Supporting information for

# Polymer Brush-Modified Magnetic Nanoparticles for His-Tagged Protein Purification

Fei Xu, James H. Geiger, Gregory L. Baker, and Merlin L. Bruening\*

Department of Chemistry

Michigan State University, East Lansing, MI 48824

E-mail: bruening@chemistry.msu.edu. Tel: (517) 355-9715, ext. 237. Fax: (517)

353-1793.



Figure S1. TEM images of initiator-modified SiO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub> particles prepared (a)

without and (b) with nitrogen bubbling during initiator attachment.



Figure S2. Size distribution of SiO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub> particles in TEM images.





 $SiO_2\mbox{-}Fe_3O_4$  (top) and PHEMA-SiO\_2\mbox{-}Fe\_3O\_4 (bottom).

### Estimation of the Extent of Reaction of PHEMA with SA

To estimate the percent yield of the reaction of PHEMA with SA, suppose we start from 1.00 g of initiator-Silica-MNPs for all samples. TGA analysis shows that such a sample yields approximately 0.89 g of residue. Added polymer and its SA derivatives should completely decompose, so the weight of residue should be constant at 0.89 g for all the samples. To convert the initial mass for a sample of arbitrary mass to a normalized initial mass based on starting from 1.00 g of initiator-Silica-MNPs, we simply divide 0.89 g by the weight fraction remaining after TGA. Subtraction of the 1.00 g of initiator-Silica-MNPs from the normalized initial mass gives the mass of added polymer. Table S1 shows the masses of PHEMA and PHEMA-SA attached to initiator-Silica-MNPs. Based on the molecular masses of PHEMA (130 g/mol) and PHEMA-SA (230 g/mol), the PHEMA and PHEMA-SA masses determined from TGA suggest that the reaction with SA occurs in 105% yield. Thus, the reaction proceeds essentially to completion.

**Table S1.** Calculated Masses (based on TGA) of PHEMA and PHEMA-SA Formed on Initiator-Silica-MNPs. The masses are normalized to samples starting with 1.00 g of initiator-Silica-MNPs with 0.89 g residue remaining.

| sample                | % mass of residue | Initial Mass | Mass of   |
|-----------------------|-------------------|--------------|-----------|
|                       | from TGA          | of sample/g  | polymer/g |
| Initiator-Silica-MNPs | 89                | 1.00         | 0         |
| PHEMA-MNPs            | 29                | 3.1          | 2.1       |
| SA-PHEMA-MNPs         | 18                | 4.9          | 3.9       |

## Estimation of PHEMA thickness from TGA data.

Scheme S1 illustrates the composition of a PHEMA-SiO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub> bead. The thickness of the polymer brushes can be calculated from the mass of PHEMA as follows.



Scheme S1. Structure of PHEMA-SiO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub>.

Roughly:

Mass(PHEMA)/Mass(initiator+SiO<sub>2</sub>+Fe<sub>3</sub>O<sub>4</sub>) = 2.1 from TGA data in Table S1 Density of polymer ( $\rho_{PHEMA}$ ): 1.2 mg/cm<sup>3</sup>; thickness: x nm Density of silica ( $\rho_{SiO2}$ ): 2 mg/cm<sup>3</sup>; thickness (d): 16.5 nm Density of magnetite ( $\rho_{Fe3O4}$ ): 5 mg/cm<sup>3</sup>; radius (r): 5 nm Noting that mass equals the production of density,  $\rho$ , and volume, V,

$$\frac{\rho_{PHEMA} \times V_{PHEMA}}{\rho_{silica} \times V_{silica} + \rho_{Fe_3O_4} \times V_{Fe_3O_4}} = 2.1$$

Using the formulae for the volumes of spherical shells,

$$\frac{\rho_{PHEMA} \times \frac{4}{3} \times \pi \times [(x+d+r)^3 - (d+r)^3]}{\rho_{SiO_2} \times \frac{4}{3} \times \pi \times [(d+r)^3 - r^3] + \rho_{Fe_3O_4} \times \frac{4}{3} \times \pi \times r^3} = 2.1$$

$$\frac{1.2 \times \frac{4}{3} \times \pi \times [(x+16.5+5)^3 - (16.5+5)^3]}{2 \times \frac{4}{3} \times \pi \times [(16.5+5)^3 - 5^3] + 5 \times \frac{4}{3} \times \pi \times 5^3} = 2.1$$

Solving the simple equation, x=14 nm. This calculation neglects the thickness of the initiator (less than 0.5 nm based on TGA data).

