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Stimuli, Design, and Task.On each trial, eight color values (denoted
C) and eight shape values (denoted S) were drawn randomly
from normal distributions with prespecified means (mc, ms) and
SDs (σc, σs). For each feature dimension, the mean could take
one of four values (e.g., for color, from really red to slightly red
to slightly blue to really blue), and the SD could take one of
three values (low, medium, high). See Fig. S1 for a representa-
tion of the design.
The mean factor was then collapsed from four levels to two

levels, by averaging across response categories: “slightly red” and
“slightly blue”were considered together as “weak evidence” (“low
mean”) conditions, and “really red” and “really blue” were con-
sidered together as “strong evidence” (“high mean”) conditions.
We parameterized the shape and color values (C and S) of

individual elements between 0 and 1, and the means (mc, ms)
and SDs (σc, σs) were controlled in a generic manner as

m = mref + mcateg (+1 or −1, for left vs. right)
× mcondition (1 or 2, for low vs. high mean) × mscaling,

σ = σcondition (1, 2, or 3, for low, medium, and high SD)
× σscaling,

where mscaling and σscaling are scaling values adjusting the spread
of the conditions in the parameter space, and mref is the position
in the parameter space (i.e., the interval [0, 1]) of the transition
between left and right response categories. Specifically, we used
mref = 0.5 for the red/blue task and the square/circle task (ex-
periments 1–3), and we used mcref = 0.75 for the red/purple task
(experiment 4a) and mcref = 0.25 for the purple/blue task (ex-
periment 4b).
In the following, we denote by xk the evidence value of the

element k. That is, in the color task we have xk = Ck − mref, and
in the shape task we have xk = Sk − mref for each element. The
evidence value is the position of the decision-relevant parameter
relative to the decision boundary. It can be positive or negative,
and for instance in the red/blue color task xk takes positive values
for redder elements and negative values for bluer elements, in
the red-blue continuum presented in Fig. S1.
In experiment 1, four levels formc, three levels for σc, and four

levels for ms were manipulated orthogonally (mcscaling = 0.05,
σcscaling = 0.05, msscaling = 0.05). In each trial the value of σs was
taken to be the same as the value of σc. In experiment 2, four
levels for mc and three levels for σc were manipulated orthog-
onally (mcscaling = 0.025, σcscaling = 0.0333). The shape param-
eters were kept constant (ms = 0, σs = 0.05). In experiment 3,
four levels for mc, three levels for σc, four levels for ms, and
three levels for σs were manipulated orthogonally (mcscaling =
0.05, σcscaling = 0.0666, μsscaling = 0.05, σsscaling = 0.0666). In
experiment 4, four levels for mc, three levels for σc, four levels
for ms, and three levels for σs were manipulated orthogonally
(mcscaling = 0.0375, σcscaling = 0.05, msscaling = 0.05, σsscaling =
0.0666).

Data Analyses. The main analyses focused on the percentage of
errors as well as response times (RTs) for correct trials. Then
error rates andRTs were averaged for each subject and conditions
(2μ × 3σ = 6 conditions) and submitted to between-subject
ANOVAs. Three participants (in experiment 1) were excluded
from the group analyses because they exhibited an average
performance around chance level.
Additionally, we conducted logistic regression analyses to as-

sess how participants weighted the different pieces of evidence

(i.e., the eight values of the decision-relevant parameter) to make
their choice. These analyses were carried out in two steps, by
assessing the weight of evidence for each subject and then using t
tests or ANOVAs at the group level. For each subject level, we
estimated the coefficients for a generalized linear regression in
which the decision-relevant values of the stimuli predicted the
subject’s responses. The responses were coded in a vector of
dimensions (trials × 1) vector containing 0 for one category and
1 for the other. The predictors were coded as a vector of di-
mensions (trials × 9) matrix constituted by the decision-relevant
values (i.e., the C values in the color task, the S values in the
shape task) coded between 0 and 1 (consistently with the re-
sponse codes) plus a constant term to estimate the intercept.
Using probit or logistic models to estimate the beta coefficients
produced equivalent results. Under the probit model, re-
sponses Y were taken to follow a binomial distribution with
a probability P affected by the predictors in X, such that P =
Phi(X′ beta) where Phi is the cumulative distribution function
of the standard normal distribution. Under the logistic model,
the betas are estimated such that log(P/(1 − P)) = X′ beta. This
analysis was performed using the glmfit function in Matlab.
Trials in which no response was given were not included in
these analyses.
Crucially, the values of the eight elements were sorted before

