Text S1

Notation

Symbol	Referent
Ø	empty set
€	is a member of
\subseteq	is a subset of
\cong	is isomorphic to
≇	is not isomorphic to
\dashv	is left adjoint to
\mapsto	maps to
\rightarrow	arrow, morphism, map
 →	uniquely existing arrow
$\stackrel{\cdot}{\longrightarrow}$	natural transformation
A, B, C, \dots	objects
f,g,h,\dots	morphisms
F, G, H, \dots	functors
η,ϵ,\dots	natural transformations
$\mathbf{C},\mathbf{D},\dots$	categories
$ \mathbf{C} $	the class of objects in category ${f C}$
$f:A \to B$	morphism f from domain object A to codomain object B
$F: \mathbf{C} \to \mathbf{D}$	functor F from domain category ${f C}$ to codomain category ${f D}$
$\eta: F \stackrel{.}{\rightarrow} G$	natural transformation η from domain functor F to codomain functor G
Set	category with sets for objects and functions for morphisms
0 , 1 , 2	category with zero, one, two objects and no non-identity morphisms
$(T\downarrow S)$	comma category from functors T and S
$\mathbf{D}^{\mathbf{C}}$, Funct (\mathbf{C}, \mathbf{D})	category of functors from ${\bf C}$ to ${\bf D}$ and natural transformations
J	shape category

0,	empty shape category
1, ·	(one-object discrete) singleton shape category
$oldsymbol{2},\cdot\cdot$	(two-object discrete) pair shape category
$\downarrow \downarrow, \cdot \rightrightarrows \cdot$	parallel shape category
$*, \cdot \rightarrow \cdot \leftarrow \cdot$	sink shape category
\leftrightarrow , $\cdot \leftarrow \cdot \rightarrow \cdot$	cosink shape category
$\mathbf{C_0}$	category of empty shaped diagrams, $\mathbf{C^0} \cong 1$
C^2	category of pair shaped diagrams, $\mathbf{C^2} \cong \mathbf{C} \times \mathbf{C}$
0, 1, O	initial, terminal, zero object
*	object in a one-object category, such as ${\bf 1}$
$A \times B$	product of objects A and B
A + B	coproduct of objects A and B
$A \times_C B$	pullback (fiber product) of objects A and B constrained at C
$A +_C B$	pushout (fiber coproduct) of objects A and B constrained at C
(A, B)	pair of objects A and B
$f \circ g$	composition of morphism f with morphism g
$\langle f,g\rangle$	diverging pair of arrows, having a common domain
[f,g]	converging pair of arrows, having a common codomain
(f,g)	parallel pair of arrows, having distinct (co)domains
$f \times g$	product of arrows f and g
$0_A:0\to A$	morphism from an initial object 0
$I_A:A\to 1$	morphism to a terminal object 1
$1_A:A\to A$	identity morphism on object A
$1_{\mathbf{C}}:\mathbf{C}\to\mathbf{C}$	identity functor on category $\mathbf{C},\ 1_{\mathbf{C}}:X\mapsto X,f\mapsto f$
$1_F:F\stackrel{.}{\rightarrow} F$	identity natural transformation on functor F , $1_{F_X}:F(X)\to F(X)$
$F_A: \mathbf{C} \to \mathbf{D}$	constant functor, $F_A: X \mapsto A, f \mapsto 1_A$, for all $X \in \mathbf{C} $
$D: \mathbf{J} \to \mathbf{C}$	diagram (functor) D of (from) shape ${\bf J}$ in (to) category ${\bf C}$

```
D_A: \mathbf{J} \to \mathbf{C}
                                      constant diagram, D_A: X \mapsto A, f \mapsto 1_A, for all X, f in J
D_{\varnothing}:\mathbf{0}\to\mathbf{C}
                                      empty diagram
\Delta_0: \mathbf{C} \to \mathbf{C}^0
                                      constant diagonal functor, \Delta_0: A \mapsto *, f \mapsto 1_*, for all A, f in C
\Delta_2: \mathbf{C} \to \mathbf{C^2}
                                      pair diagonal functor, \Delta_2: A \mapsto (A, A), f \mapsto (f, f)
\Delta_{||}: \mathbf{C} \to \mathbf{C}^{\downarrow\downarrow}
                                      parallel diagonal functor, \Delta_{\downarrow\downarrow}: A \mapsto (1_A, 1_A), f \mapsto (f, f)
\Delta_* : \mathbf{C} \to \mathbf{C}^*
                                      sink diagonal functor, \Delta_{*}: A \mapsto (1_A, 1_A), f \mapsto (f, f)
\Delta_{\hookrightarrow}: \mathbf{C} \to \mathbf{C}^{\hookrightarrow}
                                      cosink diagonal functor, \Delta_{\leftrightarrow}: A \mapsto (1_A, 1_A), f \mapsto (f, f)
\Delta: \mathbf{C} \to \mathbf{C}^{\mathbf{J}}
                                      general diagonal functor, \Delta: A \mapsto D_A, (f: X \to Y) \mapsto (\eta: D_A \xrightarrow{\cdot} D_B)
V, W
                                      vertex object V of a cone, vertex object W of a cocone
\underline{L}, \underline{L}
                                      vertex \underline{L} of a (limit/terminal) cone, vertex \underline{L} of a (colimit/initial) cocone
(V, \phi)
                                      cone with vertex V and leg morphisms \phi
(W, \psi)
                                      cocone with vertex W and leg morphisms \psi
\phi: D_V \stackrel{\cdot}{\to} D
                                      cone (natural transformation) \phi with vertex V, \phi_I : V \to D(I)
\psi: D \xrightarrow{\cdot} D_W
                                      cocone (natural transformation) \psi with vertex W, \psi_I : D(I) \to W
\kappa:D_L\stackrel{.}{\to} D
                                      cone (natural transformation) \kappa with vertex \underline{L}, \kappa_I : \underline{L} \to D(I)
\chi: D \xrightarrow{\cdot} D_L
                                      cocone (natural transformation) \chi with vertex \underline{L}, \chi_I : D(I) \to \underline{L}
\lim_{\mathbf{0}}:D_{\varnothing}\stackrel{\cdot}{\to}D_{\varnothing}
                                      terminal limit (cone), (1, 1_1)
lim_{\mathbf{0}}: D_{\varnothing} \xrightarrow{\cdot} D_{\varnothing}
                                      initial limit (cocone), (0, 0_1)
lim_{\square}:D_E\stackrel{.}{\rightarrow}D
                                      equalizer limit (cone), (E, e)
lim_{||}:D \xrightarrow{\cdot} D_{Q}
                                      coequalizer limit (cocone), (Q, q)
\lim_{\mathbf{2}}:D_{A\times B}\stackrel{\cdot}{\to}D
                                      product limit (cone), (A \times B, p_i), for i \in \{1, 2\}
lim_{\mathbf{2}}: D \xrightarrow{\cdot} D_{A+B}
                                      coproduct limit (cocone), (A + B, q_i), for i \in \{1, 2\}
lim_*: D_{A\times_C B} \xrightarrow{\cdot} D
                                      pullback limit (cone), (A \times_C B, p_i), for i \in \{1, 2\}
lim_{\leftrightarrow}: D \xrightarrow{\cdot} D_{A+_CB}
                                      pushout limit (cocone), (A +_C B, q_i), for i \in \{1, 2\}
\c lim:D_L \stackrel{.}{\rightarrow} D
                                      general limit (cone), \lim_{X} : \underline{L} \to D(X)
\underrightarrow{lim}:D\stackrel{.}{\rightarrow}D_L
                                      general colimit (cocone), \underline{lim}_X : D(X) \to \underline{L}
Lim_0: \mathbf{C^0} \to \mathbf{C}
                                      terminal (limit) functor, \underline{Lim}_{\mathbf{0}} : * \mapsto 1, 1_* \mapsto 1_1
```

