Supplementary Data for:

ABCC Multidrug Transporters in Childhood Neuroblastoma: Clinical and Biological Effects Independent of Cytotoxic Drug Efflux

Haber, M et al.

Supplementary Figure 1. Expression of FLAG-ABCC1 in SH-SY5Y neuroblastoma cells. Immunofluorescent detection of FLAG-tagged ABCC1 in SH-SY5Y neuroblastoma cell clones stably expressing either ABCC1-wt (clones D5, H7), ABCC1 D1454N single mutant (clone B4) or ABCC1 DD1454LL double mutant (clone B7). Cell preparations were stained with either monoclonal antibody M2 anti-FLAG (FLAG), or DAPI to visualize nuclei. Strong membranous staining of FLAG-ABCC1 was observed in the majority of cells transfected with all ABCC1 constructs (MERGE). Scale bar = 15μ m. ABCC1= ATP-binding cassette, sub-family C, member 1; DAPI= 4'-6-Diamidino-2-phenylindole.

Supplementary Figure 2. Expression of FLAG-ABCC3 in BE(2)-C neuroblastoma cells. Immunofluorescent detection of FLAG-tagged ABCC3 in BE(2)-C neuroblastoma cell clones stably expressing either ABCC3-wt (clones A12, B12) or ABCC3 V1322F mutant (clones C4, D1). Cell preparations were stained with either monoclonal antibody M2 anti-FLAG (FLAG), or DAPI to visualize nuclei. Strong membranous staining of FLAG-ABCC3 was observed in the majority of cells transfected with both ABCC3 constructs (MERGE). Scale bar = 15μ m. ABCC3= ATP-binding cassette, sub-family C, member 3; DAPI= 4'-6-Diamidino-2-phenylindole.

Supplementary Figure 3. Cumulative survival of 209 patients with neuroblastoma. The Kaplan-Meier curves show the probability of overall survival (OS) with respect to **A**) the number of copies of *MYCN* found by fluorescence *in situ* hybridization (5-year overall survival rate \pm SEM: *MYCN* amplified, 32 ± 10 % vs not amplified, 82 ± 3 %, P < .001); **B**) tumor stage, categorized as favorable (INSS stages 1, 2A/2B or 4S) or unfavorable (INSS stages 3 or 4) (5-year overall survival rate \pm SEM: favorable stage, 96 ± 2 % vs unfavorable stage, 50 ± 6 %, P < .001); and **C**) the patient's age at diagnosis (5-year overall survival rate \pm SEM: age < 1 year, 93 ± 3 % vs age > 1 year, 62 ± 5 %, P < .001). *P* values were determined by the log-rank test. Tick marks indicate the length of follow-up of individual patients who survived. The median follow-up after diagnosis among the surviving patients was 55 months (range, 0-196). At 0, 3 and 6 years from diagnosis, the number of patients at risk of death are shown. SEM = standard error of the mean. *MYCN* = *v*-myc myelocytomatosis viral related oncogene, neuroblastoma derived. INSS = International Neuroblastoma Staging System.

Supplementary Figure 4. ABCC1 protein expression in tumors from $Abcc1^{+/+}/hMYCN$, $Abcc1^{+/-}/hMYCN$ and $Abcc1^{-/-}/hMYCN$ mice. Neuroblastoma tumors were harvested from individual hMYCN transgenic mice that were of genotype $Abcc1^{+/+}$ (lanes 1-2), $Abcc1^{+/-}$ (lanes 3-4) or $Abcc1^{-/-}$ (lanes 5-6). Membrane proteins were purified and ABCC1 levels determined by western blot as previously described (10). Even loading of samples was confirmed by Ponceau staining (not shown). MCF7/VP cells, which express high levels of ABCC1, were used as a positive control. hMYCN = human v-myc myelocytomatosis viral related oncogene, neuroblastoma derived. ABCC1= ATP-binding cassette, sub-family C, member 1.

Supplementary Figure 5. Impact of *ABCC1* overexpression or suppression on proliferation in human neuroblastoma cells. **A**) Quantification of 5-bromo-2-deoxyuridine (BrdU) incorporation in SH-SY5Y cells expressing high levels of ABCC1-wt (clones D5, H7) or catalytically inactive mutants: ABCC1 D1454N single mutant (clone B4) or ABCC1 DD1454LL double mutant (clone B7). **B**) ³H-Thymidine incorporation in SH-EP cells upon siRNA-mediated suppression of ABCC1. **C**) ³H-Thymidine incorporation in SH-EP cells upon pharmacological inhibition of ABCC1 using 5µM Reversan. **D**) Representative images and quantification showing colony size distribution in SH-EP cells exposed to 5µM Reversan compared to cells exposed to vehicle control (DMSO, dimethyl sulfoxide). Means displayed in all panels are derived from at least 3 independent experiments. P values were derived from one-sample *t* test vs control (H₀, μ =100%), except for panel **D**, for which two-sided Student's *t* test was used. ABCC1= ATP-binding cassette, sub-family C, member 1.