including them as predictors in the regression, so that the beta
coefficients would correspond to the weighting of the evidence,
respectively for each ranked element in the array.
For each participant we normalized the eight weights by di-

viding them by their root mean square. Importantly this nor-
malization was neutral with respect to the finding that different
elements might receive different weight of evidence. We used this
normalization to downweight the contribution of individual sub-
jects for which the estimation of the weights would be too unreliable
(which might happen for a particular participant in a particular
condition, if the number of errors in the trials is too small).
When comparing the treatment of inlying elements and out-

lying elements, we simply averaged the resulting normalized
weights separately for elements ranked 1, 2, 7, and 8 (outlying)
and for elements ranked 3, 4, 5, and 6 (inlying). This procedure
was done subject by subject and we then used T-tests or ANOVA
at the group level.

Computational Models. We simulated three random-walk models
of decision making. These models were all based on the same
“evidence accumulation up to a bound” principle. On each trial,
a decision variable (DV) is formed by accumulating momentary
evidence (A) corrupted by noise (a Gaussian random variable of
variance c2 and mean 0). A choice is made when this decision
variable reaches a predefined boundary value (Z for one choice,
−Z for the other choice). Note that we used a simplified version
of this type of model, in which the accumulation starts at zero,
and the boundary conditions for the two choices are symmetrical.
This is reasonable because choices in favor of one category are
equally likely as choices in favor of the other category (i.e., there
are as many “red” trials as “blue” trials), and participants do not
show any bias toward one of the response categories.
Such a model can be formalized generically in the following

way:

Start with no prior: DV0 ¼ 0.
Then for t > 0, the time in the number of simulation cycles, do
DVt ¼ DVt− 1 þAþNð0; c2Þ.
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Then check whether the DV reaches one of the bounds at time
t: If DV ≥ Z (resp. DV ≤ −Z), then consider R1 (resp. R2) as
the choice and t as the RT and stop the accumulation process.

For all models, our approach was to present the model with the
same numerical input values as in the experimental data and
adjust the numerical value of the bound and noise parameters
separately for each subject to fit the subject’s error rates across
the 2 means × 3 variance conditions. Fitting was done by mini-
mizing the mean square error over a large 2D search space for
possible values for the noise deviance c and the bound Z. Then,
once the best values for c and Z were found for each participant,
the simulated RTs were rescaled from cycles to seconds by ad-
justing the mean and SD of the RTs in cycles to the participant’s
mean and SD, to allow for comparing simulated and real RTs
within the same units and on the same graph. This rescaling of
RTs was, critically, neutral to our hypothesis as it did not affect
the relative pattern across conditions of simulated RTs and left
the trial-by-trial choices of the model (and thus the weighting
function) unchanged.
The models we simulated differed only in the way they in-

crement the input values, that is, in the way the value of A was
derived from the value of the elements xk (we remind the reader
that xk denotes the position of the element k relative to the
boundary between R1 and R2). We also denote by μ the mean of
the evidence values of the sample and by σ the SD of these ev-
idence values:

μ ¼ 1
n

× ∑
n

k¼1
xk and σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n− 1
×
�
∑
n

k¼1
ðxk − μÞ2

�s
:

In our three models, the increment A is defined in three different
ways:

i) In the simple averaging model: A ¼ μ.
ii) In the SNR model: A ¼ μ

σ
.

iii) In the LPR model: A ¼ 1

n
× ∑

n

k¼1

LPRðxkÞ, where LPR(x)

relates the value x to the log of the posterior probability
ratio between the two possible choice options (see details
below).

LPR model. This model is an adaptation of the log-likelihood ratio
(LLR) model, already described in previous studies, to our case
of multiple elements (e.g., ref. 1). This model considers the pa-
rameter values not in their native space but in a probability
space, which is shaped by the relation between the elements’
values and the underlying state of the world. The idea is that if
the value x in the parameter space is presented several times and
if each presentation is paired with an indication about the un-
derlying state of the world (R1 or R2), one can estimate the
probabilities of R1 or R2 given the value x.
The LLR is an optimal decision variable for a bounded ac-

cumulation process, as it transforms it into a sequential proba-
bility ratio test (SPRT), which gives the fastest decision times for
a given level of accuracy (2, 3). The estimation of the LLR can be
done simply by computing the log posterior ratio (LPR) and
seeing that in our case we have LPR = LLR.
To see why, let us write Bayes’ rule for the posterior proba-

bilities p(R1| x) and p(R2| x):

pðR1j xÞ
pðR2j xÞ ¼

pðx jR1Þ× pðR1Þ=pðxÞ
pðx jR2Þ× pðR2Þ=pðxÞ

:

Considering that R1 and R2 have equal prior probabilities [i.e.,
P(R1) = P(R2)], this simplifies as

pðR1j xÞ
pðR2j xÞ ¼

pðx jR1Þ× pðR1Þ
pðx jR2Þ× pðR2Þ ¼

pðx jR1Þ
pðx jR2Þ:

That is, the posterior ratio and the likelihood ratio are the same.
Taking the log, we have

LPRðxÞ ¼ ln
�
pðR1 j xÞ
pðR2 j xÞ

�
¼ ln

�
pðx jR1Þ
pðx jR2Þ

�
¼ LLRðxÞ:

Additionally, given that R1 and R2 are the only two options [i.e.,
P(R1| x) + P(R2| x) = 1], we have

LPRðxÞ ¼ ln
�

pðR1 j xÞ
1− pðR1 j xÞ

�
:

Estimation of the LPR for each element. Thus, to simulate this
model, we first estimated the LPR function of x (where x is
a value in the decision space). To do so, we used a simple ap-
proach based on empirical probabilities (for a related approach,
see supplementary material in ref. 1) to assess p(R1| x) and then
used the equation above to convert this probability in a LPR.
This procedure was done for each subject separately.
We derived the LPR function as follows. We considered all

elements presented to the subject as associated with either R1 or
R2 (according to the feedback). The goal is to determine a rea-
sonable estimate of the posterior probability p(R1|x) for x varying
along the parameter space. In each of 100 bins regularly spaced
on the parameter space (after discarding 5% of extreme values
for which the probability estimation involves very few data
points) we computed p(R1|bin) as the frequency of R1 being
the correct association for the elements falling in that bin [p(R1|
bin) = number of R1/number of elements falling in that bin]. We
fitted the resulting probabilities with a sigmoid function over the
bins, to capture the shape of the probability profile. We chose
the sigmoid function because it provided a better account than
other profiles, notably because our design involved a mixture of
12 Gaussian distributions with different means and variances
(indeed, theoretically, the inverse cumulative normal distribution
would be the true profile in the case of only 2 symmetrical
Gaussian distribution with equal variance). We finally applied
the fitted function to all individual elements. Fig. S3 presents the
LPR functions for a sample of individual subjects.

Optimality of the LPR and conditional independence assump-
tions. The sum of the log-likelihood ratios is the optimal de-
cision variable to consider for a bounded accumulation model (2,
3). Because the likelihood ratios are equal to the posterior ratios
(by Bayes’ rule, when prior probabilities are equal, see above),
the sum of the log of the posterior ratio is also the optimal de-
cision variable. Additionally, because in our models the noise,
bounds, and increments scale together (2), taking the summed or
the averaged log ratio over the eight elements is equivalent. We
favored the average to express all three models in similar forms.
Importantly, our estimation of the log posterior ratio de-

scribed above is equal to the true log posterior ratio only under
the conditions of conditional independence between the sam-
ples. To see this, let us write the true log posterior ratio of the
full array:

LPRðx1; x2; . . . ; xnÞ ¼ ln
�
pðR1j x1; x2; . . . ; xnÞ
pðR2j x1; x2; . . . ; xnÞ

�

¼ ln
�
pðx1; x2; . . . ; xnjR1Þ
pðx1; x2; . . . ; xnjR2Þ

�
:

When samples x1, . . . , xn are independent, then we have
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pðx1; x2; . . . ; xnjR1Þ ¼ pðx1jR1Þ× pðx2jR2Þ× . . . × pðxnjRnÞ:
Incorporating this expression into the previous line, we have

LPRðx1; x2; . . . ; xnÞ ¼ . . . ¼ ln
�
pðx1; x2; . . . ; xnjR1Þ
pðx1; x2; . . . ; xnjR2Þ

�

¼ ln
�

Π
n

k¼1

�
pðxkjR1Þ
pðxkjR2Þ

��
:

Rewriting the ln of the product as the sum of the ln, we see that
the log posterior ratios for the individual elements appear in the
expression

