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Text S4

A category theory definition of systematicity

In general, systematicity means that one has cognitive capacity c1 if and only if one has cognitive capacity

c2 (e.g., one has the capacity to infer John as the lover from “John loves Mary” if and only if one has

the capacity to infer Mary as the lover from “Mary loves John”). Thus, systematicity is essentially an

equivalence relation on a set of cognitive capacities. Equivalence relations are identified with a particular

kind of coequalizer in category theory [1], p60–63. Hence, category theory also provides a formal definition

of systematicity in terms of a coequalizer. First, we provide a formal definition of an equivalence relation,

and associated definitions of equivalence class, and quotient set. Then, we show how an equivalence

relation is identified with a coequalizer, thus yielding a formal category theory definition of systematicity.

An equivalence relation on a set A is a relation R ⊆ A × A, such that R is:

• reflexive: i.e., aRa, for all a ∈ A;

• symmetric: i.e., a1Ra2 if and only if a2Ra1; and

• transitive: i.e., if a1Ra2 and a2Ra3, then a1Ra3.

An R–equivalence class of an element ai ∈ A is the set [ai] = {aj |aiRaj}, which contains all the

elements of A that are R–related to ai.

The quotient set of a set A by a relation R is the set A/R = {[a]|a ∈ A}.

A coequalizer of two morphisms f, g : A → B in category C is an object Q together with a morphism

q : B → Q, denoted (Q, q), such that for every object Z ∈ |C| and morphism z : B → Z, there exists a

unique morphism u : Q → Z, such that the following diagram commutes:

A
f //
g

// B
q //
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An equivalence relation R on a set A is identified with the following coequalizer diagram:

R
p1 //
p2

// A
qR //

z
!!CC

CC
CC

CC
C A/R

u
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Z

(2)

where p1 : (a1, a2) 7→ a1 and p2 : (a1, a2) 7→ a2 are projections, and qR : a 7→ [a] identifies each element of

A with its equivalence class. (Note that qR is a couniversal arrow, see Text S2, and identifies equivalence

classes in a “minimal” way, i.e., with no more or less classes than necessary.)

Given a set of cognitive capacities C, systematicity is an equivalence relation S ⊆ C × C, identified

with the coequalizer indicated in the following commutative diagram:

S
p1 //
p2

// C
qS //

z
!!CC
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CC

CC
C/S

u
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where each [c] ∈ C/R is a set (group) of indivisibly linked (i.e., systematically related) cognitive capacities.

A coequalizer, expressed in Diagram 1, is equivalent to a kind of pushout (see Text S2, for a definition),

expressed in the following diagram:
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Our explanation of systematicity in terms of adjunction also satisfies this category theory definition of

systematicity. Recall (from Text S2) that in an adjoint situation, F a G, where functors F : C → D and

G : D → C, every object X ∈ |C| and Y ∈ |D| is associated with a (co)universal morphism, (G◦F (X), ηX)

and (F ◦G(Y ), εY ), respectively. Consider that the groups of cognitive capacities in question correspond

to the hom-sets parameterized by X or Y (cf. Text S2, Diagram 16 and surrounding text). For instance,

the capacities to infer agent and patient from propositions such as John loves Mary correspond to the
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morphisms that belong to the hom-set homC2((Pr ,Pr), (S, S)), from Diagram 9, which contains all the

morphisms with (S, S) as their codomain. Each morphism (ag , pt) in this hom-set factors through the

universal morphism (p1, p2). It is easy to show that the universal morphism must be unique with respect

to this property. Hence, all morphisms in the hom-set are related to each other by a common factor, i.e.,

the universal morphism. In general, the counit ε : F ◦ G
.→ 1D for adjoint situation F a G contains one

(universal) morphism εY : F ◦G(Y ) → Y for each Y ∈ D, and is identified with an equivalence relation Rε

on set {(f, g)|f, g morphisms in D}, where Rε = {(f, g)|∃Y,∃f ′, ∃g′, f = εY ◦ f ′, g = εY ◦ g′}. Evidently,

this relation is reflexive, symmetric, and transitive, and so defines equivalence classes, [εY ] = {f |εY Rεf},

where f : B → Y . In the general case of modelling multiple relations, either implicitly with distinct pairs

of constituent objects (A,B), or with an explicit relation symbol, as in (Ri, (A,B)) (see [2], Diagram 17),

there is one universal morphism for each relation, and therefore, one equivalence class for each group of

cognitive capacities associated with that relation. Hence, our explanation for systematicity in terms of

adjunctions also satisfies our category theory definition of systematicity. (The same situation applies for

capacities in terms of couniversal morphisms.)
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