SUPPLEMENT

Table of Contents

Supplemental Fig	gures	
Figure S1	. Methylation by RPMM class	iii
Figure S2	. Cross-validation of RPMM classes generated using Infinium	
	methylation array data from the primary and validation study sets	iv
Supplemental Ta	bles	
Table S1.	Description and comparison of study populations	v
Table S2.	Cross-validation of RPMM CpG classes	vi
Table S3.	Distribution of CpG loci by bioinformatically-derived class	vii
Table S4.	Association of aging/exposures with CpG island shore methylation	viii
Table S5.	Marginal model results for the association of methylation with	
	sequence features and age, adjusted for gender	ix
Table S6.	Marginal model results for the association of methylation with	
	sequence features gender and hair dye use, adjusted for age	Х
Table S7.	Marginal model results for the association of methylation with	
	sequence features and ever-smoking, adjusted for age and gender	xi
Table S8.	Marginal model results for the association of methylation with	
	sequence features and pack-years of smoking, adjusted for age and	
	gender	xii
Table S9.	Marginal model results for the association of methylation with	
	sequence features and consumption of ≤ 6.5 alcoholic drinks per	
	week (compared with non-drinkers), adjusted for age and gender	xiii
Table S10). Marginal model results for the association of methylation with	
	sequence features and consumption of > 6.5 alcoholic drinks per	
	week (compared with non-drinkers), adjusted for age and gender	xiv
Table S1	. Marginal model results for the association of methylation with	
	sequence features and arsenic exposure, adjusted for age and	
	gender	XV

Table S12. Marginal model results for the association of methylation with	
sequence features and selenium exposure, adjusted for age and	
gender	xvi
Table S13. Marginal model results for the association of methylation with	
sequence features and tanning lamp use, adjusted for age and	
gender	xvii
Table S14. Marginal model results for the association of methylation with	
sequence features and lifetime painful sunburns, adjusted for age	
and gender	xviii
Supplemental Analysis	
Analysis S1. Performance assessment of recursively partitioned mixture model	
(RPMM) versus metric hierarchical clustering for classification of	
high-density DNA methylation data	xix

Figure S1. Methylation by RPMM class. The heatmap shows average methylation (beta) by class, with the 32 RPMM-based methylation classes shown in columns and the subjects represented by rows. Raw average beta values and 95% confidence intervals are displayed per class at the top of the figure.

Main Study Population Methylation Class

Figure S2. Cross-validation of RPMM classes generated using Infinium methylation array data from the primary and validation study sets. Each box shows the number of overlapping CpGs by class, presented as a percent of the column totals (indicated by the key on the bottom right). The columns represent the classes generated for the 205 primary study subjects, and the rows represent the classes for the 92 validation subjects. The total number of CpGs per class for the primary study subjects (column totals) are shown across the bottom margin and the total number of CpGs per class for the validation study subjects (row totals) are provided in the right margin.

Table S1. Description and comparison of study populations. Describes and compares personal characteristics and exposures of the primary study subjects and those used for the cross-validations (validation subjects).

Exposure	Primary Study Subjects (n = 205)	Validation Subjects (n – 92)	P-Value
Age	Subjects (n = 203)	(m - <i>y</i> 2)	1 vulue
Median years (range)	64 (28-74)	59 (32-86)	0 69 ^a
Gender n (%)	01 (20 / 1)	07 (02 00)	0.07
Female	65 (31 7%)	28 (30.4%)	0 89 ^b
Male	140 (62.3%)	64 (69 6%)	0.07
Race/ethnicity	110 (021070)		
Caucasian (non-Hispanic)	205 (100%)	85 (92.4%)	$< 0.001^{b}$
Other	0 (0%)	7 (7.6%)	
Cigarette smoking, n (%)			
Never	58 (28.3%)	32 (34.8%)	0.28^{b}
Ever	147 (71.7%)	60 (65.2%)	
Median pack-years (range)	26 (0.1-176.0)	24.5 (0.5-85.0)	0.66^{a}
Alcohol consumption, n (%)	· · · · · ·		
Non-drinker	58 (28.6%)	9 (10.0%)	0.001 ^b
< 6.5 drinks per week	74 (36.5%)	42 (46.7%)	
> 6.5 drinks per week	71 (35.0%)	39 (43.3%)	
Hair dye use, n (%)			
Never	145 (71.1%)		
Ever	59 (28.9%)		
Arsenic (toenail)			
Median $\mu g/g$ (range)	0.09 (0.02-0.81)		
Selenium (toenail)			
Median $\mu g/g$ (range)	0.85 (0.57-2.84)		
Ultraviolet radiation exposure			
Tanning lamp use, n (%)			
Never	137 (86.7%)		
Ever	21 (13.3%)		
Median lifetime painful sunburns (range)	1 (0-222)		

^a Wilcoxon rank-sum test

^b Fisher's exact test

^c Restricted to ever-smokers

Table S2. Cross-validation of RPMM CpG classes. Infinium methylation array data was available for blood DNA from a second set of 92 healthy subjects (validation subjects), which was employed for cross-validation of the RPMM CpG classes derived from the 205 primary study subjects in the main analysis. The omnibus test for the relationship between class methylation and exposure was performed using the CpG classes generated from each methylation array dataset, each applied to each study population.