LPRðx1; x2; . . . ; xnÞ ¼ ∑
n

k¼1
ln
�
pðxkjR1Þ
pðxkjR2Þ

�
¼ ∑

n

k¼1
LPRðxkÞ:

In this final line, we see that the decision variable used in the LPR
model (i.e., the mean rather than the sum of the LPR over the
elements) scales with the true log posterior ratio of the full array,
if the samples are independent.
Thus, the decision variable we implemented is optimal only

under this independence condition. This condition independence
is not satisfied, as individual elements are taken from only one
distribution (out of 12 possible distributions) in any trial. Thus
even though they might be conditionally independent given the
particular distribution presented on the current trial, they are not
conditionally independent given the reward category. Conse-

quently, the LPR model we implemented is technically not the
“true” optimal model, but it rather represents the optimal pro-
cess for an observer considering (inaccurately) the elements as if
they were independent.

Stability over time. We note that our method to compute the
LPR function uses all trials presented to the subject, thus using
information available to the subject only at the end of the ex-
periment, whereas the resulting LPR is used in all trials, including
the ones at the very beginning of the experiment. This property
seems problematic. However, we provide several arguments for
why we think this method is reasonable. First, subjects do receive
instructions at the beginning of the experiment and build very
rapidly an understanding of the categories in the task, so im-
plementing a mapping learned “from a blank slate” (i.e., a flat
prior distribution) would be also unrealistic. Second, assessing
the evolution of the LPR function over time (Fig. S3) seems to
indicate that the mapping is stable quite soon after the experi-
ment starts. Fig. S3 shows for a random sample of subjects the
posterior probability function of the position of x in the pa-
rameter space, estimated using the ∼1,000 trials of the whole
experiment (red lines) or using only the first 300 trials of the
experiment (blue lines). We also checked that the main results
presented, and in particular the discarding of outliers, hold when
only the first third of the experiment is considered. Given these
points, we think that using a “stable” probability mapping com-
puted over the whole experiment is a reasonable approximation
for our simulations.
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Fig. S1. (A) Schematic presentation of distribution of sensory information for the color manipulation. In each trial, 1 normal distribution was used to generate
eight values. This source was one of the 12 possible distributions shown, corresponding to the 4 means × 3 SDs conditions of our design. Moving the mean away
from categorical boundary (white dashed line) increased the evidence strength. The reliability of the evidence was manipulated in an orthogonal fashion, by
using low (Top), medium (Middle), and high (Bottom) variance. (B) Parametric transition from a square to a circle using the “squircles” equations (see main
text). Here 11 squircles are presented, from S = 0 (square) to S = 1 (circle), in step of 0.1 in the parameter space.

de Gardelle and Summerfield www.pnas.org/cgi/content/short/1104517108 3 of 5

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1104517108/-/DCSupplemental/pnas.201104517SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1104517108/-/DCSupplemental/pnas.201104517SI.pdf?targetid=nameddest=SF3
www.pnas.org/cgi/content/short/1104517108


Fig. S2. Weighting profile across ranks for the simple averaging model (Left) and the SNR model (Right). In both cases, there was no effect of ranks on the
beta coefficients [simple averaging model, F(7,532) = 1.15, P = 0.29; SNR model, F(7,532) = 1.30, P = 0.26], and in particular the beta coefficients were not
different in inlying vs. outlying [simple averaging model, t(77) < 1, P = 0.62; SNR model, t(77) < 1, P = 0.51].

Fig. S3. Weightingprofile across ranks forhumanobservers (Left) and theLPRmodel (Right), as a functionof the four possible categories of trialmean (μ =−2, high
mean evidence for left choices; μ =−1, lowmean evidence for left choices; μ = +1, lowmean evidence for right choices; μ = +2, highmean evidence for right choices).

Fig. S4. Weighting profile across ranks in control experiment 4, with weights estimated separately for trials in which the evidence favored left (black) or right
(gray) choices and separately for sessions in experiment 4 (Left, blue/purple task; Right, purple/red task). The x-axis positions correspond to the average value of
the items (in the eight ranks), in the color space used in the previous experiments. The downweighting of outlying evidence values was observed in both
portions of the color space [inlying vs. outlying: both t(23) > 4, P < 0.001].

Fig. S5. Estimation of the probability function P(R1 | x) from the trials in the whole experiment (in red) or from only the first 300 trials (in blue), for several
subjects in the study (each line is a subject).
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Fig. S6. Weighting profile across ranks, for two individual subjects in the study.
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