# Calculation of the Mass of Protein in a BSA monolayer on a $SiO_2$ -Fe<sub>3</sub>O<sub>4</sub> Particle with a Diameter of 43 nm

To calculate the mass of a BSA monolayer on a  $SiO_2$ -Fe<sub>3</sub>O<sub>4</sub> Particle (43 nm in diameter), we assume that a 4 nm thick BSA monolayer<sup>1</sup> (d<sub>BSA</sub>) forms on the outside of a single bead with a surface area of S<sub>bead</sub>. (The assumption of a monolayer thickness of 4 nm and a film density of 1 g/cm<sup>3</sup> may be a slight overestimation because of incomplete packing.)

$$\begin{split} m_{bead} &= m_{silica} + m_{Fe_3O_4} = \rho_{SiO_2} \times V_{SiO_2} + \rho_{Fe_3O_4} \times V_{Fe_3O_4} \\ &= \frac{4}{3} \times \pi \times \{\rho_{SiO_2} \times [(d+r)^3 - (r)^3] + \rho_{Fe_3O_4} \times r^3\} \\ &= \frac{4}{3} \times \pi \times \{2 \times [(21.5e-7)^3 - (5e-7)^3] + 5 \times (5e-7)^3\} \\ &= (8.5e-17)g \\ m_{monolayerBSA/bead} &= \rho_{BSA} \times d_{BSA} \times S_{bead} = \rho_{BSA} \times d_{BSA} \times 4\pi \times (d+r)^2 \\ &= 1 \times (4e-7) \times 4 \times \pi \times (21.5e-7)^2 \\ &= (2.3e-17)g \end{split}$$

#### Calculation of the mass of a fully modified bead

The above calculations show that the mass of a single  $SiO_2$ -Fe<sub>3</sub>O<sub>4</sub> particle is 8.5 x  $10^{-17}$  g. The TGA data in Table S1 show that there are 2.1 g of polymer per g of initiator-modified SiO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub>. Assuming complete derivatization of each PHEMA

repeat unit with SA and aminobutyl NTA-Cu<sup>2+</sup>, the molar mass of the repeat unit will increase from 130 to 538 g/mol. Thus, after modification there will be 8.7 g of Cu<sup>2+</sup>-NTA-SA-PHEMA per g of initiator-SiO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub>. Hence, neglecting the initiator mass, which should be negligible, a single, fully modified bead will have a mass of 8.2 x  $10^{-16}$  g. (Note that we neglect the initiator in part because its TGA data are difficult to interpret as the the silane will become part of the residue.)



**Figure S4.** Magnetization curves for Fe<sub>3</sub>O<sub>4</sub> (Black), SiO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub> (red), PHEMA-SiO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub> (purple), and Cu<sup>2+</sup>-NTA-SA-PHEMA-SiO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub> (blue) nanoparticles.



**Figure S5.** Bradford assay analysis of the amount of His-CRALBP eluted from  $Ni^{2+}$ -NTA-SA-PHEMA-SiO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub> beads after incubation of the beads in a cell lysate for various times. (The beads were washed prior to elution.) The amounts are normalized to the concentration with the 15-min incubation, and the error bars are the standard deviations of three measurements of the concentration in a single experiment.



**Figure S6.** SDS-PAGE analysis (Coomassie staining) of a cell lysate containing overexpressed His-tagged CRALBP before (lane 2) and after (lane 3-6) purification through adsorption on Ni<sup>2+</sup>-NTA-SA-PHEMA-SiO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub> beads with various incubation times (lane 3: 2 min; lane 4: 5 min; lane 5: 15 min; lane 6: 30 min). Prior to analysis, the purified protein was eluted from washed beads using 0.5 M imidazole in buffer. Lane 1 shows a standard protein ladder.



**Figure S7.** SDS-PAGE analysis (Coomassie staining) of a cell lysate containing overexpressed His-tagged CRALBP before (lane 2) and after (lane 3) purification using Ni<sup>2+</sup>(reloaded)-NTA-SA-PHEMA-SiO<sub>2</sub>-Fe<sub>3</sub>O<sub>4</sub> beads. Prior to analysis, the purified protein was eluted from washed beads using 0.5 M imidazole in buffer. Lane 1 shows a standard protein ladder.

(1) Tsuneda, S.; Saito, K.; Furusaki, S.; Sugo, T. J. Chromatogr., A **1995**, 689, 211-218.