	(Omnibus P-Val	ue (Spearma	n)	Omnibus P-Value (Multiple Regression)			
	Prin RP	Primary RPMM		Validation RPMM		Primary RPMM		lation MM
Exposure	Primary Subjects	Validation Subjects	Primary Subjects	Validation Subjects	Primary Subjects	Validation Subjects	Primary Subjects	Validation Subjects
Age (years) ^a	< 0.001	0.03	< 0.001	0.06	< 0.001	0.04	< 0.001	0.05
Female gender ^b	0.04	0.05	0.04	0.07	0.23	0.02	0.04	0.04
Cigarette smoking								
Ever-smoker ^c	0.06	0.69	0.20	0.64	0.29	0.59	0.37	0.62
Pack-years ^{c,d}	0.006	0.77	0.01	0.83	0.41	0.74	0.35	0.63
Alcohol consumption ^e								
Non-drinker (reference)								
\leq 6.5 drinks/week	0.29	0.10	0.22	0.08	0.49	0.24	0.36	0.22
> 6.5 drinks/week	0.34	0.06	0.26	0.04	0.47	0.19	0.44	0.19

^a The multiple regression model was adjusted for gender

^b The multiple regression model was adjusted for age

^c The multiple regression model was adjusted for age and gender

^d Restricted to ever-smokers

^e Median = 6.5 alcoholic drinks per week among drinkers

Class Number	Genomic Attributes	nissi	Percent Total
1	CGI PcG LINE2 TEBS	7	< 0.1%
2	CGI TFBS	12958	48 90%
3	CGL PcG TFBS	2692	10 20%
4	CGLIPeG	330	1 20%
5	CGI MIR TFRS	253	1.00%
6	CGI	233	8.90%
7	LINE2 MIR TEBS	1	< 0.1%
8	CGI LINE2 TEBS	130	0.50%
9	CGI LINE2	33	0.10%
10	CGI PcG MIR	4	< 0.1%
11	CGI PcG MIR TFBS	33	0.10%
12	CGI MIR	71	0.30%
12	CGI LINE1 TEBS	35	0.10%
14	PcG LINE1	2	< 0.1%
15	PcG LINE1 TFBS	1	< 0.1%
16	PcG TFBS	315	1 20%
17	PcG MIR	8	< 0.1%
18	CGI LINE1	24	0.10%
19	PcG LINE2 TFBS	6	< 0.1%
20	PcG	64	0.20%
21	CGI ALU TFBS	173	0.70%
22	CGI PcG ALU TFBS	21	0.10%
23	TFBS	4436	16.70%
24	PcG MIR TFBS	13	< 0.1%
25	CGI PcG ALU	10	< 0.1%
26	CGI PcG LINE1 TFBS	1	< 0.1%
27	MIR TFBS	184	0.70%
28	None	1638	6.20%
29	CGI PcG LINE2	4	< 0.1%
30	LINE1 TFBS	48	0.20%
31	LINE2 TFBS	103	0.40%
32	LINE1	74	0.30%
33	MIR	99	0.40%
34	CGI ALU	121	0.50%
35	LINE2	88	0.30%
36	ALU TFBS	79	0.30%
37	PcG LINE2	3	< 0.1%
38	ALU	68	0.30%
39	CGI PcG LINE1	5	< 0.1%
40	PcG ALU	3	< 0.1%
41	PcG ALU TFBS	1	< 0.1%
	Total	26486	100%

Table S3. Distribution of CpG loci by bioinformatically-derived class.

Abbreviations: CGI = CpG island; TFBS = transcription factor binding sites; PcG = polycomb group protein target gene; MIR = mammalian wide-interspersed repeat

Note: Classes are denoted by the applicable attributes separated by a "|" (e.g. a class of CpGs located in CGI and *LINE-1* element would be symbolized as CGI|LINE1)

Supplemental Table S4. Association of aging/exposures with CpG island shore methylation. CpG island shores were defined as sequences within 2kb distance of CpG islands, with the north shore in the 5' direction (4264 CpGs) and south shore in the 3' direction (3739 CpGs) of the island using the annotation of the Illumina 450K methylation array, which includes annotation for 94.4% of the CpG loci found on the HumanMethylation27k BeadArray. The association of each exposure with average methylation of the shores was assessed using multiple linear regression models. P-values for each respective adjusted estimate are presented in the table below.

	p-value				
Exposure	North Shore	South Shore			
Age ^a	0.32	0.27			
Female gender ^b	0.09	0.08			
Smoking					
Ever-smoking ^c	0.24	0.25			
Pack-years ^{c,d}	0.92	0.95			
Alcohol consumption					
Non-drinker	Reference	Reference			
\leq 6.5 drinks per week ^c	0.26	0.29			
> 6.5 drinks per week ^c	0.07	0.07			
Hair dye ever-use ^c	0.67	0.78			
Arsenic ^c	0.55	0.52			
Selenium ^c	0.50	0.50			
Ultraviolet radiation exposure					
Tanning lamp ever-use ^c	0.28	0.30			
Lifetime painful sunburns ^c	0.50	0.48			