Supplementary Figure 6. Impact of *ABCC4* suppression by individual siRNA duplexes in BE(2)-C neuroblastoma cells. **A**) Western blot analysis of ABCC4 protein expression following exposure of BE(2)-C cells to SMARTpool siRNA duplex 1 (ABCC4.1), independent siRNA duplex 5 (ABCC4.5) or to control siRNA. **B**) Enhanced neurite extension in SH-SY5Y cells upon depletion of ABCC4. **C**) ³H-thymidine incorporation was reduced in SH-SY5Y cells depleted of ABCC4. **D**) Clonogenic capacity upon depletion of ABCC4 was assayed after 12 days. Means displayed in all panels are derived from at least 3 independent experiments. In panels **B** and **D**, *P* values were derived from one-way analysis of variance followed by two-sided *t* test vs control, while one-sample *t* test was used in panel C (H₀, μ =100%). ABCC4 = ATP-binding cassette, sub-family C, member 4; siRNA = short interfering RNA.

Supplementary Figure 7. Prognostic significance of *ABCC3* and *ABCC4* gene expression in neuroblastoma. **A)** Expression of *ABCC4* predicts cumulative event-free survival (EFS) in 209 patients with neuroblastoma (relative hazard = 4.7, 95% CI = 2.5 to 8.9, P < .001). Similar associations between high *ABCC4* gene expression and increasingly poor outcome were also observed in subgroups of patients **B)** with Stage 3 or 4 disease (five-year event-free survival rate ± SE: high *ABCC4*, 21±22 % vs low *ABCC4*, 54±12 %, P < .001) or **C**) whose tumors lacked *MYCN* amplification (five-year event-free survival rate ± SE: high *ABCC4*, 53±34 % vs low *ABCC4*, P=.02). **D**) Expression of *ABCC3* predicts cumulative event-free survival in 209 patients with neuroblastoma (relative hazard = 2.4, 95% CI = 1.4 to 4.2, P=.001). Similar associations between low *ABCC3* gene expression and increasingly poor outcome were also observed in subgroups of patients **E**) with Stage 3 or 4 disease (five-year event-free survival rate ± SE: low *ABCC3*, 34±17 % vs high *ABCC3*, 57±13 %, P = .03) or **F**) whose tumors lacked *MYCN* amplification (five-year event-free survival rate ± SE: low *ABCC3*, 34±17 % vs high *ABCC3*, 57±13 %, P = .03) or **F**) whose tumors lacked *MYCN* amplification (five-year event-free survival rate ± SE: low *ABCC3*, 63±14 % vs high *ABCC3*, 84±7 %, P = .0016). At 0, 3 and 6 years from diagnosis, the number of patients at risk of relapse are shown. SE = standard error; *MYCN = v-myc myelocytomatosis viral related oncogene, neuroblastoma derived.* ABCC= ATP-binding cassette, sub-family C.

Supplementary Figure 8. Impact of stable ABCC3 expression in BE(2)-C cells. A) Western blot analysis of ABCC3 protein expression following stable retroviral transduction and mass-culturing of BE(2)-C cells with either empty vector or pCMV-ABCC3 (kindly provided by P. Borst, Netherlands Cancer Institute, (1)). B) Representative images of wound closure assay. Scale bar = 100µm. C) Quantification depicting impaired motility of BE(2)-C cells stably overexpressing ABCC3. D) Clonogenic capacity was significantly reduced in BE(2)-C cells overexpressing ABCC3. E) Effect of ABCC3 overexpression on cell proliferation in BE(2)-C cells was measured by 5-bromo-2-deoxyuridine (BrdU) incorporation. One-way analysis of variance followed by two-sided *t* tests vs control were used to generate *P* values for wound closure and colony forming assays whereas one-sample *t* test was used for BrdU incorporation (H₀, μ =100%). In all panels means are derived from 3 replicate experiments and error bars represent standard error of the mean. ABCC3 = ATP-binding cassette, sub-family C, member 3.