$\underrightarrow{\mathit{Lim}}_{0}:\mathbf{C^{0}}\rightarrow\mathbf{C}$	initial (colimit) functor, $\underline{Lim}_{0}: * \mapsto 0, 1_* \mapsto 1_0$
$\varprojlim_{} : \mathbf{C}^{\downarrow\downarrow} \to \mathbf{C}$	equalizer (limit) functor, $\underleftarrow{\lim}_{\downarrow\downarrow}:(f,g)\mapsto (E,e),(h,f\circ h)\mapsto h$
$\underrightarrow{\mathit{Lim}}_{\downarrow\downarrow}:\mathbf{C}^{\downarrow\downarrow}\to\mathbf{C}$	coequalizer (colimit) functor, $\underrightarrow{Lim}_{\downarrow\downarrow}:(f,g)\mapsto (Q,q),(h\circ f,f)\mapsto h$
$\underleftarrow{\mathit{Lim}}_{2},\Pi:\mathbf{C^2}\to\mathbf{C}$	product (limit) functor, $\Pi:(A,B)\mapsto A\times B, (f,g)\mapsto f\times g$
$\underrightarrow{\mathit{Lim}}_{2}, \amalg : \mathbf{C^2} \to \mathbf{C}$	coproduct (colimit) functor, II : $(A,B) \mapsto A + B, (f,g) \mapsto f + g$
$\varprojlim_*, \Pi_C : \mathbf{C}^* \to \mathbf{C}$	pullback (limit) functor, $\Pi_C: (A,B) \mapsto A \times_C B, (f,g) \mapsto f \times g$
$\underrightarrow{\mathit{Lim}}_{\leftrightarrow}, \amalg_{C} : \mathbf{C}^{\leftrightarrow} \to \mathbf{C}$	pushout (colimit) functor, $\coprod_C : (A,B) \mapsto A +_C B, (f,g) \mapsto f + g$
$\varprojlim:\mathbf{C}^{\mathbf{J}}\to\mathbf{C}$	general limit functor, $\not\sqsubseteq \underline{im}: D \mapsto \not\sqsubseteq, (\eta:D \to D') \mapsto (\not\sqsubseteq \to \not\sqsubseteq')$
$\underrightarrow{\mathit{Lim}}: \mathbf{C^J} \to \mathbf{C}$	general colimit functor, $\underline{Lim}: D \mapsto \underline{L}, (\eta: D \stackrel{.}{\rightarrow} D') \mapsto (\underline{L} \rightarrow \underline{L}')$