^a Adjusted for gender

^b Adjusted for age and hair dye use

^c Adjusted for age and gender

^d Restricted to ever-smokers

	Estimate	Mean	SE	Z	P-value
(Intercept)	0.90284	0.90287	0.00249	363.04	< 0.00001
CGI	-0.51457	-0.51458	0.00320	-161.02	< 0.00001
PcG	-0.00010	-0.00007	0.00069	-0.10	0.91916
TFBS	-0.06879	-0.06879	0.00053	-128.78	< 0.00001
LINE1	0.15308	0.15310	0.00145	105.52	< 0.00001
LINE2	0.09217	0.09219	0.00053	174.12	< 0.00001
Alu	0.41501	0.41503	0.00299	138.76	< 0.00001
MIR	0.07012	0.07014	0.00047	150.74	< 0.00001
Age	-0.00607	-0.00604	0.00195	-3.09	0.00197
Age*CGI	0.00593	0.00591	0.00252	2.35	0.01893
Age*PcG	0.00181	0.00176	0.00049	3.61	0.00031
Age*TFBS	0.00035	0.00035	0.00040	0.86	0.39036
Age*LINE1	-0.00111	-0.00108	0.00104	-1.04	0.30067
Age*LINE2	-0.00143	-0.00143	0.00040	-3.61	0.00031
Age*Alu	-0.00279	-0.00283	0.00230	-1.23	0.21903
Age*MIR	-0.00172	-0.00173	0.00037	-4.65	< 0.00001
Female	-0.00630	-0.00633	0.00478	-1.32	0.18524
Female*CGI	0.01427	0.01415	0.00671	2.11	0.03497
Female*PcG	-0.00204	-0.00215	0.00127	-1.70	0.08979
Female*TFBS	0.00225	0.00225	0.00103	2.19	0.02853
Female*LINE1	-0.00556	-0.00557	0.00275	-2.02	0.04314
Female*LINE2	-0.00105	-0.00109	0.00104	-1.05	0.29445
Female*Alu	-0.01418	-0.01415	0.00626	-2.26	0.02372
Female*MIR	-0.00152	-0.00152	0.00096	-1.59	0.11243

Table S5. Marginal model results for the association of methylation with sequence features and age, adjusted for gender.

Abbreviations: CGI = CpG islands; TFBS = transcription factor binding sites; PcG = polycomb group protein target gene; LINE = long interspersed repeat elements; MIR = mammalian wide-interspersed repeat

Table S6. Marginal model results for the association of methylation with sequence features gender and hair dye use, adjusted for age.

	Estimate	Mean	SE	Z	P-value
(Intercept)	0.90357	0.90349	0.00247	365.69	< 0.00001
CGI	-0.51571	-0.51561	0.00319	-161.54	< 0.00001
PcG	-0.00034	-0.00035	0.00072	-0.49	0.62303
TFBS	-0.06895	-0.06893	0.00054	-127.90	< 0.00001
LINE1	0.15367	0.15367	0.00145	106.19	< 0.00001
LINE2	0.09230	0.09228	0.00052	178.49	< 0.00001
Alu	0.41586	0.41578	0.00298	139.60	< 0.00001
MIR	0.07015	0.07014	0.00048	145.81	< 0.00001
Age	-0.00612	-0.00607	0.00189	-3.22	0.00129
Age*CGI	0.00584	0.00571	0.00241	2.36	0.01804
Age*PcG	0.00168	0.00170	0.00047	3.61	0.00031
Age*TFBS	0.00034	0.00031	0.00038	0.82	0.41467
Age*LINE1	-0.00114	-0.00109	0.00101	-1.08	0.28052
Age*LINE2	-0.00144	-0.00142	0.00040	-3.55	0.00038
Age*Alu	-0.00276	-0.00262	0.00221	-1.19	0.23476
Age*MIR	-0.00173	-0.00172	0.00036	-4.83	< 0.00001
Female	-0.00107	-0.00158	0.00532	-0.30	0.76633
Female*CGI	0.00781	0.00864	0.00757	1.14	0.25365
Female*PcG	-0.00237	-0.00235	0.00131	-1.80	0.07245
Female*TFBS	0.00130	0.00140	0.00117	1.20	0.23012
Female*LINE1	-0.00149	-0.00188	0.00298	-0.63	0.52900
Female*LINE2	-0.00017	-0.00026	0.00117	-0.22	0.82372
Female*Alu	-0.00901	-0.00979	0.00688	-1.42	0.15462
Female*MIR	-0.00124	-0.00138	0.00119	-1.16	0.24528
Hair dye use	-0.00884	-0.00873	0.00645	-1.35	0.17548
Hair dye use*CGI	0.01120	0.01095	0.00817	1.34	0.18025
Hair dye use*PcG	0.00080	0.00079	0.00125	0.63	0.52733
Hair dye use*TFBS	0.00164	0.00162	0.00130	1.25	0.21199
Hair dye use*LINE1	-0.00689	-0.00675	0.00323	-2.09	0.03648
Hair dye use*LINE2	-0.00151	-0.00148	0.00130	-1.14	0.25354
Hair dye use*Alu	-0.00889	-0.00867	0.00730	-1.19	0.23493
Hair dye use*MIR	-0.00045	-0.00040	0.00122	-0.33	0.74329

Abbreviations: CGI = CpG islands; TFBS = transcription factor binding sites; PcG = polycomb group protein target gene; LINE = long interspersed repeat elements; MIR = mammalian wide-interspersed repeat

Table S7. Marginal model results for the association of methylation with sequence features and ever-smoking, adjusted for age and gender.

