Aquaporin-facilitated water uptake in barley (*Hordeum vulgare* L.) roots

Thorsten Knipfer¹, Matthieu Besse¹, Jean-Luc Verdeil² and Wieland Fricke¹,

Supplementary File S1

Methodological details of hydraulic measurements

Root exudation experiments

For measurements of individual roots, seminal and adventitious roots were excised at the base under water and inserted at their base about 10 mm into a glass capillary ($\phi = 0.55$ mm) and sealed to the capillary with a drop of super glue. The rise of xylem sap in the capillary was recorded at time intervals of 5 min for one hour. Exudate was stored under liquid paraffin in microcentrifuge tubes in the freezer, and analysed within days for osmolality using picolitre osmometry (Fricke and Peters, 2002). Osmotic flow rates (Q_r^{os}) were calculated from the linear part of the flow *versus* time plots. The driving force was the difference in osmotic pressure ($\Delta \pi$, MPa) between root xylem (π_{xylem}) and medium (π_{medium}) multiplied by the corresponding reflection coefficient for solutes ($\sigma = 1.0$; Knipfer and Fricke, 2010a). Root hydraulic conductivity was calculated as follows:

$$Lp_{\rm r} = \frac{Q_{\rm r}^{\rm os}}{A_{\rm r} \cdot \sigma \cdot (\pi_{\rm xylem} - \pi_{\rm medium})}.$$
 (Eqn 1)

Treating the root as a cylinder, the total surface area of root(s) (A_r) was determined by measuring the length (l) and radius (r) of the main axis of roots and the number (n_{lateral}) , length (l_{lateral}) , and radius (r_{lateral}) of lateral roots, when present:

$$A_{\rm r} = (2\pi \cdot l \cdot r) + n_{\rm lateral} \cdot (2\pi \cdot l_{\rm lateral} \cdot r_{\rm lateral})$$
(Eqn 2)

1

The surface area A_r of the entire root system was the sum of A_r s of individual roots.

Cell pressure probe experiments

Hydraulic analyses of cortical cells were performed with the cell pressure probe on seminal and adventitious roots of intact plants. Roots were bathed in nutrient solution used for growing plants. When cortex cells were punctured with the silicon oil filled glass capillary of the cell pressure probe a meniscus formed between cell sap and silicon oil. By turning the micrometer screw with the aid of a motor, the meniscus was pushed back to the root surface and kept there at a constant position. When an equilibrium cell turgor pressure had been maintained for 1-3 min, hydrostatic pressure relaxations were induced through rapid pressure pulses ($\Delta P \approx 0.15$ MPa). The resulting half-times ($T_{1/2c}$) of pressure relaxations were used to calculate cell hydraulic conductivity (Lp_c) (Eqn 3). For each cell, between 4-10 pressure relaxations were induced.

$$Lp_{\rm c} = \frac{\rm V}{\rm A} \cdot \frac{\ln(2)}{\rm T_{\rm I/2c}} \cdot \frac{1}{(\varepsilon_{\rm c} + \pi_{\rm c})}$$
(Eqn 3)

where V = cell volume, A = cell surface area, , $\pi_c =$ osmotic pressure of cell sap (\approx cell turgor pressure), and $\varepsilon_c =$ cell elastic modulus. Cell dimensions (length and diameter) of the 1st to 4th cortical cell layer were determined from free hand cross- and longitudinal-sections, using a calibrated stereomicroscope (40x magnification). For the calculation of ε_c , known changes in cell volume (ΔV) were induced by moving the cell sap/silicon oil meniscus between two reference points along the microcapillary. The microcapillary was calibrated through separate experiments by expelling water contained between the two reference points into liquid paraffin and calculating the volume of water droplet from its diameter. Cell elastic modulus was calculated from ΔV and associated changes in pressure (ΔP) according to:

$$\varepsilon = \mathbf{V} \cdot \frac{\Delta \mathbf{P}}{\Delta \mathbf{V}} \tag{Eqn 4}$$

