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Supplementary Discussion 1:  Calculation of Poisson’s Ratios   

 To calculate Poisson’s ratios, we evaluated the overall transverse elastic deformation of 

the scaffolds resulting from axial strains.  We determined Poisson’s ratios using equation 1 [42].   
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where y  is transverse strain resulting from an axial strain x .  The subscripts x and y denote the 

axial and transverse strain directions, respectively, in a two-dimensional Cartesian coordinate 

system with orthogonal x- and y-axes.  We note that we calculated in-plane values of Poisson’s 

ratio resulting from in-plane strains.  Poisson’s ratio was determined from values of true strain.  

Total true strain, i ,  was calculated by equation (2) (for any in-plane coordinate direction). 
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where ni ,...,3,2,1  and denotes the current strain state, L1 is the current specimen length for 

strain state i, and L0 is the initial undeformed specimen length.  Total true strain was determined 

by summing contributions to total true strain from the application of incremental true strains.  

True strain was used in our calculations of Poisson’s ratio, as opposed to engineering strain, due 

to the magnitudes of the strains involved in our experiments. 

 

Supplementary Discussion 2:  Unit-cell analytical models 

 To determine how precisely we could tune the strain-dependent Poisson’s ratios of our 

3D PEG constructs, we compared our experimental strain data with analytical models reported in 
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the literature.  The analytical models described here contain parameters that are shown in Figure 

1B in the main text.  We determined the Poisson’s ratios of the biomaterial constructs by 

measuring the overall strains in the x- and y-directions and did not measure changes in the 

internal angles of the unit-cells.  To determine the deformed values of the internal angles of the 

unit-cells, we used our empirically-obtained values of axial strain in analytical equations relating 

axial strain to the deformed values of the internal angles [Note: unless otherwise noted, all angle 

values have units of degrees].  The strain-angle relations for the missing and intact rib structures 

include constants that constrain the relations so that they yield zero axial strain for the 

undeformed values of the angles.  The constants were determined by stipulating the initial 

condition that axial strain was zero for the undeformed values of the internal angles.  The 

equations, relating axial strain to the deformed values of the internal angles in the  unit-cells, were 

used to plot the analytical models as a function of axial strain.  This made it possible to directly 

compare the strain-dependent rates of change of Poisson’s ratio between our experimental data 

and the analytical functions. 

 For the reentrant unit-cell, we compared our strain-dependent Poisson’s ratio data with 

the hinging model [equation (3)] reported by Gibson and Ashby [2].  The model assumes a 

change in Poisson’s ratio due solely to changes in angle  for a given set of rib lengths L1 and L2 

(Figure 1B in main text).  Because the strain-dependent Poisson’s ratio of the reentrant hinging 

model is presented as a function of angle , which changes as the unit-cell is axially strained, 

equation (4) was utilized to convert values of axial strain into deformed values of angle  [43]. 
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where   90 .  The subscript “0”, represents the initial undeformed value of the angle 

(and does so hereafter).  Figure 2 plots Poisson’s ratio as a function of true strain given by 

equation (3), based on the undeformed dimensions of Figure 1B (main text).   

 For the missing rib model, we compared our data to the models reported by Smith et al. 

[39] and Gaspar et al. [38], which are shown in equations (5) and (6), respectively.  The angles in 

the equations are based on Figure 1B (main text). 
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where   180  (Figure 1B in main text) and     in the Gaspar model, which 

represents hinging at the central node [equation (6)].  A few differences exist between analytical 

models (5) and (6).  While equation (5) was derived from true (instantaneous) strain 

considerations, equation (6) was formulated from engineering strain, an approximation usually 

reserved for small strains.  Also, equation (5) assumes that only rotation occurs at the central node 

and excludes any hinging of the internal angle  (see Figure 1B in main text), i.e., 0 , 

which causes Poisson’s ratio to remain constant (not strain-dependent) despite a change in angle 

.  On the other hand, equation (6) includes some hinging at the central node so that 0 .  

Our data for Poisson’s ratio matched up well with the Gaspar model given our unit-cell 

dimensions, which shows that some hinging likely occurs when the missing rib structure is 
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axially strained.  supplementary equation (7) relates axial strain with deformed values of angle  

[38, 39].  

 

Csinlnx    (7) 

 

where 450 347.0sinlnC
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 In equation (7), constant C depends on the undeformed value of .  The constant enforces 

the initial condition that the axial strain is zero for the undeformed value of the angle, which was 

45° for our missing rib design (Figure 1B in main text).  Figure 2 plots Poisson’s ratio as a 

function of engineering strain given by equation (6), based on the undeformed dimensions of 

Figure 1B (main text). For the intact rib model, we compared our strain data with the model 

proposed by Smith et al. [39], which is shown in equations (8) and (9). 
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where   180 .  In equation (9), constant C depends on the undeformed value of angle .  

The constant constrains equation (9) so that it yields a zero axial strain when  equals its 

undeformed value, which was 90° for our structures (Figure 1B in main text).  Figure 2 plots 

Poisson’s ratio as a function of true strain given by equation (8), based on the undeformed 

dimensions of Figure 1B (main text). 
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Supplementary Figure Captions: 

 

Figure 1.  Schematic of the Digital Micromirror Device (DMD) apparatus used for fabricating 

3D porous biomaterial constructs having tunable negative Poisson’s ratios. 

 

Figure 2.  Poisson’s ratio as a function of true strain given by the reentrant [equation (3)], 

missing rib [equation (6)] and intact rib [equation (8)] models [2, 38, 39].  The plots are based on 

the undeformed dimensions shown in Figure 1B in the main text. 
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Supplementary Movie Captions: 
 
Movie 1:  Simultaneous axial and transverse expansions of a single-layer PEG construct 
composed of the reentrant honeycomb unit-cell lattice.  The construct exhibits a negative 
Poisson’s ratio. 
 
Movie 2:  Simultaneous axial and transverse expansions of a single-layer PEG construct 
composed of the missing rib unit-cell lattice.  The construct exhibits a negative Poisson’s ratio. 
 
Movie 3:  Axial expansion but transverse compression of a single-layer PEG construct composed 
of the intact rib unit-cell lattice.  The construct exhibits a large positive Poisson’s ratio (used as a 
control in our tests for Poisson’s ratio). 
 
Movie 4:  Simultaneous axial and transverse expansions of a two-layer PEG construct composed 
of the reentrant honeycomb unit-cell lattice.  The cellular layers were stacked on top of one other 
with precise alignment by an alternating layer of vertical posts.  The construct exhibits a negative 
Poisson’s ratio similar in magnitude to the single-layer construct. 
 
Movie 5:  Simultaneous axial and transverse expansions of a two-layer PEG construct composed 
of the missing rib unit-cell lattice.  The cellular layers were stacked on top of one other with 
precise alignment by an alternating layer of vertical posts.  The construct exhibits a negative 
Poisson’s ratio similar in magnitude to the single-layer construct. 
 
Movie 6:  Axial expansion but transverse compression of a two-layer PEG construct composed of 
the intact rib unit-cell lattice.  The cellular layers were stacked on top of one other with precise 
alignment by an alternating layer of vertical posts.  The construct exhibits a large positive 
Poisson’s ratio similar in magnitude to the single-layer construct (used as a control in our tests for 
Poisson’s ratio). 
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Supplementary Figure 1: 
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Supplementary Figure 2: 
 
 
 

 
 
 
 
 
 
 
 
 