Supplementary Table 1. DNA sequence of primers and TaqMan assay codes of assays used for real-time quantitative PCR*

Gene Primer or Probe	Sequence
ABCC1 F	TCCTCTATCTCTCCCGACATGAC
ABCC1 R	CCCGACTTCTTTCCCAGAAAG
ABCC1 PROBE	AGGTCTGCCCAGCAGACGATCCA
ABCC2 F	ACAGCTTTCGTCGAACACTTAGC
ABCC2 R	CATTCCGAGTTTTCAAGGAGTTTC
ABCC2 PROBE	AGGCATCTGAAGTCC
ABCC3 F	AGCTGTGGCCGTGAAGATG
ABCC3 R	TGCGCGAGTCCTTCAATTTC
ABCC3 PROBE	CCTTCCAGGTAAAGCA
ABCC4 F	CGAGTAGCCATGTGCCATATGA
ABCC4 R	TGACTATCTGGCCTGTGGTTGTCT
ABCC4 PROBE	CGGAAGGCACTTCGTCTTAGTAACATGGC
ABCC5 F	CATTCGAGGAGTTGTCTTTGTCAA
ABCC5 R	CCTTCGGAAAAGCTCGTCAT
ABCC5 PROBE	CTGCGAGCTTCCTCCCGGCTG
B2M F	ACTGGTCTTTCTATCTCTTGTACTACACTGA
B2M R	TGATGCTGCTTACATGTCTCGAT
B2M PROBE	TGCCTGCCGTGTGAACCATGTGAC
Gene	TaqMan assay code
ABCC6	Hs00184566_m1
ABCC7	Hs00357011_m1
ABCC8	Hs00165861_m1
ABCC9	Hs00245832_m1
ABCC10	Hs00375716_m1
ABCC11	Hs00261567_m1
ABCC12	Hs00264354_m1

* PCR, polymerase chain reaction; ABCC = ATP-binding cassette, sub-family C; B2M, beta-2 microglobulin.

	No. of patients											
Clinical characteristics	ABCC2 expression *		ABCC5 expression *		ABCC8 expression *		ABCC9 expression *					
	High	Low	P	High	Low	Р	High	Low	P	High	Low	Р
Age												
< 1 yr	57	38	.008	64	31	< .001	54	41	.09	64	31	< .001
$\geq 1 \text{ yr}$	46	66		38	73		49	62		40	71	
Tumor stage [†]												
Favorable	48	57	15	49	56	FC	54	51	77	58	47	10
Unfavorable	50	38	.15	45	43	.30	42	45	.//	39	48	.19

Supplementary Table 2. Relation of age and tumor stage at diagnosis to ABCC gene expression in the tumors in the 209 study patients with neuroblastoma

* The level of expression was considered high or low in relation to the median of $\Delta\Delta$ Ct values for all tumors analyzed. *P* values are derived using two-sided Fisher's exact tests. † Tumor stage was categorized as favorable (INSS stages 1, 2A/2B or 4S) or unfavorable (INSS stages 3 or 4), and was unknown in 15 cases.

ABCC = ATP-binding cassette, sub-family C; $\Delta\Delta Ct$ method is the comparative threshold cycle method of transcript quantification. INSS = International Neuroblastoma Staging System.

ABCC gene expression	Event-free survival		Overall survival			
	Relative Hazard * (95% CI)	P [†]	Relative Hazard * (95% CI)	P [†]		
ABCC2 (n=208)	1.4 (0.8 to 2.4)	.22	1.5 (0.8 to 2.7)	.17		
<i>ABCC5</i> (n=207)	1.4 (0.8 to 2.4)	.25	1.3 (0.7 to 2.3)	.37		
ABCC8 (n=207)	1.0 (0.6 to 1.8)	.88	1.15 (0.5 to 1.6)	.63		
<i>ABCC9</i> (n=207)	1.3 (0.7 to 2.2)	.37	1.3 (0.7 to 2.3)	.45		

Supplementary Table 3. Univariate analysis of ABCC gene expression and outcome in neuroblastoma

*Relative hazards were calculated as the antilogs of the regression co-efficients in the proportional hazards regression. CI = confidence interval; ABCC = ATP-binding cassette, sub-family C.

[†]Log-rank test

References to Supporting Information

1. Kool, M., van der Linden, M., de Haas, M., et al. 1999. MRP3, an organic anion transporter able to transport anti-cancer drugs. *Proc Natl Acad Sci U S A* 96(12):6914-6919.