/CBS	7.2	13.0	15.2	8.8	15.2	20.7	
SCS-CCSD/CBS	2.7	4.9	5.3	5.4	2.4	3.2	2
SCS-MI-CCSD/CBS	1.1	2.1	1.1	0.9	1.7	4.4	Ì

e errors for geometries with intermolecular distance shorter and longer than equilibrium are listed separately (the equilibrium geometry and the 5% displacements from it are excluded).

M-41	S66x8	S66x8 short	S66x8 long	
Method	RMSE k cal/mol	RMSE %	RMSE %	
MP2/TZ	0.59	21	13	
MP2/aDZ	0.67	28	11	
MP2/CBS	0.67	23	9	
SCS-MP2/CBS	0.71	31	15	
SCS-MI-MP2/CBS	0.32	13	5	
DW-MP2/CBS	0.36	16	6	
MP3/CBS	0.56	26	9	
MP2.5/CBS	0.14	5	3	
CCSD/CBS	0.61	29	10	
SCS-CCSD/CBS	0.21	7	4	
SCS-MI-CCSD/CBS	0.07	3	1	

Figure S1. Structures of the complexes in the S66 dataset.Type of the complex is indicated by color: hydogen bond (blue), dispersion (red), other (green).

WaterWater	WaterMeOH	WaterMeNH ₂	WaterPeptide
	MaOH MaNH	MaOH Pantida	MeQH Water
1 1-		F &	× ~
MeNH ₂ MeOH	MeNH ₂ MeNH ₂	MeNH ₂ Peptide	MeNH ₂ Water
÷.		+ x+	
PeptideMeOH	PeptideMeNH ₂	PeptidePeptide	Pepttidewater
XX	•	≁ ∀	✐≁
UracilUracil (BP)	WaterPyridine	MeOHPyridine	AcOHAcOH
╤╤	××	×↓	
AcNH ₂ AcNH ₂	AcOHUracil	AcNH ₂ Uracil	BenzeneBenzene $(\pi - \pi)$

Table S3. Definitions of the coordinate used to displace the complexes forming the S66x8 dataset. Information is provided only for the complexes where the coordinate is not the vector connecting centers of mass of the molecules. Here, the vector is defined by one or more atoms in each molecule. If more atoms are used, their center of mass is used in all cases with the exception of averaging of multiple H-bonds (as indicated in the table) where unit weighting is applied.

System#	Atoms in monomer A	Atoms in monomer B	Remark
1	3	4	
2	3	4	
3	3	4	
4	3	9	
5	2	7	
6	2	7	
7	2	12	
8	2	7	
9	2	8	
10	2	8	
11	2	13	
12	1	9	
13	8	13	
14	8	13	
15	8	18	
16	8	13	
17	2,4	22,24	average of H-bonds
18	3	4	
19	2	7	
20	2,4	10,12	average of H-bonds
21	2,4	11,13	average of H-bonds
22	2,4	18,20	average of H-bonds
23	2,4	19,21	average of H-bonds
40	1-12	25	T-shape
47	1-12	14	T-shape
48	1-11	18	T-shape
49	1-12	19	T-shape
50	1-12	14	T-shape
51	1,3	6	
52	11	13	T-shape
53	1,11	16	T-shape
57	1-12	20	T-shape
58	1,3	12,22	average of H-bonds
59	2	5	
60	1,3	8	
63	1-12	17	
65	1	15	
66	2	8	

Table S4. Comparison of interaction energies (in kcal/) in ten small model complexes. The CCSD(T)/CBS scheme used for the S66 dataset is compared to a benchmark value obtained by extrapolation of the CCSD(T) calculations in aug-cc-pVTZ and aug-cc-pVQZ basis sets.

	AE Benchmark	ΔES66	Error	Error, %
Ammonia N ₂	-0.683	-0.680	0.003	0.41
Ammonia dimer	-3.147	-3.098	0.049	1.57
Acetylene dimer	-1.532	-1.524	0.008	0.55
Formic acid water	-10.828	-10.621	0.207	1.91
Methane N ₂	-0.349	-0.350	-0.001	-0.29
Methane water	-0.973	-0.949	0.024	2.46
Methane dimer	-0.528	-0.527	0.001	0.17
Water ammonia	-6.440	-6.347	0.094	1.45
Water N ₂	-1.186	-1.174	0.012	0.99
Water dimer	-5.012	-4.918	0.094	1.87
Average abs. err			0.049	1.17
Max. abs. error			0.207	2.46
RMSE			0.080	1.39