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Poisson noise and nonlinear models of tuning
Traditional approaches to modeling cosine tuning assume that spiking noise is Gaussian. However, a
popular alternative is to assume Poisson noise.

A=b, +b,cos(@-8")
y ~ Poisson(A dt)

The assumption of Poisson noise is, likely, a better description of discrete spike counts and is consistent
with observations that Fano factors tend to be close to one. However, several recent studies have also used
a linear-nonlinear-Poisson (LNP) model with an exponential nonlinearity

A =exp(b, +b,cos(6-6))
y ~ Poisson(A dt)

This model accurately captures the nonlinearities observed in some motor cortical neurons (Amirikian and
Georgopulos 2000) and falls under the class of generalized linear models, making optimization efficient.
In both of these alternative models, rather than minimizing the squared error as one normally would for
the Gaussian noise assumption, we maximize the likelihood of this conditional Poisson process (see
(Paninski 2004; Truccolo et al. 2005) for details, and (Amirikian and Georgopulos 2000; Swindale 1998)
on the choice of tuning function). The maximum likelihood tuning curve estimates for the three models
(cosine Gaussian noise, cosine Poisson noise, and LNP) are, in general, similar. However, there are
occassional discrepancies in estimates of both preferred direction and modulation (Fig S1).

Bootstrapping as well as adaptive filtering can be applied to either of these two Poisson models as well.
Importantly, using these models does not change the conclusions we draw about measurement noise and
the stability of preferred directions. Applying the same analysis used in the main text, block-by-block
changes in the estimated preferred direction, for the cosine tuning model with Poisson noise, have mean
0.0+1.1 deg and standard deviation 39.3£1.1 deg for blocks of 40 trials and mean 0.0£1.5 deg and
standard deviation 22.4+1.3 deg for blocks of 120 trials. Similarly, for the LNP tuning model changes in
preferred direction have mean 0.0+1.1 deg and standard deviation 38.9+1.1 deg for blocks of 40 trials and
mean 2.4+1.5 deg and standard deviation 22.8+1.5 deg for blocks of 120 trials (Fig S2). In all cases, very
few of the PD changes are significant (bootstrapping, a=0.05), and the histograms tend to be, again,
almost identical to the histograms of PD changes observed after simulating stable neurons.

Hotelling's T-squared test and bootstrapping
Prevous studies have used a variety of methods to determine whether tuning and changes in tuning are

significant. Notably, Rokni et al. (2007) test significance using a bivariate z-test on the parameters ¢, and
C, (see (Christensen 2001; Rokni et al. 2007) and Methods Eq. (2)). Briefly, this test, based on
Hotelling’s T-squared statistic, compares a set of samples (¢, and c, pairs) with some covariance to either
zero (one-sample test) or another set of samples (two-sample test). Note that this test contains information
about both the modulation depth b, = (c, —c,)/(cos@ —sind") and preferred direction 8° = atan2(c,,c,).
Rather than changes in preferred direction alone, this test will, thus, reflect changes in the total cosine



component.

In practice, a one-sample Hotelling's T-Squared test works well for distinguishing tuned from untuned
neurons. In the data used here 201 of the 285 recorded neurons were considered tuned (p<0.05, samples
fit for blocks of 40 trials, all data). This is, in fact, an even more conservative test than the simple (cross-
validated) likelihood ratio test where, comparing untuned and cosined tuned models with Gaussian noise,
249 of the 285 recorded neurons were considered tuned (i.e. tuning model has a greater likelihood).

For detecting changes between blocks of trials, the two-sample Hotelling's T-Squared test has several
features that complicate the process of determining whether preferred directions are stable. 1) Changes in
preferred direction cannot be separated from changes in modulation. As above this test works on ¢, c,
pairs. 2) The test requires an estimate of the a sample covariance. In general, testing changes between
blocks will require a set of samples for each block (~5-10). It is not obvious how to select this sub-block
size, and the amount of data used to generate each c, c, sample will affect the covariance estimates and

thus the test itself. These properties of Hotelling’s T-Squared statistic suggest that bootstrapping may be a
better, more reliable way to test for changes in individual tuning parameters.

A note on fully Bayesian methods and bootstrapping

Bootstrapping is a fast, easy to implement approach to estimating parameters and confidence intervals.
When there is very little data, however, bootstrapping can be noisy and special care must be taken to
smooth or correct bootstrap estimates. One solution to dealing with very small amounts of data is to use
fully Bayesian methods (Cronin et al. 2010). However, for the amount of data used here (>40 trials)
bootstrapping and fully Bayesian methods give nearly identical results. Since we are not implementing
informative priors, bootstrapping is used here for its simplicity.
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Figure S1: Typical maximum likelihood fits for three different tuning models: linear-nonlinear-Poisson
(red), cosine tuned with Poisson noise (black), and cosine tuned with Gaussian noise (dashed) as used in
the main text. Dots and errorbars denote mean and SEM for the observed spike counts 100 ms prior
through 300 ms after movement onset.
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Figure S2: Estimated changes in preferred direction under two alternative tuning models: cosine with
Poisson noise (top), and linear-nonlinear-Poisson (bottom). Black blocks denote changes that were
significant at the 95% level by bootstrapping. Note that for blocks of 40 trials the variability of changes
between blocks is substantially higher than for blocks of 120 trials, suggesting that measurement noise
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plays a large role in determining the magnitude of PD changes.
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