 ΔV ranged between 7 x 10⁻¹⁴ to 18 x 10⁻¹⁴ m³ depending on the capillaries used. When $T_{1/2c}$ was in the sub-second range, the measured cell elastic modulus (ε_c) was corrected for fast water flow, and the corrected ε_c^* used for calculating Lp_c (Volkov *et al.*, 2007):

$$\varepsilon_{c}^{*} = \varepsilon_{c} \cdot \frac{\ln(2) \cdot t \cdot T_{1/2c}^{-1}}{1 - \exp^{-\ln(2) \cdot t \cdot T_{1/2c}^{-1}}}$$
(Eqn 5)

Transpiration measurements

Transpiration rate was determined gravimetrically for intact plants in the growth chamber. Single barley plants were fixed in a measuring cylinder filled with nutrient solution and placed on a balance (CP323, Sartorius, Göttingen, Germany). Changes in weight of the cylinder were recorded at 2 min intervals using computer software (sartoCollect 1.0, Sartorius, Göttingen, Germany). Transpirational water loss (m³) was equivalent to the weight loss (g) recorded, minus the weight loss which was due to evaporational water loss from the solution surface of the measuring cylinder. The latter was determined trough separate experiments and accounted for less than 5 % of total water loss. At the end of each transpiration measurement, leaf surface area was determined. Transpiration rates were expressed in m³ m⁻² s⁻¹ by relating volume flow rates (m³ s⁻¹) to total leaf surface area (m², sum of upper and lower leaf surface area).

Supplementary Table S1

Table S1. Summary of a selection of studies, which examined the effect of mercury chloride (HgCl₂) as an aquaporin (AQP) inhibitor on cell-, root-, and whole-plant-hydraulics. Recovery was measured using a reducing agent (e.g. β -mercapthoethanol, ME). ABA = Abscisic acid, g_s = stomata conductance, J_{vr} = root water flux, Lp_r = root hydraulic conductivity, Lp_c = cell hydraulic conductivity, P_f = osmotic water permeability, T_r , transpiration rate. Please note that while this is a comprehensive list, it may not be an exhaustive list.

Study	Species	HgCl ₂ - treated plant organ	Control paramete r	HgCl ₂ - treated, % of	Recovery, % of control	Conclusions and additional information
		or cell	measured	control	(Agent,	obtained during
				(conc.)	conc.)	HgCl ₂ treatment
Maggio and	Tomato	Root-system	$Lp_r = \frac{1}{7}$	43%	80%	Inhibition of AQP
Joly, 1995	(Solanum		$4.6 \times 10^{-7} \text{ m}$	(500	(β-ME, 60	mediated
	lycopersicum)		s ⁻¹ MPa ⁻¹	μM)	mM)	transmembrane water
						flow; no effect on K^+
						concentration of
						xylem exudate.
Tazawa <i>et al.</i> ,	Barley	Individual	$Lp_r =$	8-17%	60%	Barley roots highly
1997	(Hordeum	root	0.027 pm	(100	(β-ME, 10	Hg ²⁺ -sensitive; AQPs
	vulgare)		s ⁻¹ Pa ⁻¹	μM)	mM)	provide most
						conductive pathway
						of osmotic water
				1	0.1.01	transport.
Wan and	Aspen	Root-system	$J_{vr} = 1.8 \times 10$	47%	91%	Intact, Hg^{2+} treated
Zwiazek,	(Populus		° m² m²	(0.1	(β-ME, 50	roots trigger stomatal
1999	tremuloides)		s ¹ ,	mM),	mM),	closure, most likely
			$g_s = 23$	30%	48%	via ABA; g_s not
			$mmol m^{-2}$	(0.1	(β-ME, 50	affected by Hg ²⁺ with
			S	mM)	mM)	excised roots.
Zhang and	Wheat	Root	$Lp_c = 7$	25%	60%	Inhibition of AQPs of
Tyerman,	(Triticum	cortical cells	$5.6 \times 10^{-7} \text{ m}$	(100	(β-ME, 5	wheat cortex cells;
1999	aestivum)		s ⁻¹ MPa ⁻¹	μM)	mM)	HgCl ₂ causes
						depolarization of
						membrane; no effect

