Supporting Information

Billon-Galés et al. 10.1073/pnas.1105632108

SI Text

Fig. S1: Schematic Representation of the Strategy Used to Generate Estrogen Receptor- α Activation Function 2 Null Mutants Mice. Mouse estrogen receptor- α (mER α) genomic clones were isolated by screening a 129/Sv ES cell DNA library with an mERa cDNA probe (nucleotides 177-2007) (1). A genomic 16-kb NotI fragment, containing the mER α exons 7 and 8 sequences, was identified with the cDNA probe encoding amino acids 539-552 (nucleotides 1805-1846). A motif essential for the transcriptional activation function 2 (AF2) present in the E region of $ER\alpha$ (exon 8) has been previously characterized as an amphipathic α -helix, and its main features are conserved between transcriptionally active members of the nuclear receptor family (2, 3). We generated the targeting vector XhoI-KpnI encoding the amino acids LLLEMLD motif (nucleotides 1817-1837 and amino acids 543–549) (1). We isolated and subcloned the EcoRI fragment into the Bluescript II plasmid and performed the deletion of the LLLEMLD motif by PCR-based site-directed mutagenesis using primers P1 (5'-ctctacaacatgaaatgcaagaacgttgtgcccctctatgacgcccaccgccttcatgcccagccagtcgcatgggagtg-3') and P2 (5'-cactcccatgcgactggctggggcatgaaggcggtgggcgtcatagaggggcacaacgttcttgcatttcatgttgtagag-3'; nucleotides 1775-1816 and 1838-1876 and amino acids 529-542 and 550-562) (1). We reconstituted the XhoI-KpnI targeting vector and checked the success of the mutation by sequencing. The TKneo cassette from pHR56⁻ (4) was cloned into the PshAI site. The 8-kb XhoI-KpnI fragment of the targeting vector was electropored into 129/SvPas H1 ES cells (5), and G418 neomycin-resistant clones were expanded (6). ES cells containing a targeted ERaAF2 allele were identified by Southern blot analysis of BamHI- or XhoI-digested ES cell genomic DNA using 5' (P5': 5'-atgaattcgagggcaagtggagttgagag-3' and 5'-taaagcttttccttggagggacagagaga-3') and 3' (P3': 5'-atgaattctggtaaagaatccagtgggat-3' and 5'-taaagcttgcctactacggagactgaaac-3') external probes. The expected sizes of DNA fragments are given in the table. Targeted ES cells were injected into C57BL/6 blastocysts and implanted into pseudopregnant mice hosts of the same strain. Chimeric males were obtained that transmitted the mutation through crosses with C57BL/6 females, yielding heterozygous ER α AF-2^{+/-} mice. Then, ER α AF-2^{+/-} mice were bred with homozygous CMV-Cre transgenic mice (7) to delete the selectable marker. Inbreeding of ER α AF-2^{+/-} mice yielded ER α AF-2^{-/} (also designated as ER α AF2⁰ or ER α AF-2 KO) mice homozygous for the deletion of the transactivating function 2 core motif. Genotyping on tail biopsy DNA was performed by PCR using primers A1 (5'-atgaattcttaataggtttaaaaaatgact-3') and A2 (5'-gaatcccttttgcctgttccc-3'). The size of the A1-A2 fragment from the WT allele is 355 bp, and the size of the fragment from the ER α AF2⁰ allele is 313 bp.

- White R, Lees JA, Needham M, Ham J, Parker M (1987) Structural organization and expression of the mouse estrogen receptor. *Mol Endocrinol* 1:735–744.
- Danielian PS, White R, Lees JA, Parker MG (1992) Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. *EMBO J* 11:1025–1033.
- Durand B, et al. (1994) Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor: Presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. *EMBO J* 13:5370–5382.
- Metzger D, Clifford J, Chiba H, Chambon P (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci USA 92:6991–6995.
- Dierich AD, Dollé P (1997) Gene targeting in embryonic stem cells. Methods in Development Biology/Toxicology, eds Klug S, Thiel R (Blackwell, Oxford), pp 111–123.

Male and female $ERalphaAF2^0$ are infertile, and $ERalpha-AF2^{+/-}$ mice were used as parental progenitors. The litter sizes from this cross are normal, and offspring are produced with equal sex frequency.