	Estimate	Mean	SE	Z	P-value
(Intercept)	0.90628	0.90601	0.00416	217.96	< 0.00001
CGI	-0.51559	-0.51533	0.00543	-94.96	< 0.00001
PcG	0.00023	0.00026	0.00118	0.22	0.82589
TFBS	-0.06886	-0.06884	0.00090	-76.87	< 0.00001
LINE1	0.15416	0.15402	0.00248	62.19	< 0.00001
LINE2	0.09288	0.09283	0.00085	109.16	< 0.00001
Alu	0.41522	0.41508	0.00509	81.6	< 0.00001
MIR	0.07040	0.07037	0.00083	84.63	< 0.00001
Age	-0.00603	-0.00609	0.00196	-3.11	0.00187
Age*CGI	0.00592	0.00592	0.00261	2.27	0.02327
Age*PcG	0.00181	0.00181	0.00045	4.06	0.00005
Age*TFBS	0.00034	0.00034	0.00040	0.85	0.39493
Age*LINE1	-0.00109	-0.00106	0.00108	-0.99	0.32429
Age*LINE2	-0.00142	-0.00144	0.00042	-3.42	0.00062
Age*Alu	-0.00279	-0.00275	0.00238	-1.16	0.24758
Age*MIR	-0.00172	-0.00172	0.00038	-4.55	0.00001
Female	-0.00696	-0.00697	0.00490	-1.42	0.15441
Female*CGI	0.01446	0.01440	0.00680	2.12	0.03424
Female*PcG	-0.00210	-0.00214	0.00128	-1.66	0.09630
Female*TFBS	0.00227	0.00227	0.00105	2.17	0.03025
Female*LINE1	-0.00577	-0.00575	0.00278	-2.06	0.03908
Female*LINE2	-0.00119	-0.00119	0.00104	-1.15	0.25047
Female*Alu	-0.01422	-0.01419	0.00631	-2.25	0.02460
Female*MIR	-0.00157	-0.00155	0.00094	-1.65	0.09860
Ever Smoking	-0.00451	-0.00435	0.00461	-0.94	0.34526
Ever-smoking*CGI	0.00133	0.00117	0.00611	0.19	0.84831
Ever-smoking*PcG	-0.00044	-0.00047	0.00125	-0.38	0.70629
Ever-smoking*TFBS	0.00009	0.00009	0.00100	0.09	0.92786
Ever-smoking*LINE1	-0.00141	-0.00130	0.00269	-0.48	0.62875
Ever-smoking*LINE2	-0.00094	-0.00090	0.00098	-0.92	0.35523
Ever-smoking*Alu	-0.00028	-0.00020	0.00574	-0.03	0.97270
Ever-smoking*MIR	-0.00036	-0.00034	0.00092	-0.37	0.71199

Abbreviations: CGI = CpG islands; TFBS = transcription factor binding sites; PcG = polycomb group protein target gene; LINE = long interspersed repeat elements; MIR = mammalian wide-interspersed repeat

Table S8. Marginal model results for the association of methylation with sequence features and pack-years of smoking, adjusted for age and gender.

	Estimate	Mean	SE	Z	P-value
(Intercept)	0.90164	0.90198	0.00466	193.42	< 0.00001
CGI	-0.51425	-0.51442	0.00541	-95.08	< 0.00001
PcG	-0.00014	-0.00013	0.00115	-0.11	0.91222
TFBS	-0.06886	-0.06889	0.00091	-75.33	< 0.00001
LINE1	0.15097	0.15104	0.00239	63.15	< 0.00001
LINE2	0.09189	0.09194	0.00091	101.58	< 0.00001
Alu	0.41409	0.41423	0.00484	85.64	< 0.00001
MIR	0.07010	0.07014	0.00082	85.98	< 0.00001
Age	-0.00675	-0.00662	0.00235	-2.81	0.00490
Age*CGI	0.00593	0.00574	0.00336	1.70	0.08824
Age*PcG	0.00185	0.00188	0.00063	2.96	0.00308
Age*TFBS	0.00040	0.00036	0.00053	0.67	0.50053
Age*LINE1	-0.00157	-0.00148	0.00138	-1.07	0.28505
Age*LINE2	-0.00147	-0.00145	0.00050	-2.92	0.00348
Age*Alu	-0.00304	-0.00285	0.00312	-0.91	0.36189
Age*MIR	-0.00163	-0.00162	0.00050	-3.26	0.00111
Female	-0.01102	-0.01163	0.00633	-1.84	0.06638
Female*CGI	0.02046	0.02118	0.00915	2.31	0.02068
Female*PcG	-0.00142	-0.00140	0.00169	-0.83	0.40566
Female*TFBS	0.00301	0.00312	0.00139	2.24	0.02490
Female*LINE1	-0.00814	-0.00846	0.00365	-2.32	0.02027
Female*LINE2	-0.00270	-0.00278	0.00133	-2.09	0.03625
Female*Alu	-0.01912	-0.01974	0.00834	-2.37	0.01797
Female*MIR	-0.00264	-0.00272	0.00124	-2.19	0.02828
Pack-years	0.00005	0.00004	0.00012	0.34	0.73733
Pack-years*CGI	-0.00006	-0.00006	0.00014	-0.40	0.68630
Pack-years*PcG	-0.00001	-0.00001	0.00003	-0.35	0.72560
Pack-years*TFBS	-0.00001	-0.00001	0.00002	-0.23	0.81421
Pack-years*LINE1	0.00008	0.00008	0.00006	1.38	0.16644
Pack-years*LINE2	0.00001	0.00001	0.00002	0.44	0.65675
Pack-years*Alu	0.00008	0.00008	0.00012	0.63	0.52898
Pack-years*MIR	0.00001	0.00001	0.00002	0.32	0.74532

Abbreviations: CGI = CpG islands; TFBS = transcription factor binding sites; PcG = polycomb group protein target gene; LINE = long interspersed repeat elements; MIR = mammalian wide-interspersed repeat

Table S9. Marginal model results for the association of methylation with sequence features and consumption of ≤ 6.5 alcoholic drinks per week (compared with non-drinkers), adjusted for age and gender.

	Estimate	Mean	SE	Z	P-value
(Intercept)	0.89858	0.89857	0.00430	208.91	< 0.00001
CGI	-0.51314	-0.51326	0.00516	-99.41	< 0.00001
PcG	0.00015	0.00017	0.00119	0.14	0.88849
TFBS	-0.06857	-0.06859	0.00082	-83.98	< 0.00001
LINE1	0.15164	0.15168	0.00229	66.29	< 0.00001
LINE2	0.09247	0.09248	0.00085	108.50	< 0.00001
Alu	0.41520	0.41527	0.00461	90.11	< 0.00001
MIR	0.06934	0.06933	0.00083	83.31	< 0.00001
Age	-0.00520	-0.00527	0.00246	-2.14	0.03249
Age*CGI	0.00472	0.00475	0.00320	1.48	0.13809
Age*PcG	0.00212	0.00212	0.00063	3.35	0.00080
Age*TFBS	0.00024	0.00025	0.00053	0.47	0.63869
Age*LINE1	-0.00032	-0.00032	0.00136	-0.24	0.81117
Age*LINE2	-0.00113	-0.00115	0.00052	-2.19	0.02829
Age*Alu	-0.00207	-0.00208	0.00310	-0.67	0.50132
Age*MIR	-0.00149	-0.00150	0.00048	-3.16	0.00157
Female	-0.00719	-0.00720	0.00600	-1.20	0.23035
Female*CGI	0.01614	0.01640	0.00773	2.12	0.03393
Female*PcG	-0.00280	-0.00277	0.00153	-1.81	0.07096
Female*TFBS	0.00266	0.00270	0.00121	2.23	0.02592
Female*LINE1	-0.00595	-0.00605	0.00313	-1.93	0.05325
Female*LINE2	-0.00112	-0.00111	0.00125	-0.89	0.37229
Female*Alu	-0.01683	-0.01707	0.00713	-2.40	0.01661
Female*MIR	-0.00127	-0.00126	0.00115	-1.10	0.27344
\leq 6.5 drinks/week	0.00433	0.00441	0.00548	0.81	0.42072
< 6.5 drinks/week*CGI	-0.00139	-0.00137	0.00716	-0.19	0.84804
< 6.5 drinks/week*PcG	0.00032	0.00026	0.00135	0.19	0.84881
< 6.5 drinks/week*TFBS	-0.00019	-0.00017	0.00118	-0.15	0.88248
< 6.5 drinks/week*LINE1	0.00080	0.00084	0.00309	0.27	0.78511
< 6.5 drinks/week*LINE2	-0.00062	-0.00065	0.00115	-0.56	0.57437
< 6.5 drinks/week*Alu	-0.00088	-0.00081	0.00680	-0.12	0.90568
< 6.5 drinks/week*MIR	0.00072	0.00072	0.00106	0.68	0.49501

Abbreviations: CGI = CpG islands; TFBS = transcription factor binding sites; PcG = polycomb group protein target gene; LINE = long interspersed repeat elements; MIR = mammalian wide-interspersed repeat

Table S10. Marginal model results for the association of methylation with sequence features and consumption of > 6.5 alcoholic drinks per week (compared with non-drinkers), adjusted for age and gender.

	Estimate	Mean	SE	Z	P-value
(Intercept)	0.89690	0.89678	0.00438	204.70	< 0.00001
CGI	-0.51171	-0.51171	0.00538	-95.03	< 0.00001
PcG	-0.00043	-0.00048	0.00132	-0.36	0.71930
TFBS	-0.06826	-0.06825	0.00085	-80.29	< 0.00001
LINE1	0.15135	0.15130	0.00247	61.29	< 0.00001
LINE2	0.09241	0.09239	0.00090	102.39	< 0.00001
Alu	0.41317	0.41316	0.00490	84.36	< 0.00001
MIR	0.06931	0.06930	0.00084	82.51	< 0.00001
Age	-0.00645	-0.00652	0.00270	-2.42	0.01557
Age*CGI	0.00710	0.00724	0.00331	2.19	0.02875
Age*PcG	0.00228	0.00228	0.00065	3.50	0.00046
Age*TFBS	0.00043	0.00044	0.00050	0.88	0.37681
Age*LINE1	-0.00192	-0.00197	0.00145	-1.36	0.17502
Age*LINE2	-0.00160	-0.00164	0.00057	-2.88	0.00401
Age*Alu	-0.00408	-0.00418	0.00288	-1.45	0.14644
Age*MIR	-0.00182	-0.00186	0.00050	-3.74	0.00019
Female	-0.00239	-0.00214	0.00562	-0.38	0.70378
Female*CGI	0.01106	0.01091	0.00820	1.33	0.18319
Female*PcG	-0.00157	-0.00143	0.00174	-0.82	0.41339
Female*TFBS	0.00179	0.00174	0.00120	1.44	0.14930
Female*LINE1	-0.00411	-0.00403	0.00339	-1.19	0.23439
Female*LINE2	-0.00066	-0.00068	0.00132	-0.52	0.60635
Female*Alu	-0.01064	-0.01049	0.00756	-1.39	0.16523
Female*MIR	-0.00097	-0.00099	0.00118	-0.84	0.39910
> 6.5 drinks/week	0.00851	0.00827	0.00585	1.41	0.15790
> 6.5 drinks/week*CGI	-0.00355	-0.00320	0.00770	-0.42	0.67791
> 6.5 drinks/week*PcG	0.00001	-0.00007	0.00151	-0.05	0.96376
> 6.5 drinks/week*TFBS	-0.00075	-0.00068	0.00120	-0.57	0.57146
> 6.5 drinks/week*LINE1	0.00308	0.00291	0.00330	0.88	0.37744
> 6.5 drinks/week*LINE2	-0.00029	-0.00031	0.00115	-0.27	0.79056
> 6.5 drinks/week*Alu	0.00238	0.00203	0.00686	0.30	0.76740
> 6.5 drinks/week*MIR	0.00109	0.00106	0.00110	0.97	0.33187

Abbreviations: CGI = CpG islands; TFBS = transcription factor binding sites; PcG = polycomb group protein target gene; LINE = long interspersed repeat elements; MIR = mammalian wide-interspersed repeat

Table S11.	Marginal model	results for the a	ssociation	of methylation	with sequence
features an	d arsenic exposur	e, adjusted for	age and ge	nder.	

<u> </u>	Estimate	Mean	SE	Z	P-value
(Intercept)	0.90894	0.90945	0.00371	245.34	< 0.00001
CGI	-0.52034	-0.52084	0.00440	-118.32	< 0.00001
PcG	-0.00041	-0.00040	0.00096	-0.41	0.67980
TFBS	-0.06966	-0.06974	0.00073	-96.08	< 0.00001
LINE1	0.15549	0.15562	0.00192	81.08	< 0.00001
LINE2	0.09293	0.09307	0.00078	119.88	< 0.00001
Alu	0.41997	0.42042	0.00391	107.54	< 0.00001
MIR	0.07090	0.07096	0.00067	106.65	< 0.00001
Age	-0.00786	-0.00786	0.00201	-3.91	0.00009
Age*CGI	0.00770	0.00769	0.00270	2.85	0.00440
Age*PcG	0.00179	0.00175	0.00053	3.33	0.00087
Age*TFBS	0.00063	0.00062	0.00043	1.45	0.14831
Age*LINE1	-0.00188	-0.00187	0.00110	-1.69	0.09089
Age*LINE2	-0.00172	-0.00175	0.00041	-4.24	0.00002
Age*Alu	-0.00428	-0.00429	0.00247	-1.74	0.08238
Age*MIR	-0.00196	-0.00196	0.00038	-5.12	< 0.00001
Female	-0.00588	-0.00578	0.00495	-1.17	0.24323
Female*CGI	0.01409	0.01373	0.00693	1.98	0.04743
Female*PcG	-0.00217	-0.00210	0.00130	-1.61	0.10773
Female*TFBS	0.00222	0.00215	0.00107	2.00	0.04525
Female*LINE1	-0.00541	-0.00526	0.00282	-1.86	0.06239
Female*LINE2	-0.00099	-0.00102	0.00106	-0.96	0.33642
Female*Alu	-0.01418	-0.01380	0.00637	-2.17	0.03039
Female*MIR	-0.00153	-0.00151	0.00095	-1.59	0.11221
Arsenic	-0.05237	-0.05711	0.03095	-1.85	0.06501
Arsenic*CGI	0.04864	0.05318	0.03283	1.62	0.10523
Arsenic*PcG	0.00343	0.00264	0.00666	0.40	0.69192
Arsenic*TFBS	0.00731	0.00820	0.00541	1.52	0.12937
Arsenic*LINE1	-0.02036	-0.02180	0.01286	-1.70	0.09001
Arsenic*LINE2	-0.00629	-0.00745	0.00608	-1.23	0.22048
Arsenic*Alu	-0.04162	-0.04635	0.02770	-1.67	0.09428
Arsenic*MIR	-0.00645	-0.00680	0.00450	-1.51	0.13121

Abbreviations: CGI = CpG islands; TFBS = transcription factor binding sites; PcG = polycomb group protein target gene; LINE = long interspersed repeat elements; MIR = mammalian wide-interspersed repeat

Note: exposure/sequence feature interactions are shown as exposure*feature (i.e. the effect of age on methylation CpGs located in CGI is denoted by Age*CGI); Arsenic was measured from toenail clippings (μ g/g)

	Estimate	Mean	SE	Z	P-value
(Intercept)	0.89250	0.89274	0.0123	72.57	< 0.00001
CGI	-0.50833	-0.50633	0.01557	-32.51	< 0.00001
PcG	0.00039	0.00003	0.00307	0.01	0.99141
TFBS	-0.06741	-0.06709	0.00248	-27.03	< 0.00001
LINE1	0.15079	0.15034	0.00617	24.35	< 0.00001
LINE2	0.09160	0.09098	0.00253	35.98	< 0.00001
Alu	0.40981	0.40731	0.01467	27.77	< 0.00001
MIR	0.06958	0.06912	0.00232	29.79	< 0.00001
Age	-0.00670	-0.00669	0.00186	-3.59	0.00033
Age*CGI	0.00660	0.00660	0.00236	2.80	0.00515
Age*PcG	0.00175	0.00175	0.00048	3.65	0.00026
Age*TFBS	0.00046	0.00046	0.00037	1.24	0.21539
Age*LINE1	-0.00142	-0.00139	0.00100	-1.40	0.16262
Age*LINE2	-0.00158	-0.00156	0.00039	-4.05	0.00005
Age*Alu	-0.00333	-0.00330	0.00215	-1.53	0.12572
Age*MIR	-0.00182	-0.00182	0.00037	-4.96	< 0.00001
Female	-0.00675	-0.00667	0.00496	-1.34	0.17891
Female*CGI	0.01507	0.01520	0.00697	2.18	0.02929
Female*PcG	-0.00224	-0.00230	0.00137	-1.67	0.09404
Female*TFBS	0.00236	0.00239	0.00108	2.20	0.02770
Female*LINE1	-0.00583	-0.00589	0.00279	-2.11	0.03471
Female*LINE2	-0.00112	-0.00110	0.00111	-0.99	0.32050
Female*Alu	-0.01507	-0.01523	0.00653	-2.33	0.01959
Female*MIR	-0.00164	-0.00165	0.00098	-1.69	0.09168
Selenium	0.01242	0.01199	0.01344	0.89	0.37229
Selenium*CGI	-0.00775	-0.01005	0.01670	-0.60	0.54745
Selenium*PcG	-0.00050	-0.00006	0.00333	-0.02	0.98536
Selenium*TFBS	-0.00168	-0.00205	0.00264	-0.78	0.43751
Selenium*LINE1	0.00287	0.00339	0.00651	0.52	0.60248
Selenium*LINE2	0.00075	0.00145	0.00282	0.51	0.60796
Selenium*Alu	0.00651	0.00940	0.01577	0.60	0.55117
Selenium*MIR	0.00071	0.00125	0.00258	0.48	0.62885

Table S12. Marginal model results for the association of methylation with sequence features and selenium exposure, adjusted for age and gender.

Abbreviations: CGI = CpG islands; TFBS = transcription factor binding sites; PcG = polycomb group protein target gene; LINE = long interspersed repeat elements; MIR = mammalian wide-interspersed repeat

Note: exposure/sequence feature interactions are shown as exposure*feature (i.e. the effect of age on methylation CpGs located in CGI is denoted by Age*CGI); Selenium was measured from toenail clippings (µg/g)

Table S13.	Marginal mod	el results for the	association	of methylation	with sequence
features an	d tanning lamp	use, adjusted for	or age and ge	ender.	

	Estimate	Mean	SE	Z	P-value
(Intercept)	0.89701	0.89673	0.00290	309.32	< 0.00001
CGI	-0.50902	-0.50870	0.00407	-125.08	< 0.00001
PcG	-0.00173	-0.00175	0.00067	-2.62	0.00890
TFBS	-0.06758	-0.06753	0.00066	-102.92	< 0.00001
LINE1	0.15084	0.15069	0.00172	87.48	< 0.00001
LINE2	0.09166	0.09160	0.00067	136.92	< 0.00001
Alu	0.40991	0.40965	0.00377	108.53	< 0.00001
MIR	0.06928	0.06922	0.00058	118.61	< 0.00001
Age	-0.00756	-0.00754	0.00224	-3.37	0.00077
Age*CGI	0.00769	0.00762	0.00299	2.55	0.01078
Age*PcG	0.00196	0.00195	0.00050	3.87	0.00011
Age*TFBS	0.00059	0.00059	0.00045	1.30	0.19508
Age*LINE1	-0.00198	-0.00198	0.00119	-1.67	0.09537
Age*LINE2	-0.00165	-0.00163	0.00046	-3.56	0.00037
Age*Alu	-0.00423	-0.00418	0.00266	-1.57	0.11663
Age*MIR	-0.00194	-0.00195	0.00044	-4.46	< 0.00001
Female	-0.00304	-0.00280	0.00532	-0.53	0.59912
Female*CGI	0.01131	0.01125	0.00751	1.50	0.13418
Female*PcG	-0.00151	-0.00153	0.00132	-1.15	0.24848
Female*TFBS	0.00162	0.00163	0.00112	1.45	0.14758
Female*LINE1	-0.00415	-0.00412	0.00295	-1.39	0.16304
Female*LINE2	-0.00080	-0.00075	0.00117	-0.64	0.51933
Female*Alu	-0.01190	-0.01195	0.00686	-1.74	0.08154
Female*MIR	-0.00081	-0.00077	0.00106	-0.73	0.46410
Tanning lamp use	-0.00293	-0.00272	0.00733	-0.37	0.71056
Tanning lamp use*CGI	0.00862	0.00810	0.01095	0.74	0.45959
Tanning lamp use*PcG	0.00394	0.00398	0.00197	2.02	0.04356
Tanning lamp use*TFBS	0.00091	0.00082	0.00147	0.56	0.57530
Tanning lamp use*LINE1	-0.00375	-0.00356	0.00380	-0.94	0.34843
Tanning lamp use*LINE2	-0.00143	-0.00137	0.00161	-0.85	0.39490
Tanning lamp use*Alu	-0.00715	-0.00663	0.00974	-0.68	0.49635
Tanning lamp use*MIR	-0.00177	-0.00173	0.00148	-1.17	0.24075

Abbreviations: CGI = CpG islands; TFBS = transcription factor binding sites; PcG = polycomb group protein target gene; LINE = long interspersed repeat elements; MIR = mammalian wide-interspersed repeat

Table S14.	Marginal	model results i	for the asso	ciation o	of methylation	with sequence
features and	d lifetime p	oainful sunbur	ns, adjuste	d for age	and gender.	

	Estimate	Mean	SE	Z	P-value
(Intercept)	0.89782	0.89778	0.00298	301.55	< 0.00001
CGI	-0.50879	-0.50889	0.00404	-125.86	< 0.00001
PcG	-0.00134	-0.00139	0.00070	-1.98	0.04817
TFBS	-0.06763	-0.06763	0.00065	-103.63	< 0.00001
LINE1	0.15073	0.15072	0.00176	85.78	< 0.00001
LINE2	0.09170	0.09174	0.00068	135.00	< 0.00001
Alu	0.40981	0.40988	0.00374	109.63	< 0.00001
MIR	0.06920	0.06920	0.00059	117.89	< 0.00001
Age	-0.00756	-0.00755	0.00217	-3.48	0.00051
Age*CGI	0.00726	0.00722	0.00294	2.46	0.01394
Age*PcG	0.00166	0.00165	0.00048	3.47	0.00052
Age*TFBS	0.00056	0.00056	0.00045	1.25	0.21091
Age*LINE1	-0.00179	-0.00179	0.00121	-1.48	0.13950
Age*LINE2	-0.00157	-0.00154	0.00047	-3.32	0.00091
Age*Alu	-0.00390	-0.00388	0.00270	-1.43	0.15144
Age*MIR	-0.00181	-0.00180	0.00043	-4.17	0.00003
Female	-0.00264	-0.00271	0.00550	-0.49	0.62150
Female*CGI	0.01157	0.01202	0.00747	1.61	0.10774
Female*PcG	-0.00106	-0.00114	0.00135	-0.84	0.39904
Female*TFBS	0.00159	0.00168	0.00113	1.48	0.13813
Female*LINE1	-0.00429	-0.00445	0.00300	-1.48	0.13774
Female*LINE2	-0.00087	-0.00090	0.00125	-0.72	0.47103
Female*Alu	-0.01206	-0.01252	0.00688	-1.82	0.06859
Female*MIR	-0.00100	-0.00103	0.00110	-0.93	0.34996
Painful sunburns	-0.00014	-0.00012	0.00011	-1.06	0.29058
Painful sunburns*CGI	0.00010	0.00010	0.00016	0.60	0.54845
Painful sunburns*PcG	0.00000	0.00000	0.00002	0.20	0.84108
Painful sunburns*TFBS	0.00002	0.00002	0.00003	0.64	0.52306
Painful sunburns*LINE1	-0.00004	-0.00003	0.00007	-0.49	0.62077
Painful sunburns*LINE2	-0.00002	-0.00002	0.00003	-0.83	0.40763
Painful sunburns*Alu	-0.00009	-0.00009	0.00015	-0.60	0.54686
Painful sunburns*MIR	-0.00001	-0.00001	0.00003	-0.30	0.76289

Abbreviations: CGI = CpG islands; TFBS = transcription factor binding sites; PcG = polycomb group protein target gene; LINE = long interspersed repeat elements; MIR = mammalian wide-interspersed repeat

Supplemental Analysis S1. Performance assessment of recursively partitioned mixture model (RPMM) versus metric hierarchical clustering for classification of high-density DNA methylation data.

For the present manuscript, we sought to cluster 26,486 autosomal CpG loci based on methylation data from Illumina Infinium HumanMethylation27k BeadArray across 205 primary study samples. Although metric (nonparametric) hierarchical clustering is a well-characterized method, it does not scale to tens of thousands of cases; consequently, we used a Gaussian variant of Recursively Partitioned Mixture Model (RPMM), a hierarchical mixture-model algorithm described by Houseman et al. (BMC Bioinformatics 2008;9:365) and implemented in the R library RPMM (http://cran.r-project.org/web/packages/RPMM/index.html). Standardized average betas (i.e. z-scores computed using CpG-specific means and standard deviations) for 26,486 CpGs were clustered via RPMM according to their relative variation of 205 beta values, as described below. Thus, the CpGs were hierarchically clustered based on their pattern of relative variation. The resulting hierarchy of classes was pruned to 5 binary levels, resulting in 2^{5} =32 classes of CpGs. Note that we compared the consistency of RPMM clustering to that of metric clustering (using Euclidean distance with Ward's linkage) by pairwise analysis of 100 resampling experiments, each of which was analyzed using both RPMM and Ward's method. We sampled 1000 probe sets at a time for each experiment, and on a pairwise basis between sampling runs, used the adjusted Rand index (Rand WM. JASA 1971;66(336):846-50) to compare the consistency of the clustering of CpGs that were sampled in both runs (i.e. the intersection of the sampled CpGs between two experiments). Note that a separate Rand index was computed for RPMM and for Ward's method, for each pair of experiments. Thus the mean adjusted Rand index for each of the two methods was computed by averaging 4950 unique pairs of experiments; standard errors were computed from the approximate sampling distribution obtained by bootstrapping the 100 individual experiments and averaging the resulting pairwise comparisons. Mean adjusted Rand index for RPMM was 0.560 (se = 0.006) while for metric hierarchical clustering it was 0.442 (se = 0.004). Additionally, to assess performance with fewer hierarchical classes, the comparison was repeated pruning at 2 binary levels (4 classes), yielding a mean adjusted Rand Index of 0.881 (se = 0.006) for RPMM versus 0.574 (se = 0.009) for metric hierarchical clustering. Thus, RPMM also appeared to provide more consistent clustering than the more common nonparametric approach.