						of K ⁺ channel blocker
		D	-	100/	F 50/	TEA on Lp _c .
Hukin <i>et al.</i> , 2002	Maize (Zea mays)	Root cortical cells	$Lpc = 1.8 \times 10^{-7} m$	40%	56% (BME 5	Lp _c in root elongation
2002	(Zeu mays)	contiedi cenis	s^{-1} MPa ⁻¹	(20 µWI)	(p-ML, J)	reduced in older root
						regions.
Hachez <i>et al.</i> ,	Maize	Isolated root	$P_{\rm f} = 10.5$	33%	-	Reduction in P_f by
2006	(Zea mays)	protoplasts	µm s ⁻¹	(250	(not	Hg ² in root-hair
				μΜ)	tested)	zone; high P_f related
						expression.
Beaudette et	Pea	Individual	$Lp_{r} = 790$	50%	-	Changes in Lp _r
al., 2007	(Pisum	root	μ l min ⁻¹	(1-100	(not	correlated with
	sativum)		MPa ⁻¹ ,	μΜ),	tested),	<i>PsPIP2s</i> expression;
			$T_r = n.d$	53-	-	AQP-blockage by
				100%	(not tested)	Hg accompanied by
				(1-100	usicu)	expression: no
				μινι)		relation between
						Hg ²⁺ -treated roots and
						reduction in T _r caused
	XX 71		T	700/		by ABA.
al 2009	Wheat (Triticum	KOOL-	$Lp_r = 7x10^{-8} m$	/0%	- (not	HgCl ₂ treatments
<i>al.</i> , 2009	(1 rucum aestivum)	system,	s^{-1} MPa ⁻¹	(30)	(not tested).	influences of AOPs
		Individual	$Lp_r =$	50%		on root hydraulics
		root,	$12 \times 10^{-8} \text{ m}$	(50	(not	(root versus cell
			s^{-1} MP a^{-1} ,	μΜ),	tested),	level); Lp _c largely
		Root	$Lp_{c} =$	23%	-	controlled by AQPs.
		cortical cells	$1./x10^{\circ} \text{ m}$ s ⁻¹ MPa ⁻¹	(50 µM)	(not tested)	
SUMMARY	Several	Individual	Root level	8-50%	60-91%	AQPs mediate
	species	root cells	(Lp _r),	(1-500	(β-ME,	transmembrane water
		(protoplasts)	Cell level	μM)	10-60	flow; changes in Lp
		to intact	(Lp_c)	23-40%	mM),	can correlate with PIP
		roots-		(20-100	56-60%	expression; stomata
		systems.		μΜ)	$(\beta-ME, 5)$	treatment of roots
						may be triggered by
						ABA; depolarization
						of membrane
						potential does not
						alter xylem K
						inhibition of K ⁺
						channels does not
						affect Lp.

Supplementary Figure S1

Figure S1. Cross-sections of seminal and adventitious roots of hydroponically grown barley plants highlighting the absence of an exodermis. Free-hand cross-sections were taken 1-2 cm below the root-shoot junction corresponding to the most mature root region. Sections were stained with berberine-hemisulfate and counterstained with toluidine blue and viewed under (A,C) bright light and (B,D) fluorescence light (excitation wavelength 390-420 nm) to visualize Casparian bands and the developmental state of endo- and exodermis (Knipfer and Fricke, 2011). The endodermis (ED) of (A,B) seminal and (C,D) adventitious roots shows asymmetrically thickened cell walls (state III of endodermis development including Casparian bands; Knipfer and Fricke, 2011), except in passage cells (P) opposite of xylem pools of adventitious roots. In seminal and adventitious roots an exodermis did not develop, which is usually located beneath the epidermis (EP). Scale bar (A,B) = 55 μ m, (C,D) = 75 μ m.