Fig. 52: ERαAF1 Activity Is Preserved in the ERαAF2⁰ Mutant. HepG2 cells were maintained in DMEM (Sigma-Aldrich) supplemented with 10% FCS (Biowest) and antibiotics (Sigma-Aldrich) at 37 °C in 5% CO₂. Transfections were carried out using jetPEI reagent according to manufacturer's instructions (Polyplus). One day before transfection, cells were plated in 24-well plates at 50% confluence. One hour before transfection, the medium was replaced with phenol red-free DMEM (Sigma-Aldrich) containing 2.5% charcoal-stripped FCS (Biowest). Transfection was carried out with 100 ng C3-LUC reporter gene, 100 ng CMV-βGal internal control, and 50 ng pCR, pCR-ERα, pC-ERαAF1⁰ (pCR hERα46) (8), or pC-ERαAF2⁰ expression vectors. After an overnight incubation, cells were treated for 24 h with 4-hydroxytamoxifen (2 μ M) or vehicle (control). Cells were then harvested, and luciferase and β-galactosidase assays were performed as previously described (8).

Fig. S3: ERαAF2 Is Necessary for the Effect of Exogenous E2 on Atherosclerosis Prevention in 18-Wk-Old Mice. Four-week-old ovariectomized $ER\alpha AF2^{+/+}LDL$ - $r^{-/-}$ and $ER\alpha AF2^{0} LDL$ - $r^{-/-}$ mice were given either placebo or 17β-estradiol (E2; 80 µg/kg per d for 12 wk) and were switched to atherogenic diet from the age of 6–18 wk. For immunohistochemical staining of macrophages, a rat polyclonal anti-CD68 antibody (117–5521; AbCys) was used. Collagen fibers were stained with Sirius red. Quantification (mean ± SEM) was performed for CD68 and Sirius red-positive staining areas at the aortic sinus. A two-way ANOVA factor indicated an interaction between E2 treatment and genotype (****P* < 0.0001), and the protective action of E2 was present only in $ER\alpha AF2^{+/+} LDL$ - $r^{-/-}$ mice (****P* < 0.0001).

Table S1: FGF2 and Osteopontin Are Absolutely Necessary for the Accelerative Effect of E2 on Endothelial Healing but Dispensable for the E2 Atheroprotective Effect. Mice were ovariectomized at 4 wk and implanted or not with s.c. pellets releasing E2 (9, 10) at 0.1 mg for a 60-d release (i.e., $80 \ \mu g \ kg^{-1}d^{-1}$; Innovative Research of America). The results are expressed as means \pm SEM.

E2 treatment affects uterine weight and fatty streak lesion size in 24-wk-old osteopontin (OPN)^{$-/-apoE^{-/-}$} and $FGF2^{-/-}apoE^{-/-}$ mice.

E2 treatment affects uterine weight and endothelialized area on $OPN^{-/-}$ and $FGF2^{-/-}$ mice. E2 treatment was initiated 2 wk before carotid injury and continued until the sacrifice.

- Lufkin T, Dierich A, LeMeur M, Mark M, Chambon P (1991) Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. *Cell* 66:1105–1119.
- Dupé V, et al. (1997) In vivo functional analysis of the Hoxa-1 3' retinoic acid response element (3'RARE). Development 124:399–410.
- Penot G, et al. (2005) The human estrogen receptor-alpha isoform hERalpha46 antagonizes the proliferative influence of hERalpha66 in MCF7 breast cancer cells. Endocrinology 146:5474–5484.
- Fontaine V, et al. (2006) Essential role of bone marrow fibroblast growth factor-2 in the effect of estradiol on reendothelialization and endothelial progenitor cell mobilization. Am J Pathol 169:1855–1862.
- 10. Leen LL, et al. (2008) Estrogen-stimulated endothelial repair requires osteopontin. Arterioscler Thromb Vasc Biol 28:2131–2136.

Fig. S1. Schematic representation of the strategy used to generate estrogen receptor-a activation function 2 null mutants mice.

C3-luc on HepG2 cells

Fig. S2. ER α AF1 activity is preserved in the ER α AF2⁰ mutant.

Fig. S3. ERαAF2 is necessary for the effect of exogenous E2 on atherosclerosis prevention in 18-wk-old mice.

Table S1. FGF2 and osteopontin are absolutely necessary for the accelerative effect of E2 on endothelial healing but dispensable for the E2 atheroprotective effect

	Placebo	E2	Placebo	E2
	OPN ^{-/-} apoE ^{-/-}		FGF2 ^{-/-} apoE ^{-/-}	
Uterine weight (mg)	<5	123 ± 17*	<5	182 ± 37*
Percent atherosclerotic lesion vs. placebo	100 ± 12	46.6 ± 8.3*	100 ± 9.3	39.9 ± 9.9*
	OPN ^{-/-}		FGF2 ^{-/-}	
Uterine weight (mg)	<5	148 ± 13*	<5	141 ± 12*
Endothelialized area (percent of carotid area)	25.0 ± 2.9	26.1 ± 1.9	22.8 ± 1.9	21.7 